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DEFORMATION OF UNIFORM ALGEBRAS
ON RIEMANN SURFACES

RICHARD ROCHBERG

The main theme of this paper is the study of algebras of analytic
functions of finite bordered, possible singular, Riemann surfaces from
the point of view of the deformation theory of uniform algebras as
introduced in earlier papers by the author.

I. Introduction. We begin by recalling some results from [15]. Let
A be a. uniform algebra with maximal ideal space M(A) and Shilov
boundary dA. We assume further that

(1.1) every point of dA is a strong peak point

(i.e., if p is in dA then there is an fin A with | |/ | | = f(p) and \f{q)\ < 1
for all q, q Φ p.) (The role of this restriction is discussed in §2.) A
deformation of A is a new normed algebra obtained by putting on the
vector space A a new commutative associative multiplication, X, which,
for some small positive ε, satisfies

| | /xg-/g | |<ε | | / | | | | g | | forall/,ginΛ.

If ε is small and this new algebra is renormed with its spectral norm then
we obtain a new uniform algebra, Ax, which also satisfies (1.1). If A is
separable then A x will also be separable. We summarize this construction
by saying that A x is an ε-deformation of A.

We regard two uniform algebras as equivalent if each is isomorphic to
an arbitrarily small deformation of the other. Let Wl be the space of
separable uniform algebras which satisfy (1.1) modulo the equivalence
relation just described. (This equivalence relation does not actually iden-
tify distinct algebras in the class we will be considering (Proposition 2.9).)

The Banach-Mazur distance between Banach spaces is an (extended
valued) metric on^#. It is shown in [15] that for nearby points Al9 A2 inM
the distance between Ax and A2 is comparable to the smallest ε such that
Ax is isomorphic to an ε deformation of A2. It is also shown that Jί is a
complete metric space.

Let ^ b e the set of all connected finite bordered Riemann surfaces.
For S in Sf, let A(S) be the supremum normed Banach algebra of
functions continuous on S and analytic at the non-boundary points of S.
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All such A(S) are i n ^ . Hence the topology on ̂ induces a topology on
Sf. Using the results of [15] and [12], it is known that this topology is the
classical moduli topology on Sf (i.e., the topology induced by the
Teichmϋller metric). It is also known that the setΛ(^) = {A(S); S e ^ }
is not a closed subset of Jί, For example, let D be the closed unit disk and
let Ao = {/ G A{D), /'(0) = 0}. The constructions in [14] show that Ao,
regarded as an element of Jt, is in the closure of A(S?).

With this and similar examples as motivation, we introduce a larger
class of algebras in Jί. Let si be the collection of algebras A in Jί for
which M(A) is connected and which can be obtained as subalgebras of
finite codimension of finite direct sums of algebras in A(Sf). In addition
we require that dA be (homeomorphic to) a finite union of circles. (The
purpose of this restriction is discussed in §2.) Hence, in particular,
A(S^) c j / . Informally, these algebras are algebras of the form A(S)
where S is a finite, bordered, connected, singular Riemann surface. These
algebras are described fully in §2. Associated with any a in j/is an integer,
the defect of A9 which is defined to be the dimension of the space of real
measures on dA which annihilate A. Let sik = {A e sί\ the defect of A is
k}. For example, if S is in £?9 the genus of S is g and the boundary of S
has c components then A(S) is in sik for k = 2g + c — 1. Another
example is the algebra Ao just described; Ao is insi2.

Our main results concern the set ̂ regarded as a subset of Jί.
Section 3 contains results which show that if A is in si and B is a small

deformation of A then B has many of the properties of elements of si.
When these results are combined with Theorem 6.3 of [15] (which shows
that "defect of A" is a cotinuous function o n ^ ) we obtain our two main
results about the global geometry of si. Corollary 3.6 states that each sίk

is an open subset of Jί. (This generalized the main result of [16].)
Corollary 3.7 states that each J ^ is a closed subset of Jί (and hence is also
a complete metric space).

In §4 we study the local structure of sίk. That is, we study which
algebras can occur in small neighborhoods of a given A in si'k. Corollary
7.7 of [15] states that the function "dimension of the first cohomology
group (over R) of M(A)" is lower semi-continuous on sik. Since this
dimension is at most k on sik and equals k exactly on sik π A(S?) we
conclude that si\ Π A{S?) is an open subset of sik (and hence A(£?) is an
open subset of Jί). Combining this with the results of [15] and [12] we
conclude that small neighborhoods of algebras A(S), S in S?9 consist
exactly of algebras A(S') with S' i n l a n d 5" quasiconformally equivalent
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to S by a quasiconformal map with dilatation close to one. For algebras A
in s/k\(s/k Γι A(ά?))9 i.e., algebras of functions on singular Riemann
surfaces, the situation is more complicated. The structure of such algebras
is determined by the conformal structure of M(A) and by the behavior of
the functions in A in neighborhoods of a certain finite set, which we
denote Sing(^4), in M(A). (Sing(yl) is the set of singular points of the
singular surface on which functions in A are defined.) The main technical
result of §4 is Theorem 4.2 which shows that if we start with such an A
and any small neighborhood N of Sing(yl) then for any B which is
sufficiently close to A, there is a quasiconformal map with dilatation close
to one which maps M(A)\N into M(B) (and has certain other nice
properties). Informally, the small deformation of A produces two types of
changes. The first is the global change in the conformal structure of M(A)
away from Sing(v4). This is described by Theorem 4.2. The second type of
change is the localized deformation of the structure of M(A) near the
singular points. These changes are described in detail in §4 for the
simplest types of singularities (nodes and cusps). These results are then
combined to give fairly detailed descriptions of s/λ ands/2.

The survey by Palamodov [9] and the references there indicate the
large variety of approaches which have been taken to problems of defor-
mation of and moduli for complex structures. Our results are in the same
spirit as many of those described in [9]. However, there is a substantial
difference between our point of view and that described in [9] which
prevents a complete analogy of results and prevents our adapting many of
the techniques described there. The difference is that our notion of small
deformation does not carry with it a clearly associated notion of infinitesi-
mal deformation (i.e., our moduli space Jί is a metric space which lacks a
priori differentiable structure). In contrast, most of the results in [9] are
formulated in terms of a family of deformations of a fixed object and
often involve infinitesimal analysis of the family at the base point. For
example, the informal idea that a small deformation of A in J/consists of
a global deformation of conformal structure and a local deformation at
isolated singularities is not formulated here as a direct sum decomposition
of an associated space of germs of deformations. The results in [4], [6] and
[10] suggest that it may be possible to develop a theory of infinitesimal
deformations of elements of Jί\ however this remains to be investigated.

We will make free use of the theory of uniform algebras as found in
[2], [17] and [18]. In particular we will identify elements of a uniform
algebra with Gelfand transforms.
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We will denote the space of invertible linear maps between the
Banach spaces A and B by L(A, B).

Some of these results were announced in [13].
A good introduction to these topics is given by Jarosz in [19].

II. Algebras in si. For any S in S?, let dS be the border of S.
We now describe three ways to obtain elements of si from elements of

A(S?). First, let S be in^and let p and q be distinct points of S \ dS. The
subalgebra of codimension one of A(S) consisting of functions/in A(S)
for which f(p) = f(q) is an element of si. Second, let p be a point of
S \ dS. Let D be a point derivation at p; that is, D is a continuous linear
functional which satisfies

D(fg)=f(p)D(g) + g(p)D(f)

for all/, gin A. (Equivalently D(\) = 0 and D vanishes on the square of
the ideal of functions which vanish at/?.) If D is not identically zero, then
the kernel of D is a subalgebra of A(S) of codimension one and is an
element of si. Finally, let S, be in S? for / = 1,2 and select pι in St \ dSr

The subalgebra of A(Sλ) θ A(S2) consisting of functions / which satisfy
f(Pι) = /(Pi) *s a subalgebra of codimension one of A(Sι) θ ̂ (^2) and
is an element of si.

Gamelin has given a complete description of subalgebras of finite
codimension of uniform algebras [3]. His results applied in this context
show that repeated application of the three constructions just described
gives all elements of si. Here is a summary of his results for the case of
interest to us.

PROPOSITION 2.1. Suppose A is in sik. There are Sι in S?9i= 1,... ,7V,
a subalgebra B of A(SX) θ A(S2) θ θ .4(5^), and subalgebras Ai of B,
i = 1,.. .,M, so that

(a) A =A1(Z-QAM = B
(b)B is obtained from A(SX) θ A(S2) θ > θ A(N) by making finitely

many point identifications of points selected from the St \ dSt. M(B) is
the singular connected bordered Riemann surface obtained from Sλ U
S2 U U SN by making those point identifications. dB = U 9^

(c)M(A) = M(At) = M(B); dA = dA, = dB,i = 1,...,M.
(d) Each At is obtained from Ai+ι by taking the kernel of a point

derivation at some point qt in M(Ai+1) \9^4I + 1 = M(B) \ dB.
(e) There is an integer J which depends only on k such that if f is in B and

f(q{) = 0 for / = !, . . . 9M — 1, then the ideal fJB is contained in A.
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Proof. The only statement that is not immediate from the results in [3]
is that / can be chosen to depend only on k. However, it is shown in [3]
that / can be chosen to depend only on M and simple topological
considerations show that k dominates M. (See Proposition 2.5 below.)

In particular, note that the conditions describing A are local. That is,

COROLLARY 2.2. Suppose f is in AζSJ Θ θ A(SN) and that eachp

in U St \ U dSt has a neighborhood on which f is a uniform limit of elements

of A, then f is in A.

The construction described in part (d) of the proposition is easy to
understand if the maximal ideal Mι+ι of functions in Aι + ι which vanish at
qx is principal. In that case, the dimension of Mi+1/M^x is one and the
space of derivations at qt is one dimensional. D(f) will equal cf\qt) for
some constant c (which depends on the choice of local uniformizer). If the
ideal is not principal, the situation can be more complicated. Here is the
first non-trivial example of that. Let Ao be the subalgebra of the disk
algebra introduced in §1. For / in Ao let D2f = /"(0) and DJ = / '"(0).
These are linearly independent point derivations of the algebra Ao at the
point 0 (and together they span the full space of such). The kernels of D2

and D3 are non-isomorphic subalgebras of Ao. Other subalgebras of Ao are
obtained by taking the kernel of aD2 4- βD3 for other choices of α, β.
Even if we restrict attention to subalgebras of the disk algebra obtained by
taking kernels of a sequence of point derivations at the origin, the
situation rapidly becomes quite complicated and involves the algebraic
theory of curve singularities.

For A in sfk we will often speak of M(A) as a Riemann surface. We
will sometimes emphasize this point of view by writing S(A) for M(A)9

and dS(A) for dA. Thus if S is in^then S(A(S)) = S.
There are four variations on this construction which are not described

in Proposition 2.1. First, we did not allow q. to be a boundary point. The
reason for this is simply that there are no non-zero point derivations at
points on 92?. This follows, for instance, from the fact that each such point
is a strong peak point (see, e.g., page 88 of [5]). Second, we insisted that
M(B) be connected. This forces a non-trivial lower bound on the number
of point identifications which are made on the disconnected surface U St.
This is only a technical convenience. The entire theory of this paper
extends with no surprises to finite direct sums of algebras in sf. (The
proof of Theorem 5.3 of [16] shows how to reduce to analysis of individual
summands.) The other two possibilities which were not presented were
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identification of points of U dSi with points of U Si\ U dSt or with other
points of U dSr Such identifications would produce subalgebras of finite
codimension of direct sums of algebras in A(Sf). In the first case, the
resulting algebra would violate (1.1). (The identified point would not be a
strong peak point.) In the second case, dA would not be a disjoint union
of circles. Thus, in neither case would the resulting algebras be in J / . The
reason for defining^so as to exclude such algebras is that although the
algebras involved are interesting from the point of view of deformation
theory, the techniques for studying them would have to be slightly
different from the ones we will be using.

Informally, the surfaces S(A)9 A in J / , can be thought of as connected
bordered subsets of singular Riemann surfaces. The requirement that the
points of U 35, not be involved in the point identifications is the require-
ment that the singularities of the surface not be at boundary points. The
singular surface may have compact components. These components are
invisible in M(A) but have shadows, namely the restrictions on the
functions in A at the q.. If a small deformation of A should desingularize
the point qi then the component may become visible. (For further discus-
sion from this point of view, see [14] and §12 of [9].)

We refer to the set of all the qt together with all the identified points
of the various St as the singular set of A, denoted Sing(^4). The two
simplest types of points of Sing(α) are those which were obtained by an
identification of exactly two points of the U Si which are not among the gz,
and those which are not among the identified points and which appear
exactly once on the list of the qt. We will refer to such points as nodes and
cusps, respectively. Analysis of the ideal of functions in A which vanish at
such points (this is done in §4) shows that this terminology is parallel to
that used in describing isolated singularities of algebraic curves.

The points of M(A)\(dA U Sing(^4)) are points where the functions
in A have simple behavior.

PROPOSITION 2.3. Suppose A is in si and p is in

M(A)\(dA U Sing(Λ)).

The maximal ideal of functions in A which vanish at p is principal.

Proof. First we must find an / in A which vanishes only at p. Using
the properties of point derivations ([3]), we see that this will be accom-
plished if we find an/in A(Sλ) θ θ A(Sn) which takes the value 1 at
all of the points which will be identified, vanished at/? and no other point,
and has derivative which vanishes to a sufficiently high order (in terms of
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every applicable local coordinate system) at the points associated with the

point derivations. First find f0 which takes the right values then let

/ = foek where k is selected in B to give the approximate vanishing of the

derivative. To see that such an / actually generates the ideal, we need the

following lemma which we will also use later.

LEMMA 2.4. We use the notation of Proposition 2.1. Suppose h is in A, g

is in B and hg is in A. Suppose further that h(q) Φ 0 for all q in Sing(^4).

Then g is in A.

Proof of Lemma. We show that, in the notation of Proposition 2.1, if g

is in Ai+1 then g is in At. Let D be the point derivation at qi whose kernel

is ̂ 4f-

Since hg is in A, D(hg) = 0. Since h is in A, D(h) = 0. Hence

= 0. Since qt is in Sing(^4), h(qi) Φ 0. Thus D(g) = 0 and hence g is in

To finish the proof of the proposition take-in A.

By the lemma, (F - F( p))/f is in A. Hence/generates the ideal.

We note that the converse is also true. The points of M(A) for which

the maximal ideals are not principal are exactly Sing(^4) U ΰA.

Associated with A in s/ are two integers. The first k = k(A), the

dimnsion of (Reyl)"L, the space of real measures on 3̂ 1 which annihilate

A. A is in s/k for k = k(A). The second integer is the dimension of the

real cohomology group fί1(M(yί),R). (The discussion of the significance

of this group in our context is in [15].) These two integers are denoted

dim ^(^4) and dim Y(A) in [15]. Suppose A is as described in Proposition

2.2. For i = 1,...,JV let g, be the genus of φ and ci the number of

components of dSr Let g = Σ?==1gi and let c = Σ^c,-. Hence c is the

number of components of dA. Let R be the number of point identifica-

tions made in passing to the algebra B. Since we required M(A) to be

connected, we must have R > N — 1. Let D (= M — 1) be the number of

kernels of point derivations which must be taken to pass from B to A.

PROPOSITION 2.5.

(2.1) k(A) = 2g + c + 2R + ID + 1 - 27V

(2.2) άhnHι(M(A),R) = 2g + c + R + 1 - 2N.
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In particular k(A) — c is odd. Also

(2.3) k(A) = άimHι(M(A),R)

holds if and only if R = D = 0, N = 1. Thus (2.3) holds if and only if
A = A(S)for some S in y.

Proof. First note that for each z, k(A(Si)) = 2gt + ci — 1. Hence
dimRe(,4(S;.) Θ Θ A(SN))±= 2g + c - N. Next note that if Aλ and
A 2 are in M and A3 is the subalgebra of codimension one of Ax θ A2

obtained by identifying a point of M(Aτ) with a point of M(A2) then
dim(Re^3)-L = ( d i m R e ^ θ ^ 2 ) ± ) + l Hence if we start with the
Sl9...9SN and make N — 1 of the i? point identifications to obtain a
connected set and denote the resulting subalgebra of A(Sλ) θ θ A(SN)
by i?l9 then dimζReBJ-1 = 2g + c — 1. The algebra 4̂ is obtained from
the algebra JBX in (i? — (N — 1)) + D steps each of which involves passage
to a subalgebra of codimension one of the algebra obtained at the
previous step. We will show that each such step increases k(•) by two. We
will describe the analysis at the first step. (The general step is the same.)
The passage from Bx to the next algebra B2 involves taking the kernel of a
linear functional r. (r is either a point derivation of a difference of point
evaluations.) Furthermore, the functional r annihilates constants. Since
M(Bλ) is connected, a function / i n Bλ is determined up to an additive
constant by the values of Re/on dBv Hence the value of r(/) is a linear
functional on the set of functions on dBv (Re/, / e Bλ}. Since r only
involves the values of / at interior points this functional in continuous.
Hence there is a complex measure μ on dBλ such that

•(/) = / (Rcf)dμ.

Let μλ and μ2 be the real and imaginary parts of μ. It is straightforward to
check that μλ and μ2 are linearly independent, are in ReB2 , and that, in
fact, μλ and μ2 are a basis of (Re2?2")/(Re ^ I O Combining these observa-
tions establishes (2.1).

(2.2) is an elementary exercise in algebraic topology.

The surfaces S(A) for A in s/άo not generally have globally defined
coordinate functions. The following proposition gives partial substitutes
for coordinate functions. Ahlfors [1] has shown that given S in ^and x, y
in S\dS there is a function F = Fxy in A(S) which has \F\ = 1 identi-
cally on 35, F(x) = 0, F(y) Φ 0, and i*1 maps S onto the closed unit disk
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in an m to one manner (counting multiplicity). Furthermore, if g denotes

the genus of S and c the number of components of dS, then F can be

selected so that m satisfies

(2.4) c < m < 2g + c.

PROPOSITION 2.5. Suppose A is in s/k9 S = S(A), x and y are distinct

points of S\ dS, andy is not in Sing(Λl). Let Sv... ,Sn be the components of

S (prior to the point identifications) and let A = A(Sλ) Θ Θ A(Sn).

There is a G in A so that

(a) G(x) = 0, G(y)Φ 0 , |G(ί) | = I for all tin ZS.
(b)Let C + GA = {f<ΞA;f= c + Gg, c e C, g^A}.A 2 Λ 2 C +

(c) TTzere βr^ β positive ε and an integer M (both may depend on x, y) so

that G is an M to 1 unbranched map of a neighborhood of dS onto { z;

1 - ε < \z\ < 1}.

(d) There is an integer K which depends only on k such that M < K.

Proof. Let Singyί = {w1?.. .,wr}. Let Gλ = FxydFWιr Let / be the

integer in (3) of Proposition 2.1. Let G = G(. Parts (a), (b), and (c) follow

from the properties of the F's and from (e) of Proposition 2.2. The

estimate on M follows from the fact that r can be estimated in terms of k

(by (2.1)), the valance of each F can be estimated in terms of k (by (2.4)

and (2.1) (note that the letters g and c are used differently in those two

equations)) and the estimate on / is (e) of Proposition 2.1.

We will want to be able to separate points near dA which are

identified by such a G.

PROPOSITION 2.6. Let A in s/k9 p in ΰA and η > 0 be given. There are

neighborhoods Nv N2 ofp; p e Nx c N2 and a function F in A, \\F\\ = 1 so

that

(a) F is a one-to-one map ofNλ to D + = D Π {Re z > 0} F~\D+) = Nv

( b ) | | F ( 0 | - 1| < ηforalltindA.
(c) |JF H- 1| < ηonM(A)\N2.

Proof. Start with a function G of the sort described in the previous

proposition. Select G so that G(p) = 1. Let / = {eiθ\ \θ\ < <π/\ϋ). Let /

be the component of G~ι(J) which contains/?. Let H be a function which

is analytic on M(A), of modulus one on /, of modulus strictly less than

one on dA\ϊ and has H(p) = 1. (Such an H can be obtained, for

instance, by the construction in the previous proposition applied to a

surface S+ which contains M(A).) By (b) of the previous proposition,
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GH = Gλ is in A. Let Iλ be the component of Gf ι(J) which contains p.

Let / ' = G^/JL). Let R be a function in the disk algebra which has |i?| = 1

on / ' ; \R\ < 1 on D \J\ the variation of arg R on 1?' is less than ττ/4, and

i?(l) = 1. (R could be obtained, for instance, as a conformal map.) Since

the polynomials are dense in the disk algebra, the composite function

G2 = R o Gλ is in A. By construction |G2 | = 1 on ϊl9 \G2\ < 1 on Af(Λ) \ / l 5

and G2 is a one-to-one map of a neighborhood of p onto a neighborhood

of 1 in Zλ For a small positive δ, let Gδ be the composition of G2 with the

conformal map of D to itself which fixes 1 and sends 1 — δ to 0

It is now straightforward that for sufficiently small δ, Gδ is the required

function F. We set Nλ = G^\D+) and N2 = G£\{ z\ |1 + z\ < η}).

In order to apply certain results of [15] we need the following.

PROPOSITION 2.7. Suppose A is in s/. There is an ε = e(A) so that iff

in A is inυertible (i.e., f ^ A~ι) and ||log | / | Ĥ  < ε then f = e8 for some g

in A (i.e., f is in eA).

Proof. We use the notation of Proposition 2.1. The algebra A(SX) θ

• θ A(SN) satisfies the conclusion of the Proposition (since each sum-

mand does.) Thus, if ||log | / | Ĥ  < ε, then there is a g in A(SX) θ θ

^(S^) so that/ = e8. We next show that if ε is smaller still, we can insure

that g is in B. Let/?, q be two points of U St which are not separated by B.

Since e8 is in B we have

(2.5) g(p)-g(q) = 2τrin

for some integer n. However, Reg = log |/ | . Let S = S(A). We use the

following result.

LEMMA. Given p, q in S\dS there is an ε' > 0, ε' = ε\p, q, S) such

that ifH is continuous on S and analytic on S\dS and ||Re HW^ < εf then

\H(p)-H(q)\<\.

Proof. Omitted.

By using this lemma, we can insure that, if ε is small, then n = 0 in

(2.5). Doing this for each such pair/?, q will insure that g is in B. In fact, g

is in A. Although this can be shown by elementary means, we invoke the

general Banach algebra result (Corollary 8.22 in [17]) which insures that

since/has a continuous logarithm on M(A) (i.e., log/= g) then/must

be the exponential of some h in A (and hence h = g).
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If A is in s/k then, by definition, dim Re ̂ 4 ± = k. A is clearly antisym-
metric. Combining these facts with the previous proposition, we have,
using the notation of [15]

COROLLARY 2.8. ja^ c Nk.

Thus the continuity results of §§6 and 7 of [15] apply to thes/k.
Finally we show that distinct elements of s/yield distinct elements of

Ji'. We don't use this result later and the proof could be postponed to §4.
We include it now to emphasize that it is independent of the later results
and because the proof uses different types of considerations from those
used in the later sections.

PROPOSITION 2.9. Suppose Al9 A2 are in si and each is isomorphic to an

arbitrarily small deformation of the other, then Ax = A2.

Proof. In the case when At = A(Si), St e ^for i = 1,2 it suffices to
show that Sλ and S2 are conformally equivalent. This is Proposition 5 of
[11]. That proof can be used in this context unless both M{Aλ) and
M{A2) are the disk (we consider that case later). Straightforward exten-
sion of the proof of Proposition 5 of [11] shows that M(Aλ) and M(A2)
are conformally equivalent (possibly singular) Riemann surfaces. Denote
both by S and let A( S) be the algebra of continuous functions on S which
are holomorphic on S \ dS. We can regard both Aλ and A2 as subalgebras
of A(S). We also obtain from that proof that there is a sequence of linear
maps Tn of A1toA2 and a conformal automorphism T of S \ dS so that for
all/in Al9 Tnf converges t o / ° T, uniformly on compact subsets of S \ dS.
Since r extends continuously to S, / ° r is in A(S). Since / ° τ i s i n ^ ί ( S )
and is the uniform limit on compact subsets of elements of A2. We may
use Corollary 2.2 and conclude that / ° r is in A2. Thus the map of / to
/ o T is an algebra automorphism of A(S) which takes Aλ into A2. Hence
dim(A(S)/A1) > dim(^4(S')/^42). By symmetry the dimensions must be
equal and hence the automorphism of A(S) is an isomorphism of Aλ and
A2.

The proof of Proposition 5 in [11] used the presence of homology in
M(Ai) to insure that T is an automorphism. If M(Aλ) = M(A2) = D then
that proof yields a sequence of linear maps Tn of Ax onto A29 homeomor-
phism tn of 3Z> to 3Z>, an analytic map r of D \ dD into D and a sequence
of numbers εn tending to zero so that for all/in Ax

(2-6) sup|7;/-/o,J<εJ/||
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and

(2.7) *;/->/« T

uniformly on compact subsets of D \ dD.

Let G be one of the functions in Ax of the type described in

Proposition 2.5. G is a Blaschke product with m zeros. Using (2.6) and the

argument principle we see that TnG = BnFn with Bn a Blaschke product

with m zeros and Fn an analytic function which satisfies

(2.8) 1 - εn<\Fn(z)\< 1 + εn for allz i n D .

LEMMA 2.10. Suppose Hn = BnFn are functions in the disk algebra, each

Bn a Blaschke product with m zeros and Fn satisfy (2.8) for a sequence of εn

which tends to zero. Suppose Hn converges uniformly on compact subsets of

D\dD to a limit H then either

(a) H is a Blaschke product with m zeros, or

(b) H is a constant of modulus 1.

If case (b) occurs, then the zeros ofBn converge to dD as n becomes large.

Proof. Elementary function theory.

We apply the lemma to Hn = TnG. By (2.7) Hn converges t o G n . We

now rule out the possibility described in (b) of the conclusion by showing

that the zeros of TnG do not converge to dB. For any F in the disk algebra

which doesn't vanish on dD, denote by ω(F) the winding number of

F(dD) about the origin. Thus ω(F) is the size of {F~ι(Q)} (counting

multiplicity). Suppose now that the zeros of TnG did go out to the

boundary dD. Then, given ε > 0 there is a neighborhood N of dD such

that for any p in N\dD there is an F = Fp in A2 with Fp(p) = 0,

1 - ε < \Fp\ < 1 + ε on dD, and ω(Fp) = 1 (such Fp can be obtained by

composing the functions produced in Proposition 2.6 with automorphisms

of the disk.) Suppose that for large n the zeros of TnG are in N. Hence

TnG = YlT^iFiR where Ft = FPι and pt is the /th zero of TnG. ω(R) = 0

and |JR| is approximately 1 on dD. Since the only zeros of Fi are in N, we

can apply Lemma 2.4 and conclude that R is in A We can thus apply T'1

to the Fi and to R

Using (2.6), this implies

{ΓK-'F^T-'R + r
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for some remainder r which has norm which is O(εn). Thus, if n is large
then using (2.6) again, T~ιR must have modulus approximately one on
3D; and, again by (2.6), ω(T~ιR) = 0. Hence T~ιR is an invertible
element of the disk algebra. Since dim A(D)/A1 is finite, this implies
T~ιR is an invertible element ofAv Thus

Evaluate the left-hand side of this at any point p in Sing(A1). Since
G(p) = 0 and r is small, at least one of the factors T~1Fι must be small at
p. Suppose T~ιFλ(p) = 8 for some small 8. The function H = 7 7 ^ - δ
vanishes at /? and at no other point of D (since ω(H) = 1). H is in 4̂.
Hence we have found a function H in A, with a simple zero at p and no
other zero in D. This contradicts the fact that/? is in Sing(yl1).

Thus G o T is a Blaschke product with exactly m zeros.

LEMMA 2.11. Suppose r raαps D \ dD analytically into D and that there
is a Blaschke product G which has m zeros and such that G ° T is also a
Blaschke product with exactly m zeros. Then T is a conformal automorphism
of the disk.

Proof. Elementary function theory.

Once we know T is an automorphism, the proof is finished as before.
The one remaining case is^41 = A2 = A(D). In that case, Sing^,) is

empty and we can't show T is an automorphism. In fact, in that case, T
may be a constant map. However, in that case, we still have Ax = A2.

III. The Global Theory of s/k. For any A, B in sf; we denote by
d(A, B) the Banach-Mazur distance between the spaces A and B. If
d(A9 B) is small then d(A, B) is equivalent to the smallest ε so that B is
an ε-deformation of A (Theorem 4.1 of [15]). We will always assume (often
without mention) that the distances involved are so small that this result
applies.

Suppose A is in s/k and B is in Jί with d(A, B) < ε for some small ε.
By Theorem 4.1 of [15], there is a T in L(A, 2?), a homeomorphism r of
dB to dA and a universal constant c so that for all/, g in A ally in dB

m = i \

O.I) |τyω-/(τω)i<cε|ι/n .
\\\T(fg)-TfTg\\<ce\\f)\\\g\\J
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For any algebra A, let A~ι denote the invertible elements of A, T also

satisfies the following. Given a K > 1, there i saδ = δ(AΓ)so that

(3.2) if a is in A'1, \\a\\ \\a~ι\\< K,ε < 8 then Ta is in B~ι.

Let ^ * be the set of finite bordered connected possibly singular
surfaces which are obtained as M(A) for A ins/. For S inS?*9 let A(S) be
the algebra of continuous functions on S holomorphic on S \ dS.

THEOREM 3.1. Let k be a non-negative integer. There are positive
constants εk and ck which depend only on k so that if A is in s/k and B is a
uniform algebra with d(A, B) < ε < εk then there is an S(B) in Sf* such
that B is a subalgebra of A(S(B% dB = dS(B), M(B) = S(B). Further-
more, there is a T in L(A, B) and a homeomorphism τ of a neighborhood NB

ofdS(B) onto a neighborhood NA ofdS(A) so that for all f, g in A, ally in

m = l
(3.3) l\Tf(y)-f(τ(y))\<cke

\\\Tfg-TfΓg\\<ckε\\f\\\\g\\

Furthermore, on NB \ dS(B) the map r is a quasiconformal homeomorphism
with maximal dilatation at most (1 + ckε).

Note. It is not claimed that B is in si'. That is, it is not claimed that
dim(A(S(B))/B) < oo. We will show that this is true if further assump-
tions are made on B or if we allow the constant εk to depend on A.

Proof. Throughout the proof, we will use the letter c for various
constants which can be selected so as to only depend on k. We start by
assuming that we have a uniform algebra B and a Γ in L ( i , 5) which
satisfies (3.1) and (3.2). The values of εk and ck will be implicit in the
proof (but will only depend on k).

Let S = S(A) = M(A).
Pick and fix a function G in A which satisfies the conditions described

in Proposition 2.5. Let / be the valance of G. Recall that / is bounded by
a bound which depends only on k.

We now use Proposition 2.6 to construct a neighborhood of 35*.
Suppose we have η, /?, Nl9 N2 and F so that the hypotheses and conclu-
sions of that proposition are satisfied. Suppose N is another neighborhood
of p, p G N c Nv There are Nl9 N2, F with p G Nτ c N2 c N so that the
conclusions of the proposition are satisfied with the new neighborhoods
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Nl9 N29 the new function F and the same η. This can be checked by

composing F with automorphisms of the disk. Hence we can shrink the

neighborhoods Nt without having to increase η. Thus we can, for fixed η

(the size of which will be implicit later), select neighborhoods Nτ(p),

N2(p) and functions Fp which satisfy the conclusions of Proposition 2.6

and which also satisfy, for each/? in dS

(3.4) {G-1(G(N1(p))))\N1(p)nN2(p)= 0.

That is, if we restrict to N2(p) then G is univalent on Nλ(p).

Let Nx be the union of the sets Nx(p) for/? in dS. Pick a so small that

Let

NA = {q<ΞS;l-a<\G(q)\<l}.

We will construct a map σ of NA into M(B). The required map T will be

Pick y in NA. Let yx = y and let y2,...,yj be the other points of

G~\G(y)) Using (3.4) and the definition of NA9 we see that if we

compose G with appropriate automorphisms of the disk, then we can

obtain for each /, / = 1,...,/, a function Gi in A with ||G,|| = 1, G^y^ = 0

and 1^(^)1 < η for j = 1,...,/; Ύ /. Select such Gz and then, for

ι' = l, . . . ,/ set

Thus Hi is in yl and for 1 < /, j < /,

(3.5) M = l , HάyJ-O^Φj, \Hl{yt)-l\<cr).

LetF= Fy = (G- G(y))(l - G(y)G)~ι. Thus F is in ̂ , \F\ = 1 on

Claim. (TF)~ι(0) consists of / points, xl9...9Xj. There is a unique

numbering of these points so that if we set o(yi) = xi (i.e., τ(xi) = yt)

then (3.3) is satisfied.

Proof of the claim. First note that if/is in A then

(3.6) f^ΣaΛ + Fr

for scalars at and an r in A which satisfies

(3.7) W < ( 2 / + 1 ) | | / | .

This estimate is an immediate consequence of the explicit choice aι —
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(3.6) and (3.7) express the fact that we can select a complement of the

ideal (G — G(y))A in such a way that the norm of the projection onto

this complement doesn't depend on y for y in NA (nor on A). This

uniformity is one of the factors in obtaining the uniform constants in the

theorem.

If ε is small, then the ideal (TF)B inherits this property. That is, for

each g in B there are scalars bi and a function r' in B so that

(3.8) g = ΣbiTHi+(TF)r'

and

(3.9) N < c | | g | | , i - l , . . . , / ; IH|<c| |g | | .

Furthermore, the bi and r' are uniquely determined. These facts are

straightforward consequences of (3.1), (3.6) and (3.7).

Let E be the algebra of complex valued functions on the set

{j>i,...,»}. For s in E set |||s||| = max|5(^)|. Define L mapping E to

i/=Span{H v...,Hj} by

By (3.5), we have,

(3.10) IIHII

We now define a new multiplication, X, on E by

s X t = r

where r satisfies

(3.11) (TLs)(TLt) = (TLr) +(TF)b

for some b in B. Since TLr is in TH we can use (3.9) and (3.10) to obtain

(3.12) |H|<c|Wllkl||.

We now estimate the difference between the two multiplications on E.

By (3.1), (3.10) and (3.11)

(3.13) |||£ X / - rflll < c\\L(s X t) - L(st)\\

< c\\T~ι{{TLs){TLt) -(TF)b) - L(sί)\\

< c\\LsLt - L(st) - FT~ιb + ax + a2\\

where

ax = T-ι{(TLs){TLt)) - LsLt

a2 = -T-\(TF)b) + FT-ιb
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by (3.1) and (3.12), for i = 1,2,

( 3 . 1 4 ) | k | < cellMH IIUIII.

The quantity in the norm sign on the right-hand side of (3.13) is in H.

Hence, by (3.10) we can estimate its norm by evaluating at the points yt.

At each of the yi9 Lst = LsLt and F is zero. Hence

H I J X t - st\\\< c\\aλ + 0 2 | | .

When this is combined with (3.14) we obtain

(3.15) III* X / - st\\\ < ce\\\s\\\ \\\t\\\.

Now note that TL is an algebra map of the algebra (E, X) to the

quotient algebra B/(TF)B. (In particular, X is an associative product.)

Hence, if ε is sufficiently small we can use Theorem 3.1 of [15] (which

described small deformations of uniform algebras). That theorem insures

that the spectrum of E is homeomorphic to the spectrum of B/(TF)B.

Thus {(TF)~l(0)} has / points. Furthermore, that theorem insures that

there is a mapping σ of they i to σ(yt) in M(B/(TF)B) so that

(3.16) | | |L*( Λ ) -(TLs)(σ(yi))\\\ < ce\\\s\\\

for all s in E. Write xt for σ(j,). Combining (3.16) with the earlier

estimates (3.1), (3.6), (3.7) and (3.9) and (3.10) shows

for all/in A. Finally note that elementary estimates using (3.16) and (3.5)

show that the choice of σ is uniquely determined. This completes the proof

of the claim.

The proof was carried out in the language of the deformation theory

of the uniform algebra E. However, the proof actually used the norm

equivalence of E with the quotient algebra A/FA (which is a consequence

of the finite dimensionality of A/FA and is uniform by virtue of (3.5))

and the fact that the quotient algebra B/(TF)B is a small deformation of

A/FA. It would be interesting to have a deformation theory for such

quotient algebras. Also, we point out that we could have given a direct

proof of the claim (not using results of [15]). That proof would have been

a bit longer.

The construction of o(y) used the particular function Fy. We now

extend the definition of σ to all NA by using the same construction and

letting y vary over NA. The functions Hi with the properties described in

(3.5) will then depend on the base point j>. We will not, however, explicitly

exhibit this dependence.
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For each fixed y in NA9 we have shown that card{(Γ/Γ)~1(0)} =
dim B/(TF)B < oo. This is sufficient to conclude that (TF)~ι{z\ \z\ < .9}
can be given the structure of an open (possibly disconnected) Riemann
surface with point identifications and on which the functions in B are
analytic (VI 6.3 of [2]). Next note that the proof of the claim extends
immediately to show that if |δ| < .1 then (TF)~ι(8) consists of / points.
Hence the Riemann surface has neither ramification nor point identifica-
tion over {z; \z\ < .1). By (3.3) and (3.5), the functions TF and THι

separate the components of(ΓF)~ 1 {z; |z |<l.} from each other and from
the rest of M(B). Hence those functions completely determine the topol-
ogy and conformal structure of M(B) near {(TF)~ι(0)}.

We now show that σ is continuous. Suppose zn is a sequence converg-
ing to y. The function Fς depends in a norm continuous way on f hence
\TF(σ(zn)) - TFz(σ(zn))\ tends to zero. Since TFz(o(zn)) = 0 by defini-

y n n

tion, we have, for any δ > 0, o(zn) e (TF)~ι{z; \z\ < 8} for all large n.
To see that no subsequence of o(zn) can converge to a point of {(TF)"ι(0)}
other than y, note that by

\TH(o(zn))-H(zn)\<ce\\H\\

for all H in A. Hence, by (3.3) and (3.5), all of the σ(zn) are in the sheet of
(TF)~ι{z\ \z\ < 8} on which a particular THι is small and all the others
are large.

We now show that o(NA) U dB contains an open neighborhood of dB.
If not, we could find a sequence {xn} of points in M(B)\dB which
converges to some x^ in dB. Without loss of generality G(τ(xO0)) = 1.
For λ real and slightly less than one, Gλ = (G — λ)(l - λG)~ι is one of
the functions Fy for y in NA. Also, Gλ(τ(xw)) = 1. By (3.1), \TGλ(xO0) - 1|
< cε. Since xn -> x^, \TGλ(xn) - 1| < ICE for all n larger than some No.
Pick x = xN and let μ be a measure on dB which is a representing
measure for x. Let v = μ ° τ~ι (i.e., v(R) = μ(τ~1(R)) for R c 9̂ 4). Since
every point of 3JS is a strong peak point for B (Theorem 3.1 of [15]), μ has
no atoms. Hence we can select a unique point Q on dD so that if Γ is the
arc counterclockwise from Q to - 1 then v(GχX(T)) = 1/2. Also note that
Q is very close to one. This can be seen by the following calculation:

1 - 2e < Re TGλ(x) = Re j (TGλ) dμ

= Re ί (TGλ)oT-
ιdv = Re ί Gλdv + εγ
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where, by (3.1), the error εx has size O(ε). Hence

1 - cε < Re f Gλ dv = Re If + f

; Gλ{p) e Γ} + i

Thus Re Q > 1 - cε.
Let L be the automorphism of D which fixed —1 and takes Q to 1.

An elementary calculation shows that for 0 < δ < 1, the functions

Fa= (L(GX) - δ)(l - SLiGjy1

are among the functions Fy fory in NA.
We now claim that for some δ, 0 < δ < 1, |ΓJPδ(x)| < 2/3. First note

that Gχl(T) is a set of v measure 1/2 on which Im F8 is positive. On the
complementary set Im F8 is negative. Hence, by (3.1) and the fact that v
represents x,

\lmTF8(x)\< .6

for all δ. Now note that Re TF8(x) is a continuous function of δ and is
positive when δ = 0. Since v has no atoms, it is easy to check using (3.1)
that Re TF8(x) is negative for δ near 1. The intermediate value of δ for
which Re TF8(x) = 0 gives the required δ. We now denote that F8 by F.

Now note that F({z; \G(z)\ = 1 — a}) is a small set near the point
— 1. Gλ had that property for λ near 1 and the passage from Gλ = Fo to F8

for positive δ makes the situation better. Hence F~λ({ z; \z\ < .8}) consists
of / disjoint closed homeomorphic images of the unit disk, Dl9... ,DJ9 and
all the Dt are inside NA. Pick one such Zλ. On Di there is defined a
continuous function R(z) = TF(σ(z)). Since \R(z) - F(z)\ < cε, R(z)
maps dD; onto a curve which winds once about zero. Hence, using
standard considerations from algebraic topology, we find that there is a
point zi in Di at which R takes the value TF8(x). Thus 2T(σ(zz)) = TF8(x)
for some zέ in Dt. This accounts for / distinct points of TF~ι(TF8(x)).
However we saw earlier that card{ TF~\TFB(x))} = /. Thus x is σ(z) for
some z in NA. This contradiction shows that σ(NA) U dB contains a
neighborhood of dB.

We now extend σ from NA to NA. On the set (z; \G(z)\ = 1 — a} we
use the same definition. On dS = {z; |G(z)| = 1} we set σ = τ~ι where T
is described by (3.1). We now claim that this extended map is continuous.
Since T is a homeomorphism of dB to dS, the only real issue is to show
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that if yn are in 5 \ 35 and yn -> y^ in 35" then σ(yn) -> o(yO0). Suppose
we are given such yn and that x is an accumulation point of the points
o(yn). If x is not in dB then the argument used in the previous two
paragraphs can be used to show that there is some Fy with |77^(x)| < 2/3.
However,

\TFy(x)\>lim\TFy(σ(yn))\>lim\Fy(yn)\ - cε = 1 - ε.

Thus x is in dB. Thus σ(yn) —> o(y) for somey in dA. lΐy^ Φ y then there
is an H in A with | | # | | = 1, H(yJ = 1 and #(JO = 0. Thus 77/(x) =
TH(σ(y))~ H(τ(σ(y))) = H(y) = 0 (by (3.1)). On the other hand
TH(x) = lim TH(σ(yn)) and TH(σ(yn)) ~ H(yn) which converges to
H(yoo) = 1. This contradiction shows y^ = y and we conclude σ is con-
tinuous on NA.

We now show Λί(i5) \ dB is a Riemann surface. Select a large integer
N so that (1 - a)N < 1/2. Consider the map of M(B) into {z\ \z\ < 1 +
cε} given by R = Γ ^ ) . Note that σ ^ ) is a closed subset oΓM(5)
which contains an open neighborhood of dB. Let U = M(B)\σ(NA). By
the local maximum modulus theorem, for all x in £/, all/in 5

[/X*)|< max|/|.

Now note that ΘC/ c σ({z e Af(>4); |G(z)| = 1 - α}). Hence, for x in ί/,

Thus, by (3.3) and the choice of TV, for all x in £/,

(3.17) |Λ(JC)| < 1/2 + cε.

Note that for x in 35

(3.18) |Λ(JC)| > 1 - cε.

We now claim that for each z in a small neighborhood of 3/4, {/^(z)}
is a finite set. Suppose not and let x0 be an accumulation point of
{R~\z)} for such a z. By (3.17) and (3.18), it must be that x0 is in σ(Λ^).
Hence there is a neighborhood of x0 which is an analytic disk. Hence R
takes the value z identically in an open neighorhood of x0. In this case the
interior of {R~1(z)} would be non-empty, open, and, by the argument
just given, closed. Any such set must meet the Shilov boundary (Corollary
8.16 of [17]) and by (3.18) this doesn't meet dB. Thus {R~ι(z)} is finite.

Thus we have an open set of z for which ca.τd{R~1(z)} is finite.
Hence we may use a result of Bishop (Theorem 11.2 of [18]) to conclude
that for each with \z\ < 1 — cε, {R~ι(z)} has a neighborhood which
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consists of a finite union of analytic disks. Thus U is an open (possibly
disconnected) Riemann surface which might have finitely many point
identifications. Also each point of o(NA) has a neighborhood which is an
analytic disk. Thus M(B)\ 35 is a finite Rieman surface.

We have not yet shown that M(B) is a finite bordered Riemann
surface. To do this we must exhibit neighborhoods of the appropriate
form for the points of dB. This will follow immediately from the corre-
sponding facts for M(A) as soon as we know that σ is a homeomoφhism
onto its image. We already know σ is continuous. Hence we need to verify
the following.

Claim, σ is one-to-one on NA.

Proof of the claim. Suppose σ(yλ) = σ(y2). By (3.3) TFVi(σ(yι)) =
TFv(σ(y2)) ~ FVι(y2). Hencey2 is in /^({Izl < .1}). That set consists of
/ disjoint analytic disks. By using the estimates in (3.3) and (3.5) we see
that y2 and yx must be in the same disk. On that disk F = Fyi is a
coordinate function. In terms of this F, the function Fyi used to define
σ(y2) is of the form Fyi = (F - δ)(l - 8F)~ι with

F(y2) = *> | β | < < * .

Thus FVi = F - 8 + 8F2 + O(|δ|2). If we apply T we obtain

(3.19) TFyi = TF - δ + 8T(F2) + θ( |δ | 2 ).

We evaluate this at σ(y2). By definition TFyi(σ(y2)) = 0. We assumed
"(JΊ) = σ(y2). Thus TF(σ(y2)) = 0. By (3.1), T(F2) = (TF)2 + O(ε).
Hence T(F2)(σ(y2)) = Γ(F 2)(σ(^)) = O(ε). Thus (3.19) yields

Sine |δ| < cε, this implies δ = 0. Thus i 7 ^ ) = 0 a n d hence y2 = yv This
proves the claim.

It only remains to show that the Riemann surface M(B)\dB is
connected. By Theorem 6.2 of [15], M(B) is connected. Any union of
components of M(B)\dB together with the appropriate components of
dB would contain a connected component of M(B). Thus M(B)\dB is
connected.

COROLLARY 3.2. B is antisymmetric, (i.e., the only real valued functions
in B are constant).

Proof. B is a subalgebra of the algebra of homomoφhic functions on
a connected Riemann surface.
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This last corollary is noteworthy since it is not known that a small
deformation of an antisymmetric uniform algebra is necessarily antisym-
metric.

With further assumptions, we can show B is in J / .

THEOREM 3.3. Let k be a non-negative integer. There is an ek > 0 which
depends only on k such that if A is in sίk and B is a uniform algebra with
d(A, B) < ek and dim Re B1 < oo then B is ins/.

Proof. Suppose d{A, B) < ε. By requiring ε to be small we can insure
that Theorem 3.1 can be applied. Let T be the element of L{A, B) and τ
the homeomorphism of dB to dA which exist by Theorem 3.1 and which
satisfy (3.1) and (3.3).

Let S = M(B) be the finite bordered singular Riemann surface on
which the functions in B are defined. Let Si9 i = 1,... ,nB, be the elements
of ^from which S is constructed by point identifications. For i = 1,... ,nB

select pt in St so that pt is not one of the points which are involved in the
later point identifications. Hence the points pt can also be regarded as
points of S.

A positive measure v on dB is a representing measure for p if for all /

f(p)=f f
We denote the set of all such measures by Mp. Since the difference of two
elements of M is in ReB± , and we have assumed dim Re B-1 < oo, the
set Mp is finite dimensional for any p in S. We now use the terminology
and some of the results of Chapter IV of the book by Gamelin [2]. For
i = l,...,nB we select a core measure vt in Af . For our purposes this
means that if vi is any other element of MPι then
(3.20) *,«*>, '

(This by Theorem 4.1 of Chapter IV of [2].) This choice will also allow us
to use Theorem 6.2 of Chapter IV of [2] which describes the "nice case" of
abstract Hardy space theory.

Let B ± be the space of measures on dB which are orthogonal to B.
Let v0 = Σ vt.

LEMMA 3.4. Ifμ^B^ then μ «: v0.

Proof of the Lemma. Let q be a point of S(A)\dA and let λ be a
measure on dA which represents q for all g in A. Let v be a measure in M?ι

which represents pλ for^S^); i.e., so that / fdv = f{px) for aΆf'mA(Sλ).
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We start by showing that τ~ι is an absolutely continuous map of (dA, λ)
to(9£, v).

Let G be a function in A of the type described in Proposition 2.5.
Suppose T " 1 is not absolutely continuous. Then there is a set E with
λ(E) = 0 and ^ ( T " ^ ! ? ) ) > 0. The mapping G is a finite to one mapping
of dA to 9Z>. Furthermore, the measure obtained on dA by using G to pull
*/0 back to A is mutually boundedly absolutely continuous with respect to
λ. Hence we can find Et c E, i = 1,2, so that

G{Eι)CΛG(E2)= 0 ,

and

Since the G{Et) are closed subsets of 9Z> of Lebesgue measure zero, they
are peak interpolation sets for the disk algebra. Since the composition of
G with an element of the disk algebra is an element of A, the sets Et are
peak interpolation sets for A. Using this fact and (3.1) we now construct a
function in B which vanishes on τ~ι(Ei) and doesn't vanish identically.
Start with Fin A which has F\Eι = 0, F\Ei = 1 and \\F\\ = 1. TFis almost
the required function. By (3.1)

(3.21) o n £ l 9 I Γ ^ T - ^ J C ) ) ! ^
 cε

(3.22) on E2, | l - Γ i ^ r - 1 ^ ) ) ) < cε.

We now construct a convergent infinite series of corrections. For / =
1,2,... define g by the requirements that gi be in A, for x in Eλ

and for x in E2

g,(x) - 1 - TIF - Σ gj\{r-\x))

and Hg ll = s u p ^ ^ |g, (x)|. Since the Et are peak interpolation sets for A,
such g. can be found. A straightforward induction starting with (3.21) and
(3.22) and using (3.1) shows that \\gn\\ = 0((cε)"). Hence the function
F = F + Σ™=1gt is in A. By construction TF vanishes identically on
T " ^ ^ ) and is identically one on τ~~1(E2). We now claim that this is
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impossible. The representing measures for A(S1) have the property that if

a function in ^(S^) vanishes on a set of positive measure with respect to

such a measure, then it must vanish identically. Hence τ~ι is absolutely

continuous as a map of (&4, λ) to (dB, v).

Now note that if we had selected a v which represents pj for all / in

A(Sj) we would have obtained the same conclusion.

Select μ in B± . The abstract F. and M. Riesz Theorem (Theorem 23.6

of [17]) insures that μ can be written as

(3.23) μ = μ, + Σμn

where there are points qn in distinct Gleason parts oίJί(B) and represent-

ing measures σn for qn so that μΛ « σn and μs is singular with respect to

any representing measure for any point of M(B), and μs, μl9 μ2,... are all

in Bx . The Gleason parts of M(B) are the single points of 92? and the

single part M(B) \ dB. Hence (3.23) becomes

with μs _L v0 and μλ is absolutely continuous with respect to σ for some σ

in some Mp for some/? in M(B)\dB. Since σ <̂c v0 (by (3.20)), we have

μλ «c v0. Thus to complete the proof we must show that there are no

measures in B± which are singular with respect to v0. Suppose a were such

a measure, | |α|| = 1. Consider the linear function on C(dA)9 the space of

continuous functions of dA, given by

l(f)-f9Bf(r(x))da(x).

The norm of / on A is small. If/is in A then

!>(/)! = f f(r(x)) da(x)

< j |37-Foτ|ί/|o|+ f Tfda

The first term is at most cε||/|| (by (3.1)) and the second is zero since a is

in B± . Thus, by the Hahn-Banach Theorem, we may select a measure β

on dA so that

/ ( / ) = / fdβ
JdA

for all/in A and \\β\\ < e. The measure a © T — jβ is orthogonal to 4̂. Any

measure on dA which is orthogonal to A is absolutely continuous with

respect to λ. Hence,

(3.24) aoτ - β = hλ
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for some h in Lι(dA, dλ). We now use τ~ι to pull (3.24) to 92?.

a - βoT~
ι = (hλ)°τ~ι.

Since τ~ι is absolutely continuous as a map from (dA, λ) to (92?, v)

Combining the last two equations we find that

a — β o T " 1 = gdv

for some g in Lx(92?, dv). We now take the Lebesgue decompositon of this

equation with respect to v0. By hypothesis a is singular with respect to v0.

gdv <̂c dv0. Hence a = (β ° T " " 1 ) ^ . Thus

This contradiction completes the proof of the lemma.

We now use abstract Hardy space theory to complete the proof of the

theorem. Let 2? = A(SX) Θ Θ A(Snβ). We must show dim B/B < oo.

It suffices to show that there is a finite dimensional subspace M of

C(95)*sothat

(3.25) B±QB± +M.

Take a functional in B± . By the lemma this functional can be realized as

integration against an/in Lι{dv0).

Let σ, be measures on Si which representpt for the algebraΛί(St) (and

hence also for B). Then

(3.26) Λί^^tf^σJ+M,.

where A^S^ is the subspace of A(St) of functions which vanish at pt and

/ί1((iσ/) is the closure of ^4(5,) in L\dSi9 dσ^ and Mf is a finite dimen-

sional set of functions defined on dSr Since

We can establish (3.25) by showing that for each i there is a finite

dimensional set of functions Nt which are supported on dSt and so that

given/in 2?x there is, for each i, an ni in JV, so that/ — «z e ^4(5,)± . By

(3.26) this will be established if we show that we could select ni so that

/ — ni is in 2/1(<iσ.). We know/is in l}{dv0). Hence it is in Lλ(dv^. By

Theorem 4.5 of Chapter IV of [2], we must have / = fx + n where fx is in

the closure of B in L}(dvt) and n is in the complexification of the finite

dimensional space Re 2?x . Since vt is a core measure for the algebra B and



160 RICHARD ROCHBERG

σz representspt for B, we have (Chapter IV, Theorem 5.1 of [2]) dσi/dvi < c
for some constant c. H e n c e / - n is in the ϋidσ^ closure of B. Hence
/— (Xxas) = / — nt is the required function in //1(Jσ ). The proof is
complete.

Hence, sίk is open.

COROLLARY 3.5. Given A in s?k there is an ε(A) > 0 so that if B is a
uniform algebra with d(A, B) < ε(A) then B is ins/k.

Proof. This follows from the previous Theorem and Theorem 6.3 of
[15].

Also s/k is complete (and in particular closed).

COROLLARY 3.6. Each s#\ is a closed subset ofJίand a complete metric
space.

Proof. stfk c Jί and it is shown in [15] that Jί is complete. Thus we
need to show s/k is closed. Let A be in s/k. By the continuity on Jt of the
function dimRe( ) ± , we know dim Re A x = k. Hence we can apply the
previous theorem to see that A is in J/and hence in sίk.

Question. We just saw sίk = sik. Is ^ = J / ? The results in [15] leave
open the possibility that there is a sequence Aj in s/k which is a Cauchy
sequence in Jί and for which l i m ^ = oo. For example, It Aj. = {/e
A(D);f(n\0) = 0, n = 1,2,.. .J). Aj is in^f2j. I don't know how to show

that Aj is not a Cauchy sequence i n ^ .

IV. The Local Theory of stk. Corollary 3.5 states that if A is in
some sik and B is sufficiently close to A then B is in the same J ^ . In this
section we develop further information about B starting with the assump-
tion that B is sufficiently near A.

Informally, there are two types of changes which can occur as we go
from A to a nearby B. First is a small change in the conformal structure of
M{A) away from the points of Sing(yl). This phenomenon will be
described by a quasiconformal map of part of M(A) into M(B). The
second type of change is a change in the structure of A near the singular
points. Presumably this type of deformation can be described using the
algebraic theory of deformation of singularities. However, the situation is
unclear except in simple cases.
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We begin by noting that if A has no singular points (i.e., Sing(^4) = 0 )

then the change from A to a nearby B is exactly that induced by a small

change in the conformal structure of M(A) \ dA.

Recall that for S, S' i n ^ , the Teichmύller distance between S and S'

is defined by

dτ(S, S') = inf{log K; there is a ίf-quasiconformal

homeomorphism of S and S'}.

THEOREM 4.1. Suppose S is in 5?and A = A(S). There is an ε = ε(A)

> 0 such that the set of function algebras B with d(A, B) < ε consists

entirely of algebras of the form B = A(S') for some S' in Sf. Furthermore,

for such B, d(A, B) ~ dτ(S, S'). Also, if S" is any element of Sf with

dτ(S9 S") sufficiently small then d(A, A(S")) < ε.

Proof. First select ε so small that, by Corollary 3.5, we know B is in

s/k. By Proposition 2.5 we know that for any such B

k(A) = k(B) > dim Hι(M(B)9R).

By Corollary 7.7 of [15],

dim Hι(M(), R) is lower semi-continuous ons/k.

Hence k(B) = dim Hι(M(B), R) for all B in an open neighborhood of A.

As noted in Proposition 2.5, this insures that B = A(S') for some 5f/ i n ^ .

The result now follows from the fact that for algebras of the form A(S'),

S' in S?9 the Banach-Mazur metric is equivalent, in the small, to the

Teichmύller distance [12].

We now prove an analogous result for algebras with singularities. The

basic idea is that if the constants are allowed to depend on A then the

basic construction of σ in the proof of Theorem 3.1 can be carried out for

points which are not close to pre-images of images of branch points of G.

THEOREM 4.2. Let A be in s/k. There is a finite set R in M(A) with

Sing(^4) c R and the cardinality of R dominated by a function of k alone

such that given any open neighborhood N of R there are constants ε0 and c

(both of which depend on A and N) so that the following holds. If B is a

uniform algebra with d(A, B) < ε < εQ then there is a T in L(A, B), an
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open set U in M(B), dB c £/, and a map τ of U into M(A) so that

(4.1) 7Ί = 1

(4.2) \\Tfg - Tf Tg\\ < cε\\f\\ \\g\\for allf, g in A.

(43)\Tf(x) - / ( T ( J C ) ) | < cε\\f\\forallfinA,xin U.

(4.4) T is a continuous map of U onto M(A) \ N.

(4.5) on U\ dB, T is a quasiconformal homeomorphism and

supV\dB\dilatation of τ| < 1 4- cε.

Note. The proof actually shows that if T is given so that (4.1) and

(4.2) hold, then r can be constructed so that (4.3), (4.4) and (4.5) are

satisfied (with a different constant c).

Proof. We start with ε0 so small that Corollary 3.5 applies and the

results of [15] apply. Further conditions on ε0 will be implicit in the proof.

Using Corollary 3.5 and Theorem 3.1, we may assume that B is in s/k and

that we have a Γ in L(A, B) which satisfies (4.1) and (4.2) and a

homeomorphism T of dB to dA so that (4.3) is satisfied for x in dB.

Pick and fix a function G in A which satisfies the conclusions of

Proposition 2.5. Thus G maps M(A) onto D in a / to one manner (when

multiplicity is taken into account) and G vanishes on Sing(fl) (and

possibly at other points). Let R be the preimages of points over which G is

not strictly / to 1; R = {p e M(A); caid{G~ι(G(p))} < J). Note that
Sing(^4) c R. The integer / and all the topological data of M(A) can be

estimated using only the integer k. Hence, using the Riemann-Hurwitz

formula (e.g., (2) of [12]), the cardinality of R can be estimated using only

k.

Pick δ so small that for each/? in R, the set

[q £ M(A); \(G(q) - G(p))(l -'GΪJ)G(q)Yl\ < δ}

splits into connected components, each of which contains exactly one

point of R. Denote the component of this set which contains p by Mp. By

choosing δ to be smaller still, we can insure that Mp c N. Finally, by

choosing δ to be smaller still, we can insure that the sets G(Mp), p in R,

are disjoint or identical. Let Do = D \ {dD U (Up(ΞR G{Mp))}. Let So =

G-\D0).

LEMMA 4.3. There is α constant M so that if z is in Do, {G~\z)} =

{Pi9-'.9Pj}9 then there are functions Hv.. .,Hjin A such that

(4.6) Hι(pJ) = δlj, l < / , 7 < / ,

(4.7)
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Proof of the Lemma. The construction at the beginning of the proof of

Theorem 3.1 shows how to construct the required Ht for all z near dD and

with M = 2. Pick z outside of the neighborhood No of 3D on which that

construction works. Let {G~ι(z)} = {p l9... ,/?/}. Given i,j\ i Φ j\ we can

find, by Proposition 2.5, functions FiJ in A so that Fij{pi) = 0 and

Fij(Pj) ^ 0 By taking appropriate scalar multiples of products of the Ftj

we can obtain functions Hf which satisfy (4.6) and satisfy (4.7) with a

constant Mz which depends on z. Now note that there is a neighborhood

Nz of z such that for each w in Nz we can find H™ which satisfy (4.6) and

(4.7) on the set {G~1(w)} with the constant M = 2MZ. To see this, denote

by 8i9 z = 1> > Λ the / analytic choices of G 1 near z, normalized by

gt(z) = pr The required ///" are obtained by applying the matrix

((H?gj)(w)yι to the vector (///,.. . , # ; ) . The existence of the required

neighborhood is insured by continuity.

The neighborhood JV0 of dD together with these Nz give a cover of Do.

We extract a finite subcover and select for M of (4.7) the maximum of the

associated estimates. This completes the proof of the lemma.

Let p be any point of So. Let Gp = (G - G(p))(l - G(O)G)"1. Let

Hι be the functions associated with the point G(p) by the previous

lemma. Thus, if /is in A, then

(4.8) f=Σ<*tHt + Gpr

with scalars α, (α, = /(/>,-)) and r in 4̂. (r is in A by Lemma 2.4.) Using

(4.7), (4.8) and the fact that \G\ = 1 on dA we obtain

(4-9) kl<|/||, |H|*M(/+1)||/||.
With the decomposition (4.8) and estimates (4.9) as substitutes for the

decomposition (3.6) and estimates (3.7), the construction of σ (= T " 1 ) as

in the proof of Theorem 3.1 goes through unchanged. The same argument

as those used in that proof shows that T has the required mapping

properties (4.3) and (4.4).

The calculation which shows that r is quasi-conformal is done in

Lemma 3.4 of [16].

The proof is complete.

It seems to be a flaw that the previous proof allows the possibility

that R is strictly larger than Sing(^4). Although we do not know how to

improve the previous result to R = Sing(yl), there are various ways in

which the result can be improved. For instance, the map τ can be

extended across the parts of N which do not contain points of Sing(τ4) so



164 RICHARD ROCHBERG

that (4.5) still holds (but not necessarily (4.3)). Here is a sketch of one way

to accomplish this. Suppose pQ is in i?\Sing(^4). By Proposition 2.3, we

can find an F in A so that F(p0) = 0 and F has no other zeros. Without

loss of generality F~1(D\dD) is a neighborhood of p0 on which F is

one-to-one. Suppose Γis an element of L(A, B) which satisfies (4.1) and

(4.2). If ε is small then the map λ of points/? near/?0 into M(B) given by

λ(p) = (TF)-\F(p)) = (T(F - F(p))y\0)

is a well-defined map of No = F~\{z; \z\ < 1/2}) into M(B) which

satisfies for all H in A, all p in No

(4.10) \TH(λ(p))-H(p)\<cε\\H\\.

The fact that λ is well defined and satisfies (4.10) follows from a

simplified version of the proof of Theorem 3.1 or, alternatively, Proposi-

tion 8.1 of [15]. λ is explicitly exhibited as a composite of analytic

functions and thus is analytic. The composite T " 1 ° λ (where T is given in

the previous theorem) is a quasiconformal map of a ring about p0 to

another such ring. Using extension theorems for quasiconformal maps

(page 86 of [7]) it is then possible to extend T, across NQ so that (4.4) and

(4.5) remain true. It is not clear how to adapt this approach to obtain

(4.4), (4.5) and (4.3). (The theory of quasiconformal maps seems to show

that T produces this way will satisfy

(4.3)' | Γ / ( x ) - / ( τ ( x ) ) | < c ε 1 / | |

for some positive constant α.)

We will regard T in Theorem 4.2 as extended across all such sets No so

that (4.4) and (4.5) hold.

Associated with the change from A to B are changes associated with

the structure of M(A) near the points in Sing(^4) and/or changes in the

behavior of the functions in A near those points. The previous theorem

and discussion indicate that the analysis of the changes near points in

Sing(A) can be localized to neighborhoods of the individual points. The

next three propositions describe explicitly the changes that can happen to

the three simplest singularities. The explicit constructions in [14] and in

the verification of the properties of Example 7.9 is [15] show that all of the

geometric possibilities allowed by these propositions can actually occur.

We start with the simplest singularity. Suppose A is in sίk and p in

Sing(v4) is a node, the removal of which would disconnect M(A). Thus

there are two connected, possibly singular, finite bordered Riemann

surfaces Sλ and S2, and points pt in Si\dSi9 i = 1,2, so that M(A) is

Sλ U S2 with the points/?! and/?2 identified to the single point p. Let 4̂, be
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the algebra A restricted to St. For i = 1,2, At is in js/and pt is not in

S i n g ^ ) . Let Aλ θ Λ2 be the algebra pairs (fv f2) with /. in Λf. We will

regard f. as defined on Sλ U S2 by setting fι = 0 on 5y , y =£ /. Hence ̂ 4 is

the subalgebra of ^ θ ^ 2 °f pairs (Λ, /2) which satisfy fι(Pι) = f2(p2).

By Proposition 2.3, we can find /) in ^ which vanish at pt and at no other

point of Sr Select such/, and let Xx = (fl9 0), X, = (0, / 2 ) . We have

(4.11) J Γ ^ ^ e y l ,

Also, for all g in A there are g1? g2 in A so that

(4.12) g

If we further require that X2gτ

 Ξ ^1^2 Ξ ® Λen the gx are uniquely
determined and depend linearly and continuously on g, i.e., for all g in A

(4.13) ll&llscM, 1 = 1,2.

The constant c depends only on the choices of Xx and X2. Finally

(4.14) XλX2 = 0.

The situation summarized by (4.11)-(4.14) completely characterizes

this type of singularity.

For sufficiently small positive δ, {p e M(A); \Xx(p) + X2(p)\ = δ}

is a union of two curves γ1? γ2 with γ c Si9 yi, = {p e M(A); \Xt\ = δ,

l-̂ /l = 0,7 # /} and γz bounds a small neighborhood of /?, in Sf.. γ = γx U γ2

bounds a small neighborhood M of p. Topologically M is two disks with

their centers identified. Choose δ so small that M contains no points of

the set R of Theorem 4.2 other than p. We now apply Theorem 4.2 to A.

We select the set TV so that N C\ M Q {p\ \XX + X2\< δ/10). Suppose

now that B is a uniform algebra close to A. We wish to describe the points

of M(B) which "correspond" to the points of M in M(A).

PROPOSITION 4.4. There are constants εl9 c l 9 c2 {which depend on A, Xl9

X2, M, and N) so that if B satisfies the hypotheses of Theorem 4.2, and

d(A, B) < ε < ει then the following additional conclusions can be drawn.

There are Xλ and X2 in B such that

(4.15) \\TXt - ΪW < Cιe, / = 1,2.

There are linear maps R^ofB to itself, i = 1,2, and a linear functional L on

B so that for all f in B

(4.16) /= L(f) + XMf) + X2R2(f)
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These operators satisfy X2T'1R1(f) = 0 and X^R^f) = 0 for all /,

and are bounded

(4.17) | |L | | < Cι, \\R,\\ < cu i = l,2.

Furthermore there is a constant a,\a\ < cλε so that

(4.18) XXX2 = a.

Finally, the map ofM(B) into C2 which sendsp to H(p) = (ρ(Xι), p(X2))

is a one-to-one analytic map of

{p&M{B);\X,(p)\ <c2fori = 1,2}

onto

E= {(z1,z2) e C2; \z,\ < c2fori = 1,2 andzλz2 = «}.

Proof. First we construct Xt which satisfy (4.15) and (4.18). We do

this by an iterative process which will converge if ε is sufficiently small.

For / = 1,2, let L( be the linear map of A to A which sends g in A to

the function g, of (4.12).

The construction is most easily described in terms of the multiplica-

tion on B pulled back to A by T. That is, let X be defined by

(4.19) fXg=T-\TfTg).

Since XXX2 = 0, by (4.2)

(4.20) Xλ X X, = r

for some r with \\r\\ < cε. By (4.12)

Xx X X2 = r(p) + XMr) + X2L2(r).

Using the estimates on r, (4.13) and (4.2), this gives

XXX X2 = r(p) + Xλ X Lλ{r) + X2 X L2(r) + r',

with ||r'|| < cε2. Thus

(Xι-L2{r))x(X2-Lι(r)) = r(p) + rι

for some rx with ĤH < cε2. Set X™ = Xγ - L2(r) and X^ = X2 - Lγ{r).

Then

We now iterate this construction. The next step is X[Ί) = X{1) — L2{rλ),

X(2) = xp - Lγ{rx). Then
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and ||r2 | | < cε3. Denoting the limit, lim^ Xjn) by X™, i = 1,2, we obtain

X™ X X™ = α

for some constant α, |α| < cε. If we set jζ = TX?° for / = 1,2 then (4.15)
and (4.18) are satisfied. By (4.12), (4.13), (4.15) and (4.2), if/is in A then

(4.21) / = /(/>) + * Γ X M / ) + *2°° X £ 2 ( / ) + r

where the "error term" r satisfies ||r|| < cε. We apply the decompositon
(4.21) to r and add the resulting quantity to (4.21). This yields

f = f(p) + r(p) + X? X Lx(f+ r) + X? X L2(f + r) + r>

with ||r' | | < cε2. Iteration of this process and passage to the limit (since
the process converges for small ε) yields

/ = c(f) + XΓ X LάSάf)) + X? X L2(S2(f))

where c is a bounded linear functional and the Sj are linear operators with
||/ — 5,-11 < cε. If we apply T to this equation and take note of (4.19) we
obtain an equation which can be rewritten in the form (4.16) and satisfies
(4.17).

Since we have assumed ε is small, we know by the results of the
previous section that B is in stf. Hence the functions in B are analytic on
M(B) \ dB. Thus the map H(p) is an analytic map which, by (4.18) goes
into the required set. Now note that if p is in M(B) and \Xi(p)\is small
for i = 1,2 then, by (4.16) and (4.17), the value of f(p) is completely
determined by these values. That is, /t-fold iteration of the decomposition
produces

where Q is a polynomial in Xλ and X2 and the Sk are linear maps with

Σ \\sk\\ < c

for some constant c which depends only on the constant q in (4.17).
Hence, if \Xt(p)\ < \c then the value of f(p) is determined by the
numbers X((p). Thus H is one-to-one on the indicated domain.

We now show that if c2 is small then the image of the map H is all of
the set E. First, for convenience, suppose that a in (4.18) is not zero. Let T
be the map produced in Theorem 4.2. For i = 1,2, T " 1 ^ . ) are curves in
M(B) and for points x on γy,

\T(xr)(τ-*(x)) - X?(x)\ < ce\\Xr\\.
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If we now use the fact that TX™ = Xt and use (4.15), we obtain

XXτ-'ix)) - X,{x)\ < ce\\X\\.

Hence, for x on yi9

\X,(τ-\x))\ = δ + θ(e).

(δ is the parameter used to define yr) Hence, if δ was selected to be small,
then this together with (4.18) insures that for x in yλ U γ2, H(x) is in E.
By assumption, at each point of dA, either \X \ > 1 or \X2\ > 1. Hence, if ε
is small and c2 < 1/2, then the points of dA are not mapped into E by H.
We have seen that H(M(A)) Π E is not empty. Since the map H is open
or constant on each of the Riemann surfaces which make up M(A)\dA,
and since H(dA) Π E = 0, H(M(A)) Π E must be open. Since H is
continuous and M(A) is compact, H(M(A)) Π E is relatively closed.
Thus, since E is connected, we conclude that E c H(M(A)).

Finally, if a = 0, we argue as we just did to show separately that both
Ex = {(zl50); |z2 | < c2) and£ 2 = {(0, z2); |z2 | < c2} are in H(M(A)).

The proof is complete.

The main thrust of this proposition is that near/?, M(A) contains part
of the singular algebraic curve zxz2 = 0 and that the corresponding region
is the spectrum of the "deformed algebra" B is part of the "deformed
curve" zλz2 = a (which is generally non-singular). Another way to de-
scribe the geometry of this situation is in terms of covering maps of the
disk. On M(A) we consider two functions h = Xτ 4- X2 and k = Xλ — X2.
These functions separate points near/? and satisfy the equation h2 = k2.
Thus the function h exhibits the region of M(A) near/? as a two sheeted
covering of a region near the origin in the k plane and the singularity of
this covering is a double point over the origin. The analogous functions in
B are h = Xλ + X2 and k = Xλ - X2. They satisfy h2 = k2 4- 4a. Thus h
exhibits a region on M( B) as a two sheeted covering of a region near the
origin of the k plane. This covering map has simple branch points over
±2a. (A double covering of the disk branched over ±2a is seen to be
conformally equivalent to a ring {w;/?< |w |< l } where β is a parameter
which is determined by a and tends to zero as a tends to zero.) Thus the
double point in M(A) has been replaced by a thin neck.

On M(A)9 removal of the point/? or the neighborhood of/? bounded
by γx U γ2 would disconnect M(A). M(B) has a similar property; removal
of the region bounded by the curves T " 1 ^ ) U τ~1(γ2) (i.e., the region
where both Xt are small) disconnects M(B). To see this, for / = 1,2, let

Ut= {p e M(B);\X,(p)\> L
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and let

V= [p (ΞM(B); \Xi(p)\ < \c2toτi = 1 and i = 2}.

The Uι are open and non-empty. By (4.18) they are disjoint. Since

(M(B)\ Uλ) Π(M(B)\ U2) c V, the removal of Vdisconnects M(B).
Finally we should note the interpretation that goes with the case

a = 0 of (4.18). In that case B has a realization as a subalgebra of

codimension one of Bλ θ B2 for Bt Ίnstf. There is a singularity in M(B) of

the same sort as that at p in M(A). Furthermore d(At, Bt) < cε for

/ = 1,2. In this case the passage from A to B consists of deforming both

Aλ and A2 and a slight change in the selection of the points pr

We now do a similar analysis for the cusp singularity. This type of

singularity is obtained by taking the kernel of a derivation at a non-singu-

lar point. We start with A + in j/and p0 in M(A +) \ (dA + U Sing(^4 +)). By

Proposition 2.3 we can find f0 in A + which has a simple zero at p0 and no

other zeros. We assume |/ 0 | > 1 on dA+. Since/0 gives a local coordinate

at p0, we may use it to describe the point derivations at p0. Any g in A +

can be written near p0 as g = h ° / 0 for some function h analytic near zero.

Any point derivation at p is a scalar multiple of the functional D defined

by Dg = λ'(0) (i.e., Dg = (dg/dfo)(po).) Let A be the subalgebra of A +

consisting of those g in A + with Dg = 0. Equivalently, (using Lemma 2.4)

A = {g e A+; g = c + f0

2h, c ^ C, h ^ A + ) .

Suppose we start with ginA and write g = c + f^h with c in C and h in

A + . The function h can be written as cx 4- c2f0 + f^k for scalars c, and

some k in A+. Combining these representations we find that any g in A

can be written as

g = c + c2f0

3+f0

2h

with h in A. Thus /0

2 and /0

3 generate the ideal of functions in A which

vanish at p0. We now set W = /0

2, V = /0

3. The previous equation can be

rewritten as

(4.22) g = rι(g) + r2(g)V+ WR(g)

with rλ and r2 linear functional, R a linear map of A to itself, and all three

bounded:

(4.23) \\4<c, ι = l,2 and ||A|| < c.

(4.22) and (4.23) are the analogs of (4.12) and (4.13). The equation relating

the generators of the ideal is more complicated than (4.14). V and W

satisfy

(4.24) V2 = W\
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The main content of the next proposition is that a small deformation of A

changes this singular point to a subset of a (possibly degenerate) elliptic

curve given by an equation

V2= W3 + aW+ b

for small scalars a and b.

We wish to use Theorem 4.2 on A. Select δ to be sufficiently small so

that y={p\ \fo(p)\ = δ} is a simple closed curve in M(A) which

surrounds a neighborhood M of p0 in M(A) and M contains no other

points of the set R of Theorem 4.2. Select N so that J V Π M c { | / 0 | <

δ/10}. We now suppose B is a uniform algebra with d(A, B) sufficiently

small so that we can use Theorem 4.2. Thus d(A, B) < ε < ε0 and we

obtain T and r which satisfy (4.1)-(4.5). We now wish to describe the

points in M(B) which correspond to M in M(A).

PROPOSITION 4.5. There are constants ε1? cλ and c2 (which depend on A,

/ 0, Λf, and N) so that if B satisfies the hypotheses of Theorem 4.2 and T and

T satisfy the conclusions of Theorem 4.2 and d(A, B) < ε < ε1 then the

following additional conclusions can be drawn.

There are V and W in B with

\\TV- V\\ < qε, \\TW- W\\ < cλε.

There are linear functional rn i = 1,2, and a linear map R of B to itself so

that for all f in B

(4.26) f=hU) + hU)V+WR(f).

These maps are bounded

(4.27) \\r!i^cλ, / = 1,2; \\R\\ < cv

There are constants aly a2 which satisfy |αz-| < c1ε, / = 1,2, so that

(4.28) V2 = W3 4- ajV+ a2.

Finally, the map H of M(B) into C2 given by H(p) = (V(p),W(p)) is a

one-to-one analytic map of

M(B)n{\v\<c2}n{\w\<c2)

onto the set of points (zv z2) in C 2 which are in the set

{z2 = z3 + axz2 + a2) C\{\zλ\ < c2) n{\z2\ < c 2 } .

Proof. The proof is in the same pattern and spirit as the proof of the

previous proposition, however the computational details are more

elaborate. We again use the notation/ X g = T~\TfTg) for/, g in A. We



UNIFORM ALGEBRAS ON RIEMANN SURFACES 171

will write O(εn) to represent any function in A or B which satisfies a norm

estimate | |O(cΛ)|| < cεn where ε is the small number in the hypotheses of

the proposition and c is a universal constant (which changes from use to

use).

LEMMA 4.6. Suppose Vλ and Wx are in A and satisfy \\V — Vx\\ < ε,

\\W — Wλ\\ < ε. Then there ae linear functionals kt on A, i = 1,... ,6, and a

linear map S of A to A such that any f in A can be written as

(4.29) / = k^f) + *2(/)*Ί + k3(f)W1 + k4(f )¥,]¥,

+k5(f)w1

2 + k^nvjv? + w?s(f)

Furthermore these operators are bounded

\\k\\ < c, i = 1,...,6,

\\S\\ < c

and the bounds can be chosen so as not to depend on ε (if ε is small) but only

on the norm estimates in (4.23).

Proof of the Lemma. Three applications of the decomposition (4.23);

first to/, then to i?(/), then to R(R(f)) produce the desired result for the

case V= Vl9 W= Wv We now perturb that result from (V,W) to

(vvwι)' S t a r t with/written in the form (4.29) with Fand Win the places

of Vx and Wv Replace V with Vλ + O(ε) and W with Wx + O(ε).

Multiplication and collecting terms from the resulting expression produces

an equation of the form

(4.30) f=g + θ(ε)

with g of the required form (involving Vx and Wλ). We now apply the

decomposition (4.30) to the error term O(ε). When this is combined with

(4.30) we obtain

where g2 is of the required form. Iteration of this process produces a

sequence of gn which converge to the required decomposition. This proves

the lemma.

We now apply the decomposition (4.29) to the function / = W X W

X W- VX V.By (4.2) and (4.24) we know that/ = O(ε). Hence

(4.31) W X W X W - V X V = cx + c2V + c3W + c4VW

+ c5W
2 + c6VW2 + W3S(f)



172 RICHARD ROCHBERG

for small constants cn |c ; | < cε, i = 1,... ,6. We now make two types of

changes on the right hand side of (4.31). First we change the type of

multiplication; that is, we replace VW by V X W, W2 by W X W, VW2

by VxWxW zaά W3S(f) by W X W X W X S(f). Using (4.2) and

the estimates on the ci and S(f) we see that this produces an error term of

the form O(ε2). The second change is to replace W= Wo by a new

element Wx which is related by

(Since S(f) is small Γ(l + y*S(/)) is an invertible element of B and

Wx = Wo X T~\T{\ + \S{f))~1).) Rewrite Wo as Wx + ̂  X S(/) +

O(ε2) in the equation. After multiplying out and collecting terms we

obtain, for new constants ci9

(4.32) W1XW1XWι-VXV=c1 + c2V + c3Wx + c4V X Wx

+ c5Wλ xWλ + c6V XW1XW1

+ O(ε 2),

and the constants c, satisfy |c | < cε. Now write V= Vx — \c2— \cAW

— \c6W X W. When we substitute this in (4.32) and collect terms we

obtain

(4.33) WιXWιXWι-VιXVι = dι + d2Wι 4- d3Wλ X Wλ + O(ε2)

for constants dt which satisfy \dt\ < cε.

We now iterate the process that led from (4.24) and (4.33). First use

Lemma 4.6 to expand the O(ε2) term in (4.33) in terms of Wλ and Vv

Next, change the multiplication in this expansion of O(ε2) from ordinary

multiplication to the multiplication X. By (4.2) this produces an error of

the form O(ε3). The right-hand side of the resulting expression will then

have as term of the form Wx X Wλ X Wx X S(O(ε2)). By changing Wx to

W2 = Wx + O(ε2) this term can be cancelled leaving an error of the form

O(ε3). The resulting analog of (4.32) will have terms involving Vv Vx X W2

and Vx X W2X W2. Those terms were produced by the last application of

Lemma 4.6 and have coefficients of size O(ε2). Hence they can be

eliminated in the same way in which (4.32) was changed to (4.33). That is,

after changing Vx to appropriate V2 of the form V2 = Vx + O(ε2) we

obtain

(4.34) w2 X W2 X W2 - V2 X V2 = dx + d2W2 + d2W2 XW2+ O(ε3)

where the di are new constants which satisfy \dt\ < cε. Iteration of the

process that goes from (4.33) to (4.34) and passage to the limit produces

Wo0XWβ0XWβ0-VoaXWoa = dι + d2Wx + d3WM X Wx
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(for still different constants dt). We apply T to this equation, set W =
, V = T(VJ and obtain

W3 - V2 = dx + d2W+ d3W
2.

When we set W = W2 - d3/3 we obtain (4.28).
The rest of the proof goes as the proof of Proposition 4.4. We omit

the details.
The region on M(B) bounded by τ - 1 ( γ ) ; that is, the region described

by (4.28), is either a compact Riemann surface of genus one (i.e., a torus)
from which an analytic disk has been removed or is one of the two
degenerate forms of that configuration; a disk with two points identified
or a disk with a distinguished singular point at which all the functions in
B have vanishing derivative. These facts can be verified by geometric
analysis or by noting that the algebraic equation being considered is

(4.35) z2 = z\ + axz2 + α2

and that the classical parametrization of the torus is by the Weierstrass p
function and its derivative which are related by the equation

(jpO = 4jp3 ~ Siφ ~ S3

for constants g2 and g3.
Roughly, the region where \z2\ is small corresponds to the comple-

ment of a neighborhood of the pole of p on the torus. An explicit
construction of this type of deformation of an algebra A is given in [14].

For certain values of the constants ax and a2 in (4.28) the torus is
degenerate. In particular if ax = a2 = 0, then the algebra B has a cusp
singularity inside τ~\y) and B can be regarded as being obtained from A
by first deforming the larger algebra A+ to a B+ and then moving the
singular point a bit. One way to understand this type of singularity is to
regard the singular point as the "shadow" of a compact component of the
spectrum M(A) (in this case the compact component is a torus which is
attached to the rest of M(A) at p0). Since a compact component carries no
non-constant analytic functions, this component can't be "seen" by
functions in A.

There is another choice for α l9 α2 which gives a singular curve for
(4.35). Let F(zl9 z2) = z2 - z\ - αxz2 - α2. If <x2 = -(4/27)1 / 2αx then
the curve F = 0 has a singular point (i.e., F = 0 and FZi = 0) at z2 =
±( — cίx/3)ι/2). If αx is not zero then this singularity is a double point (a
node) and the part of M(B) inside τ - 1 (γ) is a small disk with two points
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identified. This can be understand as a deformation obtained by replacing

the condition of a vanishing derivative with the conditions that a dif-

ference quotient (involving nearby points) vanish. (See, for instance,

example 7.9 of [15].)

The third type of singularity which we discuss is a node the removal

of which doesn't disconnect M(A). An alternative description is that the

singular point is obtained by identifying two points on the same con-

nected, possibly singular, finite bordered Riemann surface. From the

point of view of local analytic geometry, this type of singularity is the

same as the first one considered—two patches of (complex) curve crossing

at a point. However, in this case, we cannot choose Xx and X2 which give

local coordinates and satisfy (4.14). (Since M(A) with the singular point

removed is connected, we cannot, in general, prevent functions which

satisfy (4.14) from vanishing identically.) Thus, although the local analytic

geometry is the same as that described in Proposition 4.4, the algebraic

expression of that geometry is more awkward.

We start with an A + in si and two points pγ and/?2 in

Let ft be functions in A + which vanish at pι and no other points of M(A +)

(Proposition 2.3). Let A = {g in A+; g(Pι) = g(Pi)} Thus M(A) is

obtained from M(A+) by identifying the two points px and p2 to a single

point p0. We consider the following functions in A

These functions generate the ideal of functions in A which vanish at/?0. If

/is in A then

(4.36) f = f(Po) + r(f)X+ WR(f)

where r(f) is a linear functional, R is a linear map of A to A and both are

bounded

(4.37) IMI < c, \\R\\ < c.
This decomposition is obtained by writing (/ - f{p))/W = h for some h

inA + (Lemma 2.4) and then writing h = cx + c2/i + Wk f°Γ constants cτ

and c2 and some k in A + (Lemma 2.4 again). We obtain (4.36) by setting

r(f) = c2 and R(f) = cτ+ Wk. In particular Y can be written

(4.38) Y= cX+ Wg

for some c in C, g in A, g(p0) Φ 0. If we multiply (4.38) by X and use the

relation

(4.39) XY = W3
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we obtain the equation

(4.40) W3 = cX2 + WXg

with g(p0) Φ 0. This equation is the more complicated substitute for

(4.14).

Using (4.36) repeatedly, one can write the function g in (4.40) as a

formal power series in X and W. By (4.37), this power series actually

converges in a small neighborhood of p0. Hence, near/?0 we can regard g

as a function of the two "coordinate variables" X and W. Using this

interpretation of g as a function of two variables, we introduce the set

Eθ= {(zl9 z 2 ) €= C 2 ; \zλ\ <θ,\z2\ <θ,z3 = cz2 + z1z2g(z1,z2)}.

It is straightforward to verify that the map of p to (W(p), X(p)) is an

analytic map of a neighborhood M oίp0 in M(A) into Eθ for some θ and

if θ is chosen to be sufficiently small and M is chosen appropriately then

the map is one-to-one and onto Eθ.

As before, we wish to apply Theorem 4.2. First choose M so small

that M contains no points of R other than/?0. Select N so that the part of

N near p0 is inside M. Again, suppose that d(A, B) is small and that T

and r satisfy (4.1)-(4.5).

PROPOSITION 4.7. There are constants ε l5 c l 9 α«J c 2 {which depend on A,

N, W9 X, Y) so that if B satisfies the hypotheses of Theorem 4.2 and T and τ

satisfy the conclusions of that theorem and d(A, B) < ε < ελ then the

following additional conclusions can be drawn.

There are X, W9 in B with

(4.40) ||TX - 1 | | < Clε9 \\TW - W\\ < c,ε

and linear functionals ri9 i = 1,2, and a linear map R of B to itself so that

any fin B can be written.

(4.41) f=r1(f) + r2(f)X+WR(f).

These maps are bounded

\\η\\<cl9 ι = l , 2 ; \\R\\ < cλ.

LetL= {q in M{B)\ \X(q)\ < c2, \W(q)\ < c2}. There is a function g in

B with cf1 < \g{q)\ < cλ for all q in L and a constant c0 so that

W3 = c0X
2 + P(X9 W) + WXg

where P is a polynomial

P(X, W) = aλ + a2X + a3W + a4W
2 + a5WX + a6W

2X

with small coefficients
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Finally the map H of L into C2 given by H(q) = (W(q), X(q)) is (for
appropriate c2), a one-to-one analytic map of L onto an open subset of the
(possibly singular) curve in C 2 given near (0,0) by

Eθ = {(zl5 z2) e C 2; \zλ\ < 0, \z2\ < θ and

z\ = zλ, z2) + z1z2g(z1, zλ)}

(g( , ) is defined analogously to g( ,)). The image of L contains Eθfor some
small θ'.

Proof. The proof is essentially the same as that of the previous two
propositions. We still just outline the differences.

First we need a lemma which is the analog of Lemma 4.6. We
describe it informally. We need to know that given X near X, W near W,
then given any/in A, /can be written

(4.42) / = q + c2X + c3W + cΛWX + c5IF2 + c 6 J ^ 2 ! + W^3g

for suitable constants ct and function gin A.
(4.42) follows from (4.36) in the same way as the way (4.29) follows

from (4.22).
Again we write h X g = T~ι(ThTg) for h, g in ̂ 4. Next use the

decomposition (4.42) on the function

A = XX Y - WX WX W
which, by (4.39) and (4.2), is small. This produces an equation h = P +
W3g with P a polynomial with small coefficients and g in A, \\g\\ < cε.
Next replace P and W3g by the corresponding expressions involving the
multiplication X. This introduces a correction of the sort O(ε2). Next
write 7 as 7 = 1̂  X (1 + g) and multiply on both sides of the equation
(using the X multiplication) by the multiplicative inverse (with respect to
X) of 1 + g. This produces a new equation

XXY-WXWXW= P + O(ε2).

Iteration and passage to the limit produces

XXY00-WXWXW=P

for some appropriate polynomial with respect to the multiplication X.
Application of the map T and setting X = TX, Ϋ = TY^ and W = TW
gives

XΫ = W3 + P
(4.41) now follows from (4.36) by the same argument that gave (4.16) from
(4.12). When (4.41) is applied to Ϋ we obtain

γ= ^(Ϋ) + ? 2(y)^+ WR(Ϋ).
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We now set Ϋ = Ϋ - rx( Ϋ) and obtain

Ϋ = cX + Wg.

Since AY = W3 + P for some (modified) polynomial we can combine
these two equations to obtain the desired relation between X and W. The
estimates on g follow from the fact that g = 7/+ O(ε) and estimates
using the map T. The proof is finished the same way that that of
Propositions 4.4 was. To follow that pattern, we need to know that the
geometric configurations are the same. This follows from a local analytic
geometric analysis of Eθ. (We need to know that Eθ is connected to know
that the map L is onto some Eθ) This finishes the proof outline.

The geometric content of this proposition is the same as that of
Proposition 4.4. One can see this by analyzing the equation defining Eθ or
alternatively by regarding Eθ as a deformation (in the sense of analytic
geometry) of the curve singularity given at the origin in C 2 by Eθ and
using the theory of deformation of curve singularities.

An explicit example of an algebra B to which the previous Proposi-
tion applies is given in Proposition 2 of [14].

If A is in sfand the only singularities of A are nodes and cusps then
the results of this section can be combined to give a fairly complete
description of algebras B close to A. For example, if B is close to A then
the only singularities of B are nodes and cusps (and thus the set of
algebras with only such singularities is open). Also, both the number of
cusps on B and total number of singular points of B are dominated by the
corresponding quantities for A.

Combining the results of this section with the counting formulas (2.1)
and (2.2) and the constructions of [14] we can obtain a fairly complete
description of elements in the neighborhoods of points of sfk for very
small k.

First we introduce a bit more notation. For integers r, j \ k with
1 < r < j < k 4- 1 let

^kj,r = {A &J*?k;dA hasy components and

M(A) \ Sing(^4) has r components}.

Let s/kJ = Όrsfkj9r. We noted in Proposition 2.5 that s/kJ is empty if
k — 7 is even.

By [16], Λ/0 is an isolated point of Wl,
s/x = s/l2 = J^lf2fi U s ^ ι l 2 . First consider an A in cs/121. M(A) is

doubly connected and hence can be taken to be Sr — {z; r < \z\ < 1} for
some r, 0 < r < 1. By (2.1) we must have A = A{Sr). By Theorem 4.1, A
has a neighborhood consisting of other A{St) for t near r. Now suppose A
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is in s^l22. In this case M(A) must consist of two simply connected
Riemann surfaces with a pair of points identified. By composing with
conformal automorphisms we may assume that the algebras are both
copies of the disk algebra and that the identified points are the two
origins. Thus A is the subalgebra of functions in the direct sum of two
copies of the disk algebra consisting of functions which take the same
value at the two centers. By Proposition 4.4, any close neighbor of this A
is either of the same sort (and hence is isomorphic to this A) or is of the
type A(Sr) for small r. Proposition 1 of [14] shows that both possibilities
occur. In particular we note that s/λ 2 x is dense ins/v

We now describe s/2. s/2 = s/2l

 U ^2,3- Since nearby algebras have
homeomorphic Shilov boundaries, d(s/2l, s/2t3) > 0; hence we describe
the two separately.

s/2l contains three types of algebras. First there are algebras of the
form A(S) with S i n ^ , S a finite bordered Riemann surface of genus one
with one boundary component (i.e. a torus with a hold cut out). By
Theorem 4.1, any such A has an open neighborhood consisting entirely of
algebras of the same sort. The other possibilities for elements of s/2,ι

 a r e

subalgebras of codimension one of the disk algebra A(D) (see (2.1)). If
such an A is obtained by a point identification then it is equivalent to an
algebra Ar = {/ e A{D); /(0) = /(/•)} for some r, 0 < r < 1. By Proposi-
tion 4.7, a small neighborhood of Ar contains algebras of the form A(S)
for S as just described and algebras of the form At for some t, 0 < / < 1.
The analysis in Example 7.9 of [15] shows that t would have to be close to
r and that example together with the constructions in [14] show that both
possibilities occur. Finally we consider the algebra Ao= {/e A(D)\
/'(0) = 0}. Proposition 4.6 allows the possibility that arbitrarily small
neighborhoods of Ao will contain algebras of the sort Ar (for small r) and
algebras of the sort A(S) for S in ̂ a s described. The example in [15] and
constructions in [14] show that both possibilities occur in every neighbor-
hood of Ao. Thus the algebras of the form A(S), S in ^form a dense
subset of s#2V Since it is known from Teichmϋller theory that the moduli
space for surfaces inS^oί fixed topological type is connected, A(5f) Π s£2χ

is connected. Thusj/2 λ is connected. Also note that the set {Ar\ 0 < r < 1}
is a closed subset of sί2 v

W e n o w c o n s i d e r s / 2 3 ^ 2 3 = ^ 2 3 1 ^ ^ 2 3 2 ^ ^ 2 3 3 - ^ ^ ^ s ^ n ^ 2 3 1

then A = A(S) for an S in S? of genus zero and with three boundary
contours. Such an S is conformally equivalent to a ring with a disk
removed, i.e.,

(4.43) S= {z;r<\z\ < l}\{z; \z - r,\ < 8}
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where r, rl9 δ > 0, r < rλ - δ, rλ 4- δ < 1. By Theorem 4.1, yί has a full
neighborhood consisting of algebras of the same type. By Teichmύller
theory the associated surfaces can be realized in the way just described
and with nearby parameters r, fl9 δ. If A is in sί2χi ^ e n ^ m u s t be a
subalgebra of codimension one of the sum A(Sr) Θ A(D) which is ob-
tained by identifying a point of Sr (which we may assume to be real and
positive) and a point of D (which we may take to be the origin). By
Proposition 4.4 any such A has a neighborhod consisting entirely of other
such algebras and algebras in s^23l. Again, both possibilities occur in
every neighborhood of such an A. Finally we consider the algebras A in
j ^ 2 3 3. By (2.1) such an A must be obtained from a direct sum of three
copies of the disk algebra by making two point identifications. One
possibility is that the points which are identified were two distinct pairs of
points. Such algebras could be realized, for instance, as algebras of
continuous boundary value analytic functions on

{ z ; \z\< 1} U { z ; \z - 3 | < 1} u { z ; \z - 5 | < 1}

which identify 0 and 3 and 3 + r with 5 for some r, 0 < r < 1. This
algebra has two nodes and no other singularites. Thus Theorem 4.2 and
Proposition 4.4 apply and we find that all the algebras near such an A are
either of the same type or are elements of 2̂,3,2 O Γ °f 2̂,3,1- ^o\h
possibilities occur. Finally there is the possibility that the point identifica-
tions involved three points, not four. The only such A is the subalgebra of
a direct sum of three copies of the disk algebra obtained by identifying the
three origins. (That is, the case r = 0 in the construction just described.)
This singularity is not a node or a cusp. (In fact, it is not a complete
intersection.) Deformation of this type of singularity is discussed in
Examples 4 and 9 of [9]. It is possible to prove an analog of Proposition
4.4 for this singularity. For now we just note that straightforward varia-
tions on the constructions on [14] and [15] show that every neighborhood
of this algebra contains algebras of all the other types described for stf13.
Using the fact that dim Hι(M(A), R) is semi-continuous, (Corollary 7.7
of [15]) we see that ^,3,3 a n ( * 2̂,3,3 u 2̂,3,2 a r e closed subset of s£23.
Since J^2,3,I ^s connected and dense, J / 2 3 is connected.

On the basis of this analysis, we speculate the s/ktJ are always
connected.

Conjecture 4.8. The connected components of sίk are exactly the
non-trivials^. ,.

K, J

The analysis just given shows that the conjecture is true for k = 0,1,2.
The same type of analysis works for k = 3. For k = 4, srfA = sf45 U s/43

U J / 4 1 . Analyses similar to the ones given work for s/45 ands/43. For J / 4 1 ,
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new techniques are needed (for example, to show that {f
/'(0) = /"(0) = 0} and {/ e A(D); /'(0) = / "'(0) = 0} are in the same
component of sf4l i.e., the component containing those A with Sing(^) =
0.) In this particular case, elementary ad hoc considerations suffice and
the conjecture is true for k = 4. We have not pursued the issue further.

By Theorem 4.1, those A with Sing(̂ 4) = 0 form an open set. In the
examples just described, this set is dense in the component which contains
it. This suggests

Conjecture 4.9. For each k, {A es/k; Sing(yl) = 0} is dense ins/k;
i.e. A(S?) Π s/k is dense insίk.

The analysis described for k = 0,1,2 extends to k = 3 and the
conjecture is true for 0 < k < 3. The intuitive content of the
conjecture—that all elements of si are limits of elements of A(S^)—is
attractive. Furthermore the failure of the conjecture would leave open the
problem of describing A(S^), However, an analogous conjecture in alge-
braic deformation theory is known to be false [8]. (Since our theory is
based on small deformations rather than infinitesimal deformations, it is
not clear how much evidence is provided by that failure.)

It should be pointed out that the description given of s/2 was in terms
of the topology of M(B) for B near A. We have still not given a
description of the conformal geometry. If Sing(^4) is empty, then Theorem
4.1 is decisive (even if not explicit). Consider, however, for example, the
algebra.4 = {f<ΞA(D); /(0) = /(1/2)}. We noted that neighborhoods of
this algebra contain algebras At= {/ e A(D); /(0) = f(t)} for some /,
0 < t < 1. The fact that t will be near 1/2 for small neighborhoods of A
uses the continuity of the successive minima of the normed integer
cohomology group (Theorem 7.2 of [15]). We also know that neighbor-
hoods of this same A contain algebras of the form A(S) for S in Sf, S of
genus one with one boundary contour. We do not have a convenient
description of which S arise this way. (The continuity of successive
minima gives some information, but not an easy to understand descrip-
tion.)
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