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ON THE BOUNDARY CONTINUITY OF
CONFORMAL MAPS

CH. POMMERENKE

Let the function / map the unit disk D conformally onto the domain
< 7 i n C = C u { o o } . The prime end theory of Caratheodory gives a
completely geometric characterization of the boundary behavior of /.
Prime ends are defined in terms of crosscuts of G.

Our aim is to give a geometric description of the boundary behavior
of / that refers only to the boundary dG and not to the domain itself. It
can therefore be applied to any complementary domain of a connected
closed set in C. Our description will however be incomplete because we
will have to allow exceptional sets.

1. Introduction and results. We say that /has the angular limit f(ζ)
at ζ e 3D if

/ ( £ ) = lim / ( z ) ε ί

exists for every Stolz angle Δ at ξ; we shall always denote by f(ζ) the
angular limit if it exists. A theorem of Beurling [1] (see e.g. [4, p. 56] [8, p.
341, 344]) states that the angular limit /(£) exists for ξ e B where
cap(3D \ B) = 0 and furthermore that

here cap denotes the logarithmic capacity.
We shall say that / is continuous at ζ e 3D if / has a continuous

extension to D U {ξ}, that is, if f(z) ->/(£) as z -» f, z e D. Our first
result states that discontinuity tends to imply injectivity.

THEOREM 1. Let fmap D conf ormally onto G. Then there is a partition

(1.1) 3D =AQUA1UA2

such that
(i)capyl0 = 0,

(ii) the angular limit f(ξ) exists for every ξ G Av and f is one-to-one on

A,
(iiϊ) f is continuous at each ξ G A2, and f is exactly two-to-one on A2.
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Let E be a continuum in C. The point ω e E will be called accessible

if there exists a Jordan arc C with endpoint ω such that C Π E = {ω}Λΐ

G is a component of C \ £ we say that ω is accessible from G if there is a

Jordan arc C ending at ω such that C c G U {ω} every accessible point

is accessible from some component. If / maps D conformally onto the

component G of C \ E, then every angular limit/(f) is accessible from G.

Conversely, if ω e E is accessible from G then there is at least one ζ e 9 D

such that ω = /(f) [8, p. 277].

We have to introduce another topological concept. We call ω e E a

quasi-isolated accessible point if there is a neighborhood K of ω such that ω

is the only accessible point in the component of E Π V containing ω. Thus

the other accessible points of E cannot be connected to ω by a subcon-

tinuum of small diameter.

As an example, we consider first the classical unsymmetric comb

(1.2) Ex = [-l + i\l + i ] u [ 0 , / ] u U

The point 0 is not quasi-isolated because, for 0 < r < 1, its component of

E Π [\z\ < r) is [0,/>] and all points on this segment are accessible.

Consider now the symmetric comb

00 Γ 1 1
(1.3) E2 = EXU (J - - , - -

n = 1 l n n

Then 0 is accessible but quasi-isolated because now no point of (0, ir) is

accessible.

Our next result is essentially topological.

THEOREM 2. Let f map D conformally onto G. Then, for all ξ e 3D with

at most countably many exceptions, the function f is continuous at f, if and

only if

(i) the angular limit f(ξ) exists, and

(ii) the accessible point f(ξ) ofdG is not quasi-isolated.

The classical comb shows that there may be exceptional values of ξ,

and indeed our ideas about the boundary behavior of conformal maps

seem to be strongly influenced by the exceptional cases.

COROLLARY 1. Let f map D conformally onto G. Then there is a

partition

(1.4) 3D = B0U Bλ U B2
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such that
(i) cap Bo = 0,

(iϊ)f(ζ) exists for ξ e Bx and f(ζ) is a quasi-isolated accessible point of
dG,

(uϊ)fis continuous at each f G J!2.

This is a consequence of Theorem 2 because, for conformal maps, the
set of ξ e 3D where /(£) does not exist has zero capacity, by Beurling's
theorem. The corollary is not true for arbitrary topological mappings; it is
easy to construct a topological self-mapping of D that is nowhere continu-
ous on 3D.

COROLLARY 2. Let f be a conformal mapping ofΌ onto G. If all points
of dG are accessible then f is continuous on 3D except possibly for a set of
zero capacity.

It is well-known that / is continuous in D if every boundary point is
accessible from G "from all sides." We have made a weaker assumption
but then we have to allow for exceptions. If Ex is again the classical comb
defined by (1.2) then every boundary point of G = C\Eι is accessible
but/is not continuous in D.

This corollary follows from Corollary 1 because there are no quasi-
isolated points if every point of 3 G is accessible.

COROLLARY 3 (B. Rodin). Let f map D conformally onto G and suppose
that

(1.5) g(/(z))=/(e 2^z), α G R \ Q ,

where g is continuous in G. If all points ofdG are accessible from G> then dG
is a Jordan curve in C.

This result is of interest for Siegel disks in the theory of iterations. It
is due to Rodin [9, Theorem 3]. The only new aspect is that his additional
hypothesis that/is continuous for at least one ζ e 3D follows automati-
cally, by Corollary 2, from his assumption that each point of 3 G is
accessible from G. Moeckel [6] has given an example of a function /
satisfying (1.5) with a function g continuous in G such that every point of
dG is accessible (though not always from G) and /has countably many
discontinuities on 3D.

I want to thank Professor Burt Rodin for our discussions. His result
was the starting point of the present investigation.
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2. Proof of Theorem 1. The proofs are based on two remarkable

topological countability theorems. A triod is the union of three Jordan

arcs that begin at a common point but are otherwise disjoint. The

following result is due to R. L. Moore [7].

MOORE TRIOD THEOREM. Every disjoint collection of triods in the plane

is countable.

Let/be any function defined in D. For ζ e 3D, the left-hand cluster

set CL(ζ) is defined by

(2.1) CL(ξ) = {w G C there are zn G D with

zn -> £,argzn > arg£,/(zj -> w).

The right-hand cluster set CR(ζ) is defined similarly with argzw < arg£

instead, and C(f) = CL(ξ) U CΛ(f) is the unrestricted cluster set. Note

that/is continuous at ζ if and only if C(ξ) is a singleton. The following

result is due to Collingwood [3] [4, p. 83].

COLLING WOOD SYMMETRY THEOREM. Let f be defined in D. Then

CM = CR(S) = C(f)

for all ζ G 3D with at most countably many exceptions.

The point ω e £ is called a cw/ /7om/ of the continuum E if E\{ω) is

not connected. It follows from the plane separation theorem [10, p. 34]

that ω G £ is a cut point of E if and only if there is a Jordan curve / c C

with J Π E = {ω} that separates 2? \ {ω}. If E bounds a domain G then

/ \ { ω} has to lie in G.

Proof of Theorem 1. Let A'o denote the set of ζ e 3D for which the

angular limit/(f) does not exist. Beurling's theorem states that capyl'o = 0.

Furthermore, let

(2.2) A'2= {ζ G 3D\y4'0:/(f)isacutpointof 3G}

and let ^ = 3D \ ( ^ U Λ'2).

We show first that (ii) holds. Suppose that/is not one-to-one on Av

Then there exist £, £* G Λx such that/(f) = f(ξ*) = ω. Then

(2.3) / = / ( f S ) U / ( f Sf), S = [0,1],



BOUNDARY CONTINUITY OF CONFORMAL MAPS 427

is a Jordan curve that intersects dG only at ω. By Beurling's theorem,/has
angular limits different from ω on both arcs of 3D\{ £,£*}. Hence we
conclude that there are points of 3 G in both components of C\J.
Therefore ω is a cut point of 3<J, contrary to our assumption ξ G Aλ c

Let now ξ GE A2. Then ω =/(f) is a cut point of dG by (2.2), and
there is a Jordan curve / c C u {ω} through ω that separates dG \ {ω}.
The open Jordan arc β = / " 1 ( / \ {ω}) c D ends at definite points
ζl9 ζ2 e 3D [8, p. 267].

If ζi = ?2 t ^ l e n δ u {f i} *s a Jordan curve. Its inner domain H lies in
D, and/(z) -» ω as z -> f, z e i/ by a theorem of Lehto and Virtanen [5].
Hence /(//) is one of the components of C \J. Since/(i/) c G and since
/ is to separate dG\ {ω}, we conclude that the case ξτ = ζ2

 ι$ impossible.
Since / has the angular limit ω at ζλ and at ζ2 [8, p. 268] we thus see that
there is at least one ξ* Φ ξ with/(£*) = ω.

Let Eo be the set of ω e dG for which there are at least three points ξι

with angular limits /(£,) = ω. For ω G £ O ,

/ α Λ ) U/(f2S0) U/(f3S0), ô Ξ [1/2,1],
is a triod because / is univalent in D. If ω* e ^Q, ω* ^ ω, then the
corresponding triods are disjoint. Hence it follows from the Moore triod
theorem that Eo is countable. Hence

has zero capacity by Beurling's theorem. If ζ & A'2\AQ then there is
exactly one further ξ* e A'2\A'^ such that/(f *) = /(f )•

Finally we define AQ2LSAQUAQ together with all points ζ e A2 \A%
such that either CL(ζ) Φ CR(ζ) or CL(f *) Φ CR(ζ*)\ by the Collingwood
symmetry theorem, there are at most countably many such points. Hence
capyl0 = 0 so that (i) holds. We define A2^ A2\A0. Then we have the
partition dΌ = Ao U Ax U A2, and/is exactly two-to-one o n ^ 2

In order to establish (iii) we have to show that C(ζ) is a singleton for
each ξ G A2. Let f * be the other point in A2 with /(f *) =/(£) and
consider the Jordan curve / defined by (2.3). Let HL, HR be the compo-
nents of C \ / ; we may assume that the points to the left of f(ζS) lie in
HL. Then those to the right of f(ξS) lie in HR. Hence

CL{ζ)<LHL, CR(ξ)c:HR.

Since CL{ξ) = CR{ζ) = C(f) because of J € y40, we conclude that

and since C(f) c 3G and/ Π 3G = {/(f)} it follows that C(f) = {/(f)},
and this completes the proof of Theorem 1.
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3. Proof of Theorem 2. (a) Let first/be continuous at ξ G 3D. It is

clear that the angular limit/(f) exists. Let F b e a neighborhood of f(ξ).

Then there is a disk around ζ such that its intersection U with D satisfies

/(£/) c V. Hence

F=f{U) π3Gc UΠ dG.

Since F is connected it follows that F lies in the component of V Π 3G

that contains/(f).

Since/is conformal there exists f' G 9t/ Π 3D such that the angular

limit f(ζ') exists and is different from /(£)> f° r instance by Beurling's

theorem quoted above. Hence f(ζ') is also an accessible point in F. It

follows that/(£) is not quasi-isolated.

(b) In order to prove the converse direction we may assume that

oo G G S O that 3G lies in C. We shall not use that/is meromorphic so that

/may be any topological mapping from D onto G.

Let A denote the set of all ζ G 3D such that the angular limit f(ξ)

exists and f(ξ) is not quasi-isolated. Let Gk denote the components of

C \ dG. For ζ G A and n G N, let En(ζ) denote the component of

{w: \w-f(ζ)\< l/n) ΠdG

that contains/(f). Since ω is not quasi-isolated there is an accessible point

Let Ank denote the set of ξ G A such that ωn(ξ) is accessible from the

component Gk\ these sets need not be disjoint. Let

(3.1) X= {ζ e A: CL(ζ) Φ CR(ξ)} U \J Ank.
Ank singleton

The first set is countable by the Collingwood symmetry theorem. Hence X

is countable.

Let now ξ G A \ X. We shall show that / is continuous at ζ. Let

Γ = {f(rξ) 1/2 < r < 1}. We have ξ G Ank for some k = k(n) and

there is a Jordan arc Γ̂  c Gk U {ωΛ(f)} that ends at ωw(f). We dis-

tinguish two cases:

1. Let first ωn(ζ) be accessible from G. Let Pn c G be a Jordan

arc connecting the other endpoints of Tn and Γ (without otherwise meeting

Tn and Γ) and let

(3.2) Ln = ΓυPnUΓnUEn(ξ).
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Since Γ U Pn U Tn is a crosscut of C\En(ξ) and since En(ζ) is a con-
tinuum, the points lying locally on the two sides of Γ belong to different
components of C \ Ln, say Hn and H*.

Case II. Let now ωn(ξ) be accessible from some component Gk Φ G.
Since ζ £ X we see from (3.1) that there exists ζ'n e Ank with ζ'n Φ ζn.
Hence there are Jordan arcs Tn and Γrt' that lie in Gk except for their
endpoints ωn(ξ) and ωn(ξ'). Let PΛ be a Jordan arc in Gk that connects the
other endpoints of Tn and Γπ'. Furthermore let <2n be a Jordan arc in (?
from/(f/2) toftf^/2). We set Γn* = {f(r&): 1/2 < r < 1} and

(3.3) Ln = (ΓΛ U P, U Γ;) U ( Γ U ^ U ΓΛ ) U En(ξ) U £ W (Γ).

Since En(ξ) and En{ζ'^) are continua and since Γw U Pn U Γπ' and Γ U β r t

U Γw* are disjoint Jordan arcs connecting En(ζ) with En(ξ')9 the points
lying locally on the two sides of Γ lie in different components of C \ Ln,
say Hn and H*.

Now we consider both cases together. Let j > 1, let Uj and Uj* be the
"left" and "right" components of [z e D: \z ~ ζ\ < l/j) \[f/2, ξ]. Then
/(ί^ ) intersects iϊn and/(t^ *) intersects jfiΓrt* if we label the components
Hn and H* of C\Ln accordingly. If j is large then/(ί/y) and/(£/*) do
not intersect Ln as we see from (3.2) or (3.3) because / is a homeomor-
phism from D onto G. Hence there exists j n such that

(3.4) f(UjJ^Hn, f(uj*)cHn\

It follows from (2.1) and the corresponding definition of CR(ξ) and
from (3.4) that, for n = 1,2,...,

Since £ € A" we therefore obtain from (3.1) that

C(ξ) = CL(ζ) n c Λ t t) c ^ n Fn* c LΠ.

Furthermore C(f) c 9G. Hence we conclude

(3.5) C ( f ) c L , n a G c £ n ( f ) or c £„(?) u £„(£

from (3.2) for Case I and from (3.3) for Case II, respectively.
In Case I, we immediately get from (3.5) that

diamC(£) < diam En(ξ) < 2/n;
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this inequality holds also in Case II if En(ζ) and En(ζ'n) are disjoint
because then (3.5) implies that the continuum C(ζ) lies in En(ζ). If En{ζ)
and En(ζ'n) intersect then we obtain from (3.5) that

diamCU) < diam^α) u En{&)] < 4//i.

Since C(f) is independent of n we conclude in all cases that C(ζ) is a
singleton so that / is continuous at ξ.
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