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BICONTACTUAL REGULAR MAPS

STEPHEN E. WILSON

In this paper, we will classify all rotary maps with the property that
each face meets only one or two others. We will show that all such maps
are in fact regular and that they ore closed under the action of the
operators D9 P, opp and Hj. We will then use this information to prove
this theorem: Every non-trivial rotary map whose number of edges is a
power of 2 is orientable.

DEFINITIONS AND NOTATION. The following are used in this paper as

defined in [6]: map; regular; rotary; chiral; Petrie path; jth order hole;

symmetry; the symmetries α, β, γ, X, R, S, Γ; the operators D, P, Hf9

G(M). The generators of G(M) satisfy these relations:

(*) / « α

2 - β2 = γ 2 = αβy - X2 = RXα = SXβ = TXy.

When we give defining relations for the group of a map, we will assume

relations (*) as given, and not mention them explicitly. The orders of

R, S, T aτep, q, r, respectively.

The trivial maps. An important class of maps are the " trivial" maps

illustrated in Figure 1. The map εk is simply an equator of the sphere

divided into k edges, and its dual, Dεk, is a A>ρaneled "beachball." The

maps δk and Dδk on the projective plane are derived from ε2k and Dε2k

respectively by identification of antipodal points. The map Mk is one of

the canonical representations of the orientable surface of genus [k/2\ and

Mk may be viewed as Mk_λ with a diameter drawn in.

These maps are regular for every k, and are distinct for k > 2. They

are exactly those maps in which R 5, or T has order 2. The notation here

was chosen for brevity, and differs from that in [1] and elsewhere. The

correspondence with [1] is given by this table:

ek D e k 8k D 8 k Mk Mk'

/ c e v e n : { k , 2 } k { 2 , k } k { 2 k , 2 } / 2 { 2 , 2 k } / 2 { 2 * , 2 f c } l j 0 { k , k } 2

koάά: {k,2}2k {2,k}2k {2k,2}k {2,2k}k {2k,k}2 {k,2k}2
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FIGURE 1: The trivial maps

It is not hard to check that the trivial maps are closed under the

operators; the results are tabulated here:

If A: is even:

M: εk Dεk 8k Dδk Mk M,'

D(M): Dεk εk D8k 8k Mk Mk'

P(M): εk Mi δk Mk D8k Dεk

opp(M): Mi Dεk Mk D8k 8k εk.

and if k is odd:

Mi ek Dεk 8k D8k Mk M'k

D{M): Dεk εk D8k 8k M'k Mk

P(M): δk Mk εk M'k Dεk D8k

opp(M): D8k Mk Dδk 8k εk.
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Let \j\k be the smallest positive integer g such that gj is a multiple of
k; i.e., \j\k = k/(k, j). To calculate the effect of the operators Hj on the
trivial maps, let / = \j\k, m = |y|2*

 τ ^en Hj(Dεk) = Dεt\ if m is odd
Hj(Dδk) = Dεm\ if m is even, m = In for some w, then Hj(Dδk) = Dδπ.
The effect of Hj on M^ and Mk can be determined using this information

and = PHy

Mki. It is not hard to see that the only possibilities for a map with
one face are δk and Mk\ however, εk and Mk do not exhaust the
possibilities for maps with two faces.

Suppose M is a rotary map with exactly two faces, A and B. Label
each edge with a direction arrow so that, when viewed from the center of
face A, all the arrows point in the same direction. If M is not orientable,
then when viewed from the center of B, the arrows will not all point in the
same direction. Then a rotation one step around B will be a symmetry of
M which sends A onto itself and reverses the direction of at least one
arrow. This must be a reflection about some axis of A, and so must have
order 2. Thus each face must be a 2-gon and M must be Dδ2.

So assume M is orientable and has k edges. Label the edges
0,1,2,...,k — 2, k — 1, k = 0, CCW around face A, and suppose that the
first edge CCW from 0 in B is edge /. Then rotation one step CCW around
B must be rotation / steps CCW around A, and the edges around B must
be 0, /, 2/, 3/,..., -2/, -/, 0 (mod k), as in Figure 2.

By the symmetry of the map, rotation one step around A must in turn
be rotation i steps around B, which must be rotations i2 steps around face
A. Thus i 2 = 1 (mod k), and for each such pair k, /, the map, called Mki

is rotary, in fact regular. In terms of the group of the map, the generators
satisfy I = Rk, yRy = Rι, and these are a set of defining relations for
G(M). This is essentially the argument in [1, pp. 113-115].

b: The neighborhood of

FIGURE 2: The map Mki

a vertex in Mki
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The properties of the maps Mk i are easily determined by tracing

through the diagram and using a few of the number-theoretic properties of

the labelling. For instance, it is clear from Figure 2b that the valence of a

vertex in M'ki is 2|/ 4- \\k\ similarly, the length of a Petrie path is

2|/ — \\k. Some of these results and special cases are listed here without

proof:

1.
2. MΛ' = Mi,
3. εk = M'k_λ

4. H2JMi;= PDεg, where g = \j(i +

5. H2J+1Mί9i = M ^ , where A = |jϊ + 7 +

6.

7.

or

or

f

ki = ΐ*M'ni, where n\

is self-Petrie iff

(a) k is even and / = -1 (so Mki = εk)

(b) k = 8A and / = 4ft — 1 for some integer ft.

Mk is self-dual iff

(a) k is even and / = 1 (so M ^ = Mk)

(b) k = 8h and / = 4ft + 1 for some integer ft.

For the proofs of these facts, see [4].

B(k,2l) and B*(k,2l). Let us agree to call a map bicontactual

provided that each face of the map meets exactly two others. Two special

cases of such maps are provided by the following construction: Consider a

rectangle k squares high by 2/ squares long. Darken alternate horizontal

edges in each row and each column; label these with ordered pairs, (/, j)

k •

k-1 •

4 •

3 •

2 •

1 •

40

20

00

31

11

42

22

02

33

13

44

24

04

1.2M

0,2f-2

k,s k,s+2 k,s+4 k, s+2f-

FIGURE 3: A scheme for some bicontactual maps
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labelling the edge in the ίth row andy'th column when / Ξ= j9 (mod 2) as in
Figure 3. This diagram is considered to be lying on the torus, so that the
left and right vertical edges are identified directly, and the top row
identified with the bottom so that the edge (k, s) is identified with (0,0)
for some s. Note that this implies that k s s (mod 2).

To make a map from this scheme, use k faces, each of them a 2/-gon.
Number the faces 1,2,... ,&, and number the horizontal rows of squares
1,2,... ,&, as in Figure 3. Label the edges of face i with the labels of the
darkened edges in row i of the scheme, in order CW as they are
encountered reading left to right. Thus the edges of face 1 are
(0,0),(1,1),(0,2),(1,3),(0,4),...,(1,2/- 1) in order clockwise. Identify
orientably pairs of edges with the same label; also identify (0, j) with
(&, j -h s), as in the scheme.

The result of this construction will be a map of some sort. When will
it be rotary? A rotation one step CW around face / must take face / to face
k 4- 2 — / (mod k), and must take the edge (/, j) to (k + 1 — /, j' + 1 -f s)
for i Φ 0. Then that same rotation would send (k + I — /, ;' + 1 + j) to
(/, j -f 2 s + 2). But rotation two steps CW around face / clearly shifts the
whole diagram two columns to the right; i.e., it sends (/, j) to (/, j 4- 2).
Thus, 2s must be 0 mod 2/. Conversely, if 2s = 0, (mod 2/), the resulting
map is not only rotary but regular. We prove this by displaying the
following functions:

α: (i,j)a = (*W)

β: (i,j)β=(k-i,s-j)

X: (i,j)X= (k + l - i , s - l - j) if/ Φ 0

These permutations of the edges are easily seen to be symmetries of the
scheme and so symmetries of the map.

The equation 2 5 ^ 0 (mod 2/) has two solutions, s = 0 or s Ξ= /
(mod 21). If s ΞΞ 0, we call the map B*(k, 2/), and in that case k must be
even, since k = s (mod2). If s = /, we call the map B*(k, 21), and then
k Ξ= / (mod 2). Figure 4 illustrates some of the possibilities, showing three
schemes and the corresponding maps. Figure 4a is 5(4,8) and Figure 4b is
i?*(4,8); note the difference in the identification of faces 1 and 4 in the
scheme and in the map. Figure 4c shows a case with k odd (and so / is odd
also), £*(5,6).

Comparing the scheme to the map diagram, one can see that a set of
edges which form a vertex in the map appear in the scheme as a diagonal,
e.g., 00,11,22,... or 31,22,12,04,..., while the edges that form a Petrie
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FIGURE 4a: 5(4,8)
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FIGURE 4b: B* (4,8)
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FIGURE 4C: B* (5,6)

path appear in adjacent columns, for instance 02,11,22,31,— The

tractability of the system of labels, together with these observations make

it easy to analyze the maps B(k,2l) and B*(k,2l) by simply tracing

through the corresponding schemes. We list below some of these results

and special cases. Again, the proofs (where proofs are needed) are in [4].

1. Dεk = B(k,2) if k is even,

2. ^ * ( , ) /

3. 5(2,2/) = M2V

4. 5*(2,21) = M2'/t/+1 if / is even.

5. iy2
=B(k, k) if k is even,

6. PB(k,2l) = B(2l, k\

PB*(k,2l) = B*(l,2k).

7. Letk^Ul^kt

h = Mi, h - lib/. ThenHjB(kai) = B(k2,21i) if
kιl2 is even, B*(kv 2/x) if kxl2 is odd.

8. If n is a positive integer, let t(n) be that positive integer k such that

n/2k is an odd integer. Let sgn(n) = 1,0, -1 according as n is

positive, zero, or negative. With kl9 lλ as before, Hj(B*(k,2l)) =

B*(kl92li) if sgn(/(y) - t(k)) = sgn(/(i) - /(/)), B(2kι,2lι) other-

wise.
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9. If i2 s 1 (mod k)9 let K = (k9 i + 1), L = fc/* τ h e n i f

£ = (k9 i - 1), M / , = B*(K,2L), and if

10. The generators of the groups for B*(k,2l) and B*(k,2l) both
satisfy I = R2i

9 yR2y = R2. B(k,2l) also satisfies / = Tk

9 and
B*(k92l) satisfies Γ* = i?7 if k is even, / = Tk'ιSι if fc is odd;
further, these are a complete set of defining relations for the respec-
tive groups.

Multiple contact. Suppose a map M has the property that each face
meets exactly h others, / times apiece. Let A9 B be adjacent faces and let L
be the surface formed by the union of the interiors of A and B and the
relative interiors of their common edges. Call M locally orientable if L is
an orientable surface. An argument essentially identical to that at the
beginning of our analysis of Mki shows that if M is not locally orientable,
/ = 2, and if M is locally orientable, there is a number p relatively prime
to / so that rotation h steps CW around A is the same as rotation ph steps
CW around face B\ by the symmetries p2 = 1 (mod /). If h = 1, we have
the map M,'p.

It is the case, h = 2, bicontactual maps, with which we are concerned
in this paper. If such a map has k faces, they may be numbered
1,2,3,.. .,/c — 1, k so that face 1 meets only faces i — 1 and i + 1
(mod k). Then the faces occur in the order 1,2,3,...,/:, 1,2,3,...,/: — 1, k
around each vertex, so every face meets every vertex, k divides q and so V,
the number of vertices, divides 21 = p.

If / = 1, M either Dεk or D8k. If / = 2, there are three cases to
consider:

I. K = 1. Then Mis M2

II. F = 2. Then Mis DM'kk/2_λ

III. V = 4. If M is locally orientable, it is not hard to show that k
must be even; if \k is even, M is B(k,4) while if |/c is odd, M must be
B*(k,4). If M is not locally orientable, the first few faces must be
arranged as in Figure 5. Since each face meets each vertex exactly once,
the valence of a vertex must be exactly k; on the other hand, from the
arrangement of the vertices, 6, c, d around a, it is clear that q = k must be
divisible by three, k = 3n for some integer n. Conversely, the map Yn so
constructed is regular for each n\ its defining relations are I = R4 = S3n

= RSRT. The map I\ is the hemi-cube, a map on the projective plane
derived from the cube by identification of antipodal points, and Γπ is
constructed from Γx by covering it with an w-sheeted covering branched at



BICONTACTUAL REGULAR MAPS 445

B

B

FIGURE 5: Some faces of Tn

the four vertices. See [5]. The dual of Γ2 was first discovered by Grek; see
[3], p. 30, his map (4,6)2.

Henceforward, then, we assume that / > 2, so M is locally orientable.
We can then choose an orientation of face 1, i.e., decide which is CW and
CCW there, and let that force an orientation on face 2 by extension. We
can continue that forcing through faces 3,4,...,A: and let CW* and
CCW* be the extensions of CW and CCW respectively that would be
forced on face 1 by the choices on face k. Thus M is orientable iff
CW = CW*. Let Q be the symmetry of M which rotates face 1 by two
steps CW. Then Q sends each face onto itself, and moves face 2 by 2p
steps CW, face 3 by 2 steps CW, 4 and 2ρ steps CW, and so on. It is not
hard to see that if p = 1, the edges may be represented in a rectangular
scheme, and so the map must be a B(k, 21) or J9*(k, 21). There are a few
cases to consider:

A. k is odd so Q moves face & by 2 steps CW and moves face 1 by 2p
steps CW*.

Al. M is orientable, CW* is CW, so p = 1 and Mis B*(k, 21).
A2. M is not orientable, CW* is CCW, so p = - 1 . Thus, opp M is a

bicontactual map with p = 1, and so M is opp B*(k, 21).
B. k is even, Q moves face k by 2ρ steps CW, and moves face 1 by 2

steps CW*, so CW* = CW, and M is orientable. This is the case we wish
to look at in detail.

B(k, 21, p, σ). Label the edges CW around face / by ordered triples

(/, L, / - 1), (/,[/,/) = (/, I/,0),

and choose the starting point in each face so that (/, ί/,0) = (i -f 1, L,0)
for 1 < i < k. This will force (ι, £/, j) = (Ϊ 4- 1, L, pj) for 1 < i < k, and
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.L © > "

FIGURE 6: Neighborhood of the edge (1, L, 0) = (k9 U9 σ) in

B(k,2l,p,σ).

it will force (k, U, j + σ) = (1, L, pj) for some constant σ. Thus, the map
determines the parameters k9 /, p, σ. On the other hand, given any fc, /, p, σ,
we can make a map of A: faces, each a 2/-gon, labelling the edges and
identifying them according to these rules. Call this map B(k, 2/, p, σ). We
wish to find necessary and sufficient condition on the parameters for the
map to be rotary. We already have that if the map is to be rotary, k must
be even, say k = 2/c, and that p2 = 1 (mod /).

In Figure 6, we show some of the edges around edge (1, L, 0). If M is
to be rotary, there must be a symmetry which acts as rotation one step
CCW around face 1. This symmetry must send face i onto face 2 - i
(mod /c), and for 2 < i < k, there must be integers η mod k so that edge
(i, U9 j) is sent to (k 4- 2 - /, U9 j + ri + 1). From the diagram, r2 =
σ — 1, r3 = pσ — p - 1. It is not hard to see that for 2 < i < k, ri+1 =
pr, - 1. By induction, r2n+ι = pσ - w(p + 1), r2n + 2 = σ - n(p + 1) - 1.
Then rΛ = r2jc = σ — κ(p + 1) + p; but from the diagram, r̂  = p - σ.
These two expressions must be equivalent mod /. Equating them and
solving, we get 2σ = κ(ρ + I) (mod /). Similarly, there must be a symme-
try which rotates one step around the left vertex of (1, L,0), and a
necessary condition for that to exist is pσ Ξ σ (mod /).

Thus, if B(k, 2/, p, σ) is to be rotary, the parameters must satisfy
these conditions;

k = 2κ

P2 = l (mod/)

2σ = κ(p + 1) (mod/)

pσ = σ (mod /).
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FIGURE 7: 5(4,16,3,0)

On the other hand, see [4] for a proof that these conditions are sufficient

for the map to be not only rotary but regular. The generators of the group

satisfy / = R21, yR2y = R2f), Sk = R2σ, and these form a complete set of

defining relations for the group. Figure 7 shows B(4,16,3,0). This self-

Petrie map and its opposite, 5(4,16,5,2) are the smallest bicontactual

maps which are not direct derivates of some B(k, 21) or B*(k, 21).

While the system of edge labels for B(k, 21, p, σ) is not as tidy as that

for the B and B* maps, it is sufficiently manageable to enable one to

determine desired information about the maps without actually drawing

the picture. Some special cases and general results are gathered here:

1. The valence of a vertex in B(k,2l, p, σ) is k\σ\f, the length of a

Petrie path is k\κ — σ^.

2.B(k,2l) = B(k,2l,l,κ).

3. If k is even, B*(k, 21) = B(k, 21,1, K + \l).

4. opp B(k, 21, p, σ) = B*(k9 21, -p, K - σ).
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6. PB(k,2l, p, σ) is bicontactual iff p - 1 is a multiple of K — σ

(mod /). In that case, let p — 1 = a(κ — σ) (mod /), n = (/c — σ, /), σ — K

= nm (mod /); let j solve jm = p (mod l/n) and let σ = n — KJ. Then

PB(k, 21, p, σ) = B(2n, kl/n, ate + /, σ).

7. DB(k,2l) is bicontactual iff (fc,2/) = 4, and then DB(k,2l) =

/, p, σ), where p and σ satisfy

p = -1 (mod f̂c)

p = 1 (mod /)

σ = 0 ( m o d ^ )

σ = 2 (mod/).

In particular, B(k, 21) is self-dual iff k = 4 and / is even.

8. DB*(k, 21) is bicontactual iff (k 4- /, 21) = 4, and then DB*(k, 21)

= 5(4, \kl, p, σ), where p and σ satisfy

p(k + /)/4 = (A: - /)/4 (mod JW)

σ(fc + 0/4 = (Λ/2) (mod \kl).

9. Let 5 = p 4- 1, d = (s, I), h = l/d = \s\[. There are only three

possibilities for H2B(k, 2/, p, σ):

I.fi(fc,2λ)

II.5(/c,2/0

III. 5*(/c,2Λ), as determined by the following table:

Cases Result

1. /is odd

A. K is odd III

B. K is even II

2. / is even

A. K is even

lσ = (κs)/2 (mod/) II
ii. σ = (KS 4- /)/2 (mod /)

a. ί(j) < ί(/) III
b. t(s) > /(/) I

B. /c is odd
i. σ = (κs)/2 (mod/)

a. /(j) > /(/) III
b. t(s) < t(l) I

ii. σ = (KS 4- /)/2 (mod/)
a. ί(j) = /(/) III

I
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For the purposes of this result, p and σ should be regarded as integers
instead of numbers mod /, so that an expression like (KS 4- /)/2 will make
sense. The reader should convince himself that the outcome of the table is
independent of the choice of representatives of the classes of p and σ
mod / (e.g., we can write 5(14,60,11,27) as 5(14,60,41,87) if we wish,
but in either case, H2 of the map is 5(14,10)).

10. Let n = 2m + 1, s = m(p + 1) -f 1, h = |̂ -|/9 υ = \n\k9 u = \n\κ.
If /is odd, let σ = \(h + l)u(p 4- 1).
If / is even, and σvn/k = us(ρ + l)/2, let σ = w(ρ -I- l)/2.
If / is even, and σvn/k s §/ + us(ρ + l)/2, let

σ = |/i + ιι(p

frt5(fc,2/, p, σ) = B(v,2k,p,σ).
11.

P, σ) = DB(k,2\2j + 1|7, p, σ).

Summary of defining relations. It is often handy to have the defining
relations in a standard form consisting of a number of words set equal to
the identity, each of which is a product of positive powers of i?, S9 and T.
Below are the standard forms of defining relations of each of the families
we have discussed, together with the necessary conditions of the parame-
ters.

Family

M'ki

B(k,2l)

B*(k,2l)

B(k,2l,p,σ)

E

k 1
kl I
kl 1

1

kl 1

Defining relations

• nk τ>2 ni — 1
— l\ — 1 Λ\

' » R21 = Tk ==(/?Γ)2

= R2ί = TkRι = (RT)2

n2/ c<k ni~k / DTΓ\2
— £\ — o l\ — \1\1 )

= R}l = Sk-2TR2o-2T ^ TRTR2P-1

Conditions

i2 s 1 (mod k)
k is even
k, /both even
k, /both odd
k = 2/c
p2 s 1 (mod /)

2σ s κ(p + l)(mod/)
pσ ss cr (mod /)

In [2], Garbe determines all maps with 5 or fewer faces, and many of
these are bicontactual. The maps of his Theorem 5.1 are

£ * ( 2 m - l , ( 2 m - 1)(2Λ - 1)).

The maps of the first lemma in §6 are M'pr, and those of the lemma for
Theorem 6.4 are J9(4, 2J, r, r + 1 + \k).

Regular maps with 2n edges. [4] contains a catalogue of all non-trivial
egular maps with no more than 100 edges (the list is complete except
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perhaps at E = 84), grouped according to the number of edges. It was
noticed in compiling this catalogue that every entry under E = 2n was
orientable for every n, and no other easily definable family of values for E
had this property.

In order to prove that this happens in general, we will need the
following results from [5]: let B be a set of words in R, S, and T9 and let
H be the normal closure of B in G, the full group of symmetries of a
regular map M. B is called allowable if H contains none of α, β, γ, or X. If
B is allowable, G/H is the group of some regular map L, M is a branched
covering of L, and the factor homomorphism ψ: G -> G/H may be
considered as a projection ψ of the surface of M onto the surface of L. In
this case, we write L = M/B. Moreover, if (Sh) is normal in G for some
i/, then each vertex of M meets hλ others, where hx is some factor of h,
(Shl) is also normal in G, and the projection ψ: M -> M/Sh is one-to-one
at each vertex.

Further, since R and 5 preserve orientation while T reverses orienta-
tion, it is not hard to see that the following criterion holds:

(**) A regular map M is orientable (i.e. it lies on an orientable
surface) iff each word of the defining relations in standard form contains
an even number of T 's.

THEOREM. // M is a non-trivial rotary map with 2n edges for some /?,

then M is orientable.

Proof. First note that a non-orientable rotary map is regular ([1, p.
102]); thus, we can assume that M is regular. Also note that the phrase
"non-trivial" cannot be deleted from the hypothesis, since the regular
maps 8k and D8k on the projective plane exist for every k.

We proceed by induction on M. The base for the induction is easily
established by noting that for n = 1 and n = 2, every regular map with 2"
edges is trivial. Now suppose that M is a non-trivial regular map with 2n

edges and that the theorem has been established for all smaller values of
n. The statement that M is non-trivial is equivalent to the statement that
neither α, β, nor γ commutes with X. Thus, neither α, /?, γ nor X is in Z,
the center of G. On the other hand, the order of G is 2n + 2; since it is a
non-trivial 2-group, it has a non-trivial center. Let Q be any involution in
Z; then {Q} is an allowable set. Let L = M/Q. Then L has 22n~1 edges
and there are two cases to consider:

Case I. L is non-trivial. Then L is orientable by the induction
hypothesis, and M, as a covering of L, must also be orientable.
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Case II. L is trivial. Then one of R> S, or T must have order 2. Let £*
be a direct derivate of L in which S has order 2 and let M* be the
corresponding derivate of M. Since the order of S is not 2 in Λf *, β « S 2

in <7(A/*). Since 5 has order 2 in L*, each vertex meets only two others
there; since the projection is one-to-one on vertices, the same must be true
in M*9 so M* is the dual of a bicontactual regular map and so M is a
direct derivate of a bicontactual map. However, if we examine the
defining relations for bicontactual maps and the criterion (**), we see that
any direct derivate of a bicontactual regular map with 2n edges must be
orientable.

Thus, in any case, M must be orientable.
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