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REGULAR OPERATOR APPROXIMATION THEORY

P. M. ANSELONE AND M. L. TREUDEN

Regular operator approximation theory applies to finite difference
approximations for differential equations and numerical integration ap-
proximations for integral equations. New relationships and efficient
derivations of known results are presented. The analysis is based on the
systematic use of convergence and compactness properties of sequences
of sets. Since the purpose is theoretical, applications are merely indicated
and references are cited.

1. Introduction and Summary. Regular operator approximation
theory applies to numerical solutions of differential and integral equa-
tions. Some pertinent references are Anselone and Ansorge [3, 4], Chatelin
[6], Grigorieff [7, 8], Stummel [10], and Vainikko [12].

We focus here on linear equations in a Banach space setting. Ap-
proximations are defined in the same setting. This case serves to motivate
ideas and results for the more complicated situation with approximations
defined in different spaces related by connection maps, such as restriction
and interpolation. We present particularly efficient and revealing deriva-
tions of basic convergence results and we extend the theory in several
significant respects. The analysis is based on systematic use of conver-
gence and compactness concepts for sequences of sets. Some of these ideas
were exploited in nonlinear operator approximation theory in [3]. These
concepts should be useful also in general approximation theory.

Let X and Y be Banach spaces. A sequence of elements in X or Y is
discretely compact (d-compact for short) if every subsequence has a
convergent subsequence.

Let A, An E: L(X,Y) the space of bounded linear operators from X
to Y. We shall compare equations

Ax=y, Anxn = y,
nxn

where An -> A pointwise and {An} is asymptotically regular, i.e., if {xn}
is bounded and {Anxn} is d-compact, then {xn} is d-compact. Results
concern inverse operators, null spaces, and ranges. There are implications
for eigenvalues and eigenvectors.

Sharper results can be given for equations

(I-K)x=y, (I-Kn)xn=y9
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where K, Kn e L(X) with Kn -> K and either {Kn} is collectively com-
pact, i.e., U KnS is compact for any bounded set S c l , or {Kn} is
asymptotically compact, i.e., {Knxn} is d-compact for any bounded
sequence {xn} in X. Results for the collectively compact case presented in
[1] will be extended to the more general asymptotically compact case in a
forthcoming sequel.

For expository continuity, the paper is largely self-contained.

2. Convergence and compactness concepts. This material is valid
also in a metric space. For convenience, we stay in a Banach space X.
Notation:

x,xneX9 S,Sn<zX, n<ΞN= { 1 , 2 , . . . ) .

We introduce ε-neighborhoods of sets,

= U {y^X:\\x-y\\<e}, ε>0.

By analogy with point convergence, xn -> x as n -> oo, set convergence is
defined by

Sn->S ifS c Ώε(S)Vn large V ε > 0,

i.e., for n > nε with some nε. Such set limits are not unique:

(2.1) 5 » - S c 5 ' = > 5 n - S'.

The void set 0 plays a special role: Ωε(0) = 0 and

(2.2) sn-+ 0 => Sn= 0 V/i large,

(2.3) Sn= 0 V A2 large =>£„-* S VS c jr.

For 5 compact,

(2.4) 5, -> S « V open Ω D S , Ω D ^ V W large,

i.e., for n > nQ with some nΏ.
Denote infinite subsequences of N by N\ N'\ etc. Sets of cluster

points (limits of subsequences) of {xn} and {Sn} are:

{*„}* = {χζΞX:xn-+x,nίΞN'},

{Sn}* = {x e Z : xπ -> Λ , xn e 5Π, /ι e # ' } .

All such cluster point sets are closed. A sequence {xn} is discretely
compact (d-compact) if every subsequence has a convergent subsequence,
hence a cluster point. Similarly, {Sn} is d-compact if every sequence {xn\
n e N'} with xn e 5W has a convergent subsequence.
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Elementary properties include

(2.5) {S^} d-compact, {Sn}* = 0 ==> Sn = 0 V« large,

(2.7) {Sn} d-compact <=> {Sn} d-compact,

( 2 . 9 ) ^ = ( U S J U {£„}*,

(2.10) US n compact <=» 5rt compact\f n, {Sn} d-compact.

THEOREM 2.1.

(a) {Sn} ά-compact <=> {£„}* compact, Sn -» {£*„}*.

(b) {5Π}

. (a) => (b). Prove (a).
1. Assume {Sn} d-compact. Let xtG {Sn}* for i e ]V. Then 3 nι <

ni+ι and xn e 5Π such that ||xM — xjj -> 0. Since {Sn} is d-compact,

3 Nf and x e X such that xn -> Λ: with / e iV'. Hence, xt ~> Λ: with / e 7Vr

and {5W} * is compact.

2. Assumes,, -> {5Λ}* fails. Then 3 ε > 0, ΛΓ'andxπ e S^for/i e iV'

such that ||Λ;Λ - x|| > ε for all n <= Nf and x <Ξ {Sn}*. Hence, {xn:

n e iV'}* = 0 and {*SΛ} is not d-compact. Thus, {S^} d-compact => Sn

3. Assume {Sπ}* compact and Sn -> {SΛ}*. Let xw G 5n for n e iVr.

Since Sn -> {5W}*, 3iV" c iV' and xn e {5W}* for π e ^ such that

| | x n - xn\\ -> 0 with Λ e iV .̂ Since {Sn}* is compact, 3 iV /r/ c JV" and

x e X such that JCΛ -> x with n <E N '". Then xΛ -» x with n <E N'" and

{Sπ} is d-compact.

For other relations involving convergence and d-compactness of se-

quences of sets, see [3].

Next we introduce analogues of "cover compactness" and total

boundedness for sequences of sets. Let {Sn} be asymptotically compact if

for any open cover of Ό Sn 3n0 and a finite subcover of U π > n Q 5 w . Let

{Sn} be asymptotically totally bounded if Vε > 0 3 nε such that Un^ngSn

has a finite ε-net. The following theorem generalizes the equivalence of

relative compactness, sequential compactness and total boundedness for

sets in a complete metric space.

THEOREM 2.2.

(a) {Sn} ά-compact <=> {Sn} asymptotically compact.

(b) {Sn} d-compact <=> {Sn} asymptotically totally bounded.
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Proof.

1. Assume {Sn} d-compact. Let (J Sn c U α e / 4 0 α , Oa open. By (2.9)
and Theorem 2.1, {Sn}* c U α e / ί (9 α and {5n}* is compact. So {Sn}* c
U 0 α for some finite £ c Λ. By (2.8) and Theorem 2.1, Sn -> {£„}*.
By (2.4) and (2.9), U π * Π o S Λ c U α < Ξ *0 α for some /i0. Thus, {£„} is
asymptotically compact.

2. Assume {£„} is not d-compact. Then 3xn& Sn9n e N', such that
{ xn} * = ^ anc*> moreover, xmΦ xnίoτm Φ n. Then U{ xπ} is closed and
Ω = [U{x^}]c is open. For each n G N' 3Ώ,n open with xn G Ωπ and
xm £ Ωπ for m =£ n. Now CΓs; c (UΩJ U Ω = X. There is no finite
subcover of Un>nQSn for any n0. So {Sn} is not asymptotically compact.
This proves part (a) of the theorem.

3. Assume {Sn} d-compact. By Theorem 2.1, {Sn}* is compact, hence
totally bounded: V ε > 0 3 a finite set Cε c X such that {Sn}* c Ωε(Cε).
By Theorem 2.1, SΛ -> {Sπ}* and Sn c Ωe({5π}*) c Ω2ε(C f) for n large.
So {Sn} is asymptotically totally bounded.

4. Assume {5Λ} asymptotically totally bounded. For each m =
1,2,..., 3 a finite set Cm c Z a n d « m e TV such t h a t U , ^ ^ 5n c Ω 2-.(Cm).
Let xn e Sπ for n e JV'. Then

3 Nλ c Λ̂ r a n d ^ e Cx such that xn G Ω 2 - I ( J J V n e Nl9

3N2<z Nλ and j 2 e C2 such that xn G Ω2-2( J 2 ) V ^ G 7V2,

and so on. Choose ΛX G Λ^ and nι < n2

 e N2, etc. Then xrt G Ω2-/(yt)
with j z G Cz. Hence, ||x - Λ:Π || < 1/2'"1 for / <j\ so {xn } is Cauchy.
Since X is complete, xn -> x for some x G X Therefore, {Sn} is d-com-
pact. This proves part (b) of the theorem.

3. Dimension and codimension. Let E, En and F be closed sub-
spaces of X. Let

(3.1) U = { x ^ X : \ \ x \ \ = l } ,

the unit sphere in X. Recall that

(3.2) dim F < oo <=» F Π [/compact.

LEMMA 3.1. Assume {£„}* c £ αrcd e/ίfter {£π Π ί/} is d-compact or
dim i 7 < oo.

£ Π jp = {0} => En Π F = {0} V large.

Proof. In either case, {En Π F Π t/} is d-compact and

n
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By (2.5),

EnΠFn U= 0 V rc large.

Hence,

£ w Π f = { 0 } V/i large.

THEOREM 3.2. Assume {EnΠ U] d-compact, {En}* c E, and dim £
< oo. Then dim 2?π < dim £ V « /αrge.

Proof. Since dim £ < oo, there is a closed subspace i 7 such that
I = £ θ f . Thus, E Π F= {0}. By Lemma 3.1, £ w Π f = { 0 } V « large.
Hence, dim En < codim F = dim 2? V Λ large.

THEOREM 3.3. Lei {En} * c E.

(a) codim E < oo => codim En > codim E V n large.

(b) codim £ = oo => codim En -> oo as n -> oo.

Proof. Let dim i 7 < oo and E Π F == {0}. By Lemma 3.1, En D F =
{0} V π large. Therefore,

codim E > m => codim En> m V « large.

This implies both (a) and (b).

4. Operator fundamentals. We record for later use some basic facts
about bounded linear operators. Let N(A) and R(A) denote the null
space and range of A e L(X, Y). Recall p | | = sup{ ||^x||: x e ϋ7).

(4.1)a^- 1 ~ i v ( ^ ) = {0} « o _ ί ^ ί / .
(4.2) 3A~ι bounded *> 0 £ AU.
(4.3) AUclosed, 3A~ι =* A~ι bounded.
(4.4) Let 3 A~ι. ThenΛΓ1 bounded «=> R(A) closed.

LEMMA 4.1. Assume dim N(A) < oo. Then there is a closed subspace
F<z X such that X = N(A) θ F. Let AF = A\F. Then 3AF\ R(AF) =
i?(^ί), and

R(A) is closed <=> AF

ι is bounded.

Let P and Q be the complementary projections in L(X) with ranges
R(P) = N(A) andR(Q) = F. Then P + ρ = I,AP = 0, and A = AQ =
AFQ.

The index of 4̂ is given by

ind(^) = dim N(A) - codim R{A)
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when the right member is well defined. Thus, - oo < ind(^l) < + oo.

LEMMA 4.2 [9, 11]. Let A = Aλ + A2 with RiA^ closed, 3 ind(^1), and
dim R(A2) < oo. Then R(A) is closed and ind( A) = i

5. Compact operators. Two equivalent definitions of a compact
operator K e L( X) are given.

K compact:

S bounded => KS compact,
{xn} bounded => {Kxn} d-compact.

For example, if dim R(K) < oo then K is compact. Some well-known
properties of compact operators are

(5.1) dim N(I - K) < oo, R(I - K) closed,
and the extended Fredholm alternative:

(5.2) i ? ( / - κ) = x** 3(1 - κyι => ( / - κyι eL(X)9

(5.3)ind(/- K) = 0.

6. Regular operators. Three equivalent definitions of a regular op-
erator^ e L(X, Y) are given.

τ4 regular:

S bounded, ^45 compact => S compact,

{xn} bounded, {̂ 4xΛ} d-compact => {xn} d-compact,

{xn} bounded,i4xΛ -* y => {xπ}* =̂  0 .

Examples of regular operators are
(6.1) 3 A1 bounded => A regular,
(6.2) K e L(X), ^compact => / - ^regular.
From the definition of a regular operator, restrictions and products of

regular operators are regular, and
(6.3) A regular, {xn} bounded, Axn -*y=*Ax=y\/x<E {xn}*>
(6.4) A regular, S closed bounded => AS closed.

Thus, A regular => ̂ [/closed. By (4.3), (4.4), and (6.1),
(6.5) whenever 3A'1,

A regular <=> A~ι bounded <=> R(A) closed.

THEOREM 6.1 (Wolf [13]).

(6.6) A regular <=> dim N(A) < oo, R{A) closed.
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Proof. Let S = U Π N(A) in the definition of A regular. By (3.2), A
regular => dim N(A) < oo. Now assume dim N(A) < oo. Refer to Lemma
4.1. Since dim R(P) < oo, P is compact. By (6.2), β = / - P is regular.
Since A = ^4/τβ, and restrictions and products of regular operators are
regular, A regular <=> AF regular. By (6.5), AF regular <=> R(AF) closed.
Since R(AF) = R(A),

A regular <=> AFregular <=> R(AF) closed <=> R(A) closed,

when dim N(A) < oo. The theorem follows.

In other terminology, A is regular iff A is a semi-Fredholm operator
with — oo < ind(^4) < oo.

REMARK. Regular operators are related to the notion of a proper
mapping. Recall that a continuous map / between topological spaces is
proper if f~ι(S) is compact whenever S is compact. It is not difficult to
show that a linear operator A is regular iff the restriction of A to each
closed, bounded set is proper. It is from this viewpoint that the previous
theorem can also be attributed to Yood [14].

7. Stable convergence. We shall need a few basic facts about
operator convergence. Let A, An ^ L(X, Y). Denote pointwise conver-
gence on Xby An -* A. If An -> A then {An} is bounded uniformly and
there is continuous convergence: xn -> x => Anxn -> Ax. Moreover,

(7.1) An->A=* {N(An)}* c N(A)9 {R(An)}* D R(A).

The special cases with N(A) = {0} and R{A) = Y are worth noting.
Define

{An} stable:

3A~ι bounded uniformly V n large,

s
stable convergence A n -> A:

An -> A, {An} stable, R(An) = ΓV« large.

From (4.4)

(7.2) {An} stable => R (A n ) closed V Λ large.

By analogy with (4.2),

(7.3) {An} stable^ O ί Mn£/}*.

Sinceylw -> yί impliesHΌc {AnU}*>

(7.4) 4Π -^ A => Ξ ^ " 1 bounded, i?(^4) closed.
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Since A~ι -A'1 = A~\A - An)A~ι whenΛ"1, A'1 e L(Y, X\

An^A,R{A)= Y,Ax = y,Anxn =y

=> Λ-ι _» Λ-i \\γ _ τ | | < | | / 4 - 1 | | \\A r — Λx\\ -H> 0
^ A n Λ i\\Xn X\\ ^\\Λn \\\\ΛnX AX\\ ~* V.

For this error bound to be practical, estimates of \\An

 ι\\ and \\Anx - Ax\\
are needed. Another limitation of (7.5) is the need to assume R(A) = Y.
We have no Fredholm alternative in this generality.

8. Regular operator approximation. Let A, An e L(X, Y). Basic
properties, the first in two equivalent forms, are

{An} asymptotically regular',

{xn} bounded, {Anxn} d-compact => {xn} d-compact,

{xn} bounded, Anxn -> y =* {χn}* Φ 0 ,

regular convergence An-* A:

An -* A, {An} asymptotically regular.

Examples of regular convergence will be given later. Straightforward
reasoning yields

(8.1) An^A => A regular,

^ , {xn} bounded, Anxn ^y

y <Ξ R(A),Ax =y V χ e { χ J * ,

(8.3) An^> A9S closed bounded => {AnS}* =AS.

Thus, ̂  -^ ̂  => {^πt/} * = A U. By (4.1) and (7.3),

(8.4) whenAn^A: 3A~ι <=> {An} stable.

THEOREM 8.1 (cf. Vainikko [12]).

An^A,3A-\R(An) = Y Vπ large

Y9 and A;ι^A~ι.

Proof. By (8.4), An ^ A. To show R(A) = 7, lety e 7. Let x^ = ^ " V

Vπ large. Since {An} is stable, {xn} is bounded. By (8.2), y G i?(^4) and
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The error bound from (7.5) is theoretical, since regular convergence
does not yield an estimate for U^"1!!- Another limitation of Theorem 8.1 is
the hypothesis that R(An) = Y V n large.

Next, null spaces and ranges of An and A are compared with the aid
of the set convergence introduced in §2. For other derivations of some of
the results, see Grigorieff [7, 8] and Vainikko [12].

THEOREM 8.2. LetAn -^ A.

(a)N(An)Π U-+ N(A)Π U.
(b) dim N(An) < dim N(A) V n large.

Proof. By (7.1), {N(An) Π U}* c N(A) Π U. Since {An} is asymp-
totically regular, {N(An)Π U} is d-compact. Theorem 2.1 yields (a).
Theorems 3.2 and 6.1 imply (b).

THEOREM 8.3. LetAn -+ A and3A~ι.

{*){R{An)}*=R{A).
(b) dim F < oo, R(A) Π F = {0} => R(An) Π F = {0} V n large.
(c) codim R(An) > codim R(A) V n large z/codim R(A) < oo.
(d) codim R(An) -> oo //codim Z?(̂ 4) = oo.

P/w/. By (7.1), R(A) c {Λ(i4π)}*. From (8.4) and (8.2),
c R(A). Thus, (a) holds. Lemma 3.1 gives (b).

Γ

THEOREM 8.4. LetAn ->
(a) R(An) is closedV n large.
(b) ind(^4π) < ind(^4) V n large z/ind(y4) > - oo,
(c) mά{An) -> - oo ί/ind(^4) = - oo.

Proof. By (8.1) and (6.6), A is regular and dim N(A) < oo. Refer to
Lemma 4.1. Now

= 0, d imΛ(P)< oo H|Λ n

It follows easily that AnQ ^ A. By Theorem 8.2,

dim N{AnQ) < dim N(A) V n large.

The restrictions of An and 4̂ to F satisfy

By (8.4), (7.2) and R(AnF) =
R(AnQ) is closed V n large.
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Now Theorem 8.3, R(AnF) = R(AnQ) and R(AF) = R(A) imply

codim i?(yίπ<2) > codim R(A) VAZ large if codim I? (.4) < oo,

codim A(^^β) -> oo if codim /?(^4) = oo.

So Theorem 8.4 holds for AnQ -^ A. Lemma 4.2 with An = AnP + AnQ

implies R(An) is closed and ϊnά(An) = ind(^4^2). The theorem follows.

By Theorems 6.1, 8.2, and 8.4:

THEOREM 8.5. An-+ A => An regular V n large.

Regular convergence applies to finite difference approximations for
differential equations. See [3], [12]. It also applies to numerical integration
approximations of integral equations. However, in the latter situation,
sharper results can be obtained from special cases of regular convergence
involving compact operators. This is the next topic.

9. Compact operator approximation. Let K, Kn e L(X) for n e N.
Key definitions, each expressed in two equivalent forms, are

{Kn} collectively compact:

S bounded => U KnS compact,

{xn} bounded =* {Kmx n} d-compact V{ mn},

{Kn} asymptotically compact:

Abounded => {KnS} d-compact,

{xn} bounded => {Knxn} d-compact.

It suffices if S is the unit ball in these definitions. Define

cc

collectively compact convergence Kn -^ K:

Kn-> K, {Kn} collectively compact,
ac

asymptotically compact convergence Kn -» K:

Kn -> K, {Kn} asymptotically compact.

By (2.9) and (2.10),

(9.1) {Kn} collectively compact
<=> {Kn} asymptotically compact, each Kn compact,

(9.2) Kn^K^> Kn^K, each Kn compact,
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(9.3) Kn% K =» Kn* K => K compact.

cc ac

The difference between Kn-* K and Kn -* K is illustrated by

*(9.4) IIZJI-O =»£,„-><),

cc cc

but Ln -> 0 and Kn + Ln-> K only when every Ln is compact. They are

not compact if Ln = crt7, cn j0, and dim X = oo.

Consider equations
(9.6) (I-K)x=y, (I-Kn)xn=y.

CC

Examples with Kn-+ K are integral equations and numerical integration
ac

approximations. See [1], [5]. An example with Kn -> Kis a weakly singular
integral equation and numerical approximations based on the singularity
subtraction technique of Kantorovich and Krylov. The situation in (9.5)
arises. See [2].

By an easy argument,
/ Q ^ \ Ts- ΎS- ^ jf jf ^ r jy- j jy~

So Theorem 8.1 applies to solutions of (7 - K)x = y and (7 - Kn)xn = y.
However, in the present situation, shaφer results are available.

THEOREM 9.1. Let Kn^ KorKn^> K.

(a) (Fredholm alternative) V n large,

- Kn)~ι e L(X), dim N(I - Kn) = codim R(I - Kn) < oo.

, - K)K\\ - 0, \\{Kn - K)Kn\\ ^Oasn^π.
(c) 3(7 - K)~ι *> 3(/ - Kny

ι uniformly bounded Vn large,
in which case (I — Kn)~ι -» (/ — K)~ι on X and there are practical error
bounds.

Theorem 9.1 is presented under the collectively compact hypothesis in
[1]. While many of the proofs from the classical compact operator theory
[11] apply under the weaker hypothesis, a different approach will be taken
in the sequel which will handle both the collectively and asymptotically
compact cases with equal efficiency. The regular convergence in (9.7) will
prove useful in this regard.
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