A NEW APPROACH TO THE KREIN-MILMAN THEOREM

J. MARTINEZ MAURICA AND C. PEREZ GARCIA

In this paper we give a new definition of extreme points for which we get a generalization of the Krein-Milman theorem within the general context of locally convex spaces over valued fields.

Some generalizations of the theorem of Krein-Milman were developed in the seventies in order to include other types of topological vector spaces apart from the usual ones (e.g. Kalton's papers within the context of locally *p*-convex spaces). However, A. F. Monna says in 1974 that no way is known to attack problems such as the Krein-Milman theorem in ultrametric analysis (i.e. when the real or complex field is substituted for another valued field).

In order to give a theorem of Krein-Milman which includes the case of locally *p*-convex spaces ($p \in (0, 1]$) and the ultrametric case, we propose a new definition of extreme points. The latter definition agrees with the usual one in case the ground field is *R* or *C* and it allows us to give a non-archimedean Krein-Milman theorem.

We are going to consider vector spaces E over any complete non-trivially valued field K. For K = R, C, and $p \in (0, 1]$ we say that $A \subset E$ is p-convex if $\lambda A + \mu A \subset A$ for all $\lambda, \mu \ge 0$ such that $\lambda^p + \mu^p = 1$. For a non-archimedean valued field K two different kinds of convex sets will be considered: $A \subset E$ is said to be M-convex (convex à la Monna) if $\lambda A + \mu A + \nu A \subset A$ for all $\lambda, \mu, \nu \in K$ such that $|\lambda|, |\mu|, |\nu| \le 1$ and $\lambda + \mu + \nu = 1$; and for $a \in E$, the set $A \subset E$ is said to be a-convex if A is M-convex and $a \in A$. More details over these kinds of convex sets we will use in the sequel are in [3] (for p-convex sets) and [5] (for the non-archimedean case).

In the sequel we will use the term "convex" to indicate any of the different kinds of convex sets; also $E_c(A)$ stands for the corresponding convex hull of A.

1. Semiconvexity. Extreme points. The following definition is very close to the weak-convexity of Monna ([5] p. 28).

DEFINITION 1. Let *E* be a vector space over a valued field *K*. A subset *A* of *E* is said to be semiconvex if $\lambda A + (1 - \lambda)A \subset A$ for every λ of *K* satisfying $|\lambda| < 1$.

Notice that if K = R, C every semiconvex set is 1-convex and if K is non-archimedean every M-convex set and every a-convex set are semiconvex.

DEFINITION 2. Let E be a vector space over a valued field K and A a subset of E. A non-empty part S of A is said to be an extreme set of A if the following properties are verified:

(i) S is semiconvex.

(ii) If $x_1, \ldots, x_n \in A$ and $E_c\{x_1, \ldots, x_n\} \cap S \neq \emptyset$, then there exists an index $i \in \{1, \ldots, n\}$ such that $x_i \in S$.

It is easy to verify that if A is convex, then the property (ii) is equivalent to A - S is convex.

DEFINITION 3. Let E be a vector space over K and A a subset of E. A point $x \in A$ is said to be an extreme point of A if it belongs to some minimal element of

 $E_A = \{ S \subset A | S \text{ is an extreme set of } A \}.$

Next, we prove that if K = R, C this definition gives the same extreme points as the usual ones for every p-convex compact set A of a separated locally p-convex space. For that, we denote by $E_p(A)$ the set of p-extreme points of A according to the definition of Kalton [4]. (Notice that this definition is slightly different from the corresponding definition of Jarchow [3], however they agree for closed p-convex sets). Also $F_p(A)$ indicates the set of extreme points of A corresponding to our Definition 3 for p-convex sets.

THEOREM 1. Let E be a Hausdorff locally p-convex space over K = R, C and let $p \in (0, 1]$. If A is a non-empty compact p-convex set of E, then:

(1) Every minimal element of E_A consists of one point.

(2) $F_p(A) = E_p(A)$.

Proof. (1) Let S be a minimal element of E_A and suppose x, y are different points of S. As \overline{S} is semiconvex and closed, $\lambda \overline{S} + (1 - \lambda)\overline{S} \subset \overline{S}$ for every $\lambda \in K$ such that $|\lambda| \leq 1$. Consequently $2y - x \in \overline{S}$; and also for $n = 1, 2..., z_n = (n + 1)y - nx \in \overline{S}$. So the sequence $(z_n) \subset \overline{S}$ verifies $\lim_{n \to \infty} |z_n/n| = y - x \neq 0$ and \overline{S} is not bounded.

418

(2) This follows from (1) and the fact that $x \in E_p(A)$ if and only if $A - \{x\}$ is *p*-convex (see [2] p. 96 for p = 1 and [4] for any *p*).

2. Non-Archimedean extreme points. Throughout the rest of the paper, E will indicate a topological vector space over a field K, endowed with a non-trivial non-archimedean valuation. We are going to restrict ourselves to the case of K local (i.e. locally compact) (otherwise there do not exist any compact convex set with more than one point [5] p. 40).

Theorems in this section are proved for 0-convex sets; however with minor changes they remain true for the other kinds of convexities over E.

THEOREM 2. Let E be a topological vector space over K and assume that E' separates points of E. Then, every convex and compact subset A of E has extreme points.

Before proving the theorem we need the following lemma:

LEMMA 1. Let E be a topological vector space over K and let A, B be convex sets in E with $B \subset A$. If the interior of B in A is non-empty, then B is clopen in A.

Proof. Take $x_0 \in B$ such that B is a neighborhood of x_0 in A. Now, if $x \in B$, then $B = B - x_0 + x$; hence B is a neighborhood of x in A and B is open in A. Also, if $y \in A - B$, then $B \cap (y + B) = \emptyset$ and consequently A - B is open in A.

Proof (of Theorem 2). Let A be with more than one point and define $CE_A = \{ S \subset A | S \text{ is a closed extreme set of } A \}.$

 CE_A is non-empty and a standard application of Zorn's lemma shows that CE_A has some minimal element.

Let S_0 be one such minimal element. First we prove that $S_0 \neq A$.

For that, choose $f \in E'$ such that f(A) is not reduced to be a single point and define

$$S_f = \left\{ s \in A \mid |f(s)| = \sup_{x \in A} |f(x)| \right\}.$$

It is easy to verify that $S_f \in CE_A$ and that $S_f \neq A$. Then, $S_0 \neq A$.

Let $S \in E_A$ such that $S \subset S_0$. Applying Lemma 1 to A and A - S, we deduce that S is closed in E. Thus $S_0 = S$ and S_0 is a minimal element of E_A .

COROLLARY 1. Under the assumptions of the Theorem 2, every closed extreme subset of A contains extreme points of A.

If $A \subset E$ we will denote by Ext(A) the set of extreme points of A. In the following theorem we use the terminology of [1].

THEOREM 3 (Non-archimedean Krein-Milman theorem). Let E be a Hausdorff locally convex space over K. If A is a non-empty convex compact set of E, then $A = \overline{E}_c(\text{Ext}(A))$.

Proof. For $x_0 \in A - \overline{E}_c(\text{Ext}(A))$, let H be a closed hyperplane which separates x_0 and $\overline{E}_c(\text{Ext}(A))$, and let $f(x) = \alpha$ an equation of H ($f \in E'$). As $S_f \in CE_A$ (see the preceding theorem), we can choose $x \in \text{Ext}(A) \cap S_f$. Also, $\overline{E}_c(\text{Ext}(A))$ is in one side of H, so $|f(y)| < |\alpha|$ for every $y \in \overline{E}_c(\text{Ext}(A))$. It follows that $|f(a)| \le |f(x)| < |\alpha|$ for every $a \in A$.

Thus, A and $\overline{E}_c(\text{Ext}(A))$ are in the same side of H and, therefore, $x_0 \notin A$.

The main difference between the real or complex case and the non-archimedean case is contained in the following theorem.

THEOREM 4. Let E be a Hausdorff topological vector space over K and let A be a convex set in E with more than one point. Then, every extreme set of A cannot be reduced to a single point.

Proof. Suppose A to be absorbing (otherwise replace E by the linear hull of A).

First suppose that the interior of A is non-empty (i.e. A is clopen). If S is an extreme set of A with only one point, then A - S is an open convex set in A. Thus (Lemma 1) A - S is clopen in A and, consequently, S is open.

Now assume A to be bounded and let τ_p be the topology on E defined by the Minkowski's functional of A. If τ is the original topology in E we have $\tau \leq \tau_p$ and the interior of A with respect to τ_p is non-empty. Now apply the first result of this proof.

Finally, let A be any set in the hypotheses of the theorem. If $S = \{x\}$ is an extreme set of A, take $y \in A - \{0\}$ such that $x \in \{\lambda y | |\lambda| \le 1\} = A_y$. Therefore, S ought to be an extreme set of the bounded convex set A_y .

3. An expression of the extreme points. First we are going to consider the case of 0-convex compact sets. Such a subset A of a Hausdorff topological vector space E can be expressed in the following way:

(1)
$$A = \left\{ \sum_{i \in I} x_i e_i \middle| |x_i| \le 1 \right\}$$

where $(e_i)_{i \in I}$ is a topologically independent family of elements of A. The expression of each element of A as a sum $\sum_{i \in I} x_i e_i$ is unique, and the convergence of the sums is in the sense of the Cauchy's filter ([1] p. 152). If $x = \sum_{i \in I} x_i e_i$ we put $\langle x, e_i \rangle = x_i$.

We denote $\text{Ext}_0(A)$ the set of the extreme points of A for the 0-convexity. Also, p_A denotes the Minkowski's functional of A in the linear hull of A.

THEOREM 5. Let E be a Hausdorff topological vector space over K and let A be a 0-convex compact set of E. If $(e_i)_{i \in I}$ is a family of points of A satisfying (1), then the following properties for a point $x \in A$ are equivalent:

(i) $x \in \text{Ext}_0(A)$. (ii) $\sup_{i \in I} |\langle x, e_i \rangle| = 1$. (iii) There exists $i_0 \in I$ such that $|\langle x, e_{i_0} \rangle| = 1$. (iv) $p_A(x) = 1$.

Proof. For $i \in I$, consider

$$D_i = \{ x \in A | |\langle x, e_i \rangle| = 1 \}.$$

 D_i is a 0-extreme set of A. Now we wish to prove that D_i is minimal. Otherwise, consider T to be a proper subset of D_i which is a 0-extreme set of A. Take $x \in D_i - T$ and define $y \in A$ in the way $\langle y, e_j \rangle = x_j$ for $j \neq i$ and $\langle y, e_i \rangle = 0$. Obviously $y \in A - T$, and being A - T 0-convex, then $\langle x, e_i \rangle^{-1}(x - y) = e_i \in A - T$. Pick $t \in T$ and define $z \in A - T$ in the way $\langle z, e_j \rangle = t_j$ for $j \neq i$ and $\langle z, e_i \rangle = 0$. Finally, we have $t = \langle t, e_i \rangle e_i$ + z which contradicts the assumption that A - T is 0-convex. This proves (iii) \Rightarrow (i).

The equivalence (ii) \Leftrightarrow (iii) is obvious because the valuation over K is discrete.

For the equivalence (ii) \Leftrightarrow (iv), it is straightforward to verify that for a point $x \in A$, $p_A(x) = \sup_{i \in I} |\langle x, e_i \rangle|$.

For (i) \Rightarrow (ii), consider an $x \in A$ such that $\sup_{i \in I} |\langle x, e_i \rangle| < 1$. Choose $\mu \in K$ with $|\mu| > 1$ such that $\mu x \in A$. If S is a proper 0-extreme set of A which contains x, then $\mu x \in S$. Also, $0 = \lambda \mu x + (1 - \lambda)x \in S$ (with $\lambda = -1/(\mu - 1)$) which contradicts that A - S is 0-convex. Hence, $x \notin \text{Ext}_0(A)$.

REMARKS. (1) The latter theorem holds for a compact *a*-convex set *A*. In fact, under the conditions of the Theorem 5, the following properties are equivalent: (i) $x \in \text{Ext}_a(A)$ (ii) $\sup_{i \in I} |\langle x - a, e_i \rangle| = 1$ (iii) There exists $i_0 \in I$ such that $|\langle x - a, e_{i_0} \rangle| = 1$ (iv) $p_{A-a}(x-a) = 1$ where Ext_a(A) indicates the set of a-extreme points of A and $(e_i)_{i \in I}$ satisfies (1) for the 0-convex set A - a.

(2) However, if we consider *M*-convex sets, the result we get is trivial. If we put $\operatorname{Ext}_{M}(A)$ to indicate the set of *M*-extreme points of an *M*-convex set *A*, and with the assumptions on *E* of Theorem 5 we have:

COROLLARY 2. $\operatorname{Ext}_{M}(A) = A$.

422

Proof. It follows from the fact that $\{x \in A | | \langle x - a, e_i \rangle | = 1\}$ is a minimal element of E_A (for this convexity) for all $a \in A$, $i \in I$.

(3) Our Theorem 5 is quite similar to the Theorem 2 of Kalton's paper [4], which establishes that every point of a compact *p*-convex $(0 subset A of a Hausdorff topological vector space E can be expressed in the way <math>x = \sum a_n x_n$ with $a_n \ge 0$, $\sum a_n^p = 1$ and (x_n) being a sequence of distinct *p*-extreme points of A.

References

- [1] J. P. Carpentier, Seminormes et ensembles convexes dans un espace vectoriel sur un corps valué ultramétrique, Séminaire Choquet, (1964-1965), 91-158.
- [2] G. Choquet, Lectures on Analysis. Vol. II, W. A. Benjamin (1969).
- [3] M. Jarchow, Locally convex spaces, Teubner, Stuttgart (1981).
- [4] N. J. Kalton, Compact p-convex sets, Quart. J. Math. Oxford Ser. (2). 28. no. 111, (1977), 301-308.
- [5] A. F. Monna, Analyse non-archimedienne, Springer-Verlag, Berlin (1970).
- [6] _____, Rapport sur la théorie des espaces linéaires topologiques sur un corps valué non-archimedien, Bull. Soc. Math. France, Mémoire, No. 39-40, (1974), 255-278.

Received April 4, 1984.

SCIENTIFIC UNIVERSITY OF SANTANDER SANTANDER, SPAIN