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DEFORMATION OF UNIFORM ALGEBRAS
ON RIEMANN SURFACES

RICHARD ROCHBERG

The main theme of this paper is the study of algebras of analytic
functions of finite bordered, possible singular, Riemann surfaces from
the point of view of the deformation theory of uniform algebras as
introduced in earlier papers by the author.

I. Introduction. We begin by recalling some results from [15]. Let
A be a uniform algebra with maximal ideal space M(A) and Shilov
boundary 04. We assume further that

(1.1) every point of 94 is a strong peak point

(i.e, if p is in 04 then there is an fin 4 with ||f|| = f(p) and |f(q)| < 1
for all g, g # p.) (The role of this restriction is discussed in §2.) A
deformation of 4 is a new normed algebra obtained by putting on the
vector space A a new commutative associative multiplication, X, which,
for some small positive ¢, satisfies

Ifxg—rgl<elfllgll forall f, gin 4.

If € is small and this new algebra is renormed with its spectral norm then
we obtain a new uniform algebra, 4., which also satisfies (1.1). If 4 is
separable then A4, will also be separable. We summarize this construction
by saying that 4 , is an e-deformation of 4.

We regard two uniform algebras as equivalent if each is isomorphic to
an arbitrarily small deformation of the other. Let % be the space of
separable uniform algebras which satisfy (1.1) modulo the equivalence
relation just described. (This equivalence relation does not actually iden-
tify distinct algebras in the class we will be considering (Proposition 2.9).)

The Banach-Mazur distance between Banach spaces is an (extended
valued) metric on . It is shown in [15] that for nearby points 4,, 4, in #
the distance between 4, and 4, is comparable to the smallest ¢ such that
A, is isomorphic to an & deformation of A4,. It is also shown that ./Z is a
complete metric space.

Let ¥ be the set of all connected finite bordered Riemann surfaces.
For S in &, let A(S) be the supremum normed Banach algebra of
functions continuous on S and analytic at the non-boundary points of S.
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All such A(S) are in .#. Hence the topology on . induces a topology on
& . Using the results of [15] and [12], it is known that this topology is the
classical moduli topology on & (i.e., the topology induced by the
Teichmiller metric). It is also known that the set A(.%) = { A(S); S € ¥}
is not a closed subset of 4. For example, let D be the closed unit disk and
let A, = { f € A(D), f’(0) = 0}. The constructions in [14] show that 4,
regarded as an element of ./, is in the closure of A(.¥).

With this and similar examples as motivation, we introduce a larger
class of algebras in #. Let & be the collection of algebras A in . for
which M( A4) is connected and which can be obtained as subalgebras of
finite codimension of finite direct sums of algebras in A(.%). In addition
we require that 34 be (homeomorphic to) a finite union of circles. (The
purpose of this restriction is discussed in §2.) Hence, in particular,
A(&) € «Z. Informally, these algebras are algebras of the form A(S)
where S is a finite, bordered, connected, singular Riemann surface. These
algebras are described fully in §2. Associated with any a in %is an integer,
the defect of 4, which is defined to be the dimension of the space of real
measures on 94 which annihilate 4. Let o7, = { 4 € o/; the defect of 4 is
k}. For example, if S is in %, the genus of S is g and the boundary of S
has ¢ components then A(S) is in &/, for k = 2g + ¢ — 1. Another
example is the algebra A just described; 4 is in 27,.

Our main results concern the set.o/regarded as a subset of ./Z.

Section 3 contains results which show that if 4 is in.«and B is a small
deformation of A4 then B has many of the properties of elements of <.
When these results are combined with Theorem 6.3 of [15] (which shows
that “defect of 4” is a cotinuous function on .#) we obtain our two main
results about the global geometry of «7. Corollary 3.6 states that each ./
is an open subset of .#. (This generalized the main result of [16].)
Corollary 3.7 states that each %, is a closed subset of # (and hence is also
a complete metric space).

In §4 we study the local structure of .Z,. That is, we study which
algebras can occur in small neighborhoods of a given 4 in .27,. Corollary
7.7 of [15] states that the function “dimension of the first cohomology
group (over R) of M(A)” is lower semi-continuous on &7,. Since this
dimension is at most k on &/, and equals k£ exactly on &/, N A(&) we
conclude that &/, N A(.%) is an open subset of .7, (and hence 4(.¥) is an
open subset of .#). Combining this with the results of [15] and [12] we
conclude that small neighborhoods of algebras A(S), S in &, consist
exactly of algebras A(S’) with S’ in #and S’ quasiconformally equivalent
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to S by a quasiconformal map with dilatation close to one. For algebras A
in &, \ (&, N A(F)), ie., algebras of functions on singular Riemann
surfaces, the situation is more complicated. The structure of such algebras
is determined by the conformal structure of M( A4) and by the behavior of
the functions in 4 in neighborhoods of a certain finite set, which we
denote Sing(A4), in M(A). (Sing(A) is the set of singular points of the
singular surface on which functions in 4 are defined.) The main technical
result of §4 is Theorem 4.2 which shows that if we start with such an A4
and any small neighborhood N of Sing(A4) then for any B which is
sufficiently close to 4, there is a quasiconformal map with dilatation close
to one which maps M(A)\ N into M(B) (and has certain other nice
properties). Informally, the small deformation of A produces two types of
changes. The first is the global change in the conformal structure of M(A4)
away from Sing( A). This is described by Theorem 4.2. The second type of
change is the localized deformation of the structure of M(A) near the
singular points. These changes are described in detail in §4 for the
simplest types of singularities (nodes and cusps). These results are then
combined to give fairly detailed descriptions of .7, and «7,.

The survey by Palamodov [9] and the references there indicate the
large variety of approaches which have been taken to problems of defor-
mation of and moduli for complex structures. Our results are in the same
spirit as many of those described in [9]. However, there is a substantial
difference between our point of view and that described in [9] which
prevents a complete analogy of results and prevents our adapting many of
the techniques described there. The difference is that our notion of small
deformation does not carry with it a clearly associated notion of infinitesi-
mal deformation (i.e., our moduli space .# is a metric space which lacks a
priori differentiable structure). In contrast, most of the results in [9] are
formulated in terms of a family of deformations of a fixed object and
often involve infinitesimal analysis of the family at the base point. For
example, the informal idea that a small deformation of 4 in .2/ consists of
a global deformation of conformal structure and a local deformation at
isolated singularities is not formulated here as a direct sum decomposition
of an associated space of germs of deformations. The results in [4], [6] and
[10] suggest that it may be possible to develop a theory of infinitesimal
deformations of elements of .#; however this remains to be investigated.

We will make free use of the theory of uniform algebras as found in
[2], [17] and [18]. In particular we will identify elements of a uniform
algebra with Gelfand transforms.
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We will denote the space of invertible linear maps between the
Banach spaces 4 and B by L( A4, B).

Some of these results were announced in [13].

A good introduction to these topics is given by Jarosz in [19].

II. Algebrasin/. Forany S in.%, let dS be the border of S.

We now describe three ways to obtain elements of .2/ from elements of
A(&). First, let S be in ¥and let p and ¢ be distinct points of S\ dS. The
subalgebra of codimension one of A(S) consisting of functions fin A(S)
for which f(p) = f(q) is an element of «/. Second, let p be a point of
S\ 0S. Let D be a point derivation at p; that is, D is a continuous linear
functional which satisfies

D(fg)=f(p)D(g) +g(p)D(f)

for all f, g in 4. (Equivalently D(1) = 0 and D vanishes on the square of
the ideal of functions which vanish at p.) If D is not identically zero, then
the kernel of D is a subalgebra of A(S) of codimension one and is an
element of &7. Finally, let S, be in #for i = 1,2 and select p, in S, \ 95S,.
The subalgebra of A(S,;) ® A(S,) consisting of functions f which satisfy
f(py) = f(p,) is a subalgebra of codimension one of A(S;) ® A(S,) and
is an element of &7.

Gamelin has given a complete description of subalgebras of finite
codimension of uniform algebras [3]. His results applied in this context
show that repeated application of the three constructions just described
gives all elements of «/. Here is a summary of his results for the case of
interest to us.

PROPOSITION 2.1. Suppose A is in Z,. There are S, in ¥, i =1,...,N,
a subalgebra B of A(S,) ® A(S,) ® --- & A(Sy), and subalgebras A, of B,
i=1,...,M, so that
(ayd=A4,c--- CAy,=B
(b) B is obtained from A(S,) ® A(S,) ® --- & A(y) by making finitely
many point identifications of points selected from the S,\ 9S,. M(B) is
the singular connected bordered Riemann surface obtained from S, U
S, U --- U Sy by making those point identifications. 0B = U 95,
(c) M(A) = M(A,) = M(B); 04 = 04, = dB,i = 1,...,M.
(d) Each A, is obtained from A,_, by taking the kernel of a point
derivation at some point q, in M(A,; ;)\ 04,,, = M(B)\ 9B.
(e) There is an integer J which depends only on k such that if f is in B and
f(q)=0fori=1,...,M — 1, then the ideal f'B is contained in A.
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Proof. The only statement that is not immediate from the results in [3]
is that J can be chosen to depend only on k. However, it is shown in [3]
that J can be chosen to depend only on M and simple topological
considerations show that kK dominates M. (See Proposition 2.5 below.)

In particular, note that the conditions describing 4 are local. That is,

COROLLARY 2.2. Suppose f is in A(S;) ® --- & A(Sy) and that each p
in U S,\ U0S; has a neighborhood on which f is a uniform limit of elements
of A, then fisin A.

The construction described in part (d) of the proposition is easy to
understand if the maximal ideal M, ; of functions in 4, ; which vanish at
g, is principal. In that case, the dimension of M,,,/M? | is one and the
space of derivations at g, is one dimensional. D( f) will equal ¢f’(g,) for
some constant ¢ (which depends on the choice of local uniformizer). If the
ideal is not principal, the situation can be more complicated. Here is the
first non-trivial example of that. Let 4, be the subalgebra of the disk
algebra introduced in §1. For fin A, let D, f = f"(0) and D,f = f " (0).
These are linearly independent point derivations of the algebra 4, at the
point 0 (and together they span the full space of such). The kernels of D,
and D, are non-isomorphic subalgebras of 4. Other subalgebras of 4, are
obtained by taking the kernel of aD, + BD, for other choices of a, B.
Even if we restrict attention to subalgebras of the disk algebra obtained by
taking kernels of a sequence of point derivations at the origin, the
situation rapidly becomes quite complicated and involves the algebraic
theory of curve singularities.

For 4 in &7, we will often speak of M(A4) as a Riemann surface. We
will sometimes emphasize this point of view by writing S(A) for M(A4),
and 0S(A) for dA4. Thus if § is in #then S(A(S)) = S.

There are four variations on this construction which are not described
in Proposition 2.1. First, we did not allow g, to be a boundary point. The
reason for this is simply that there are no non-zero point derivations at
points on dB. This follows, for instance, from the fact that each such point
is a strong peak point (see, e.g., page 88 of [5]). Second, we insisted that
M(B) be connected. This forces a non-trivial lower bound on the number
of point identifications which are made on the disconnected surface U S..
This is only a technical convenience. The entire theory of this paper
extends with no surprises to finite direct sums of algebras in &/. (The
proof of Theorem 5.3 of [16] shows how to reduce to analysis of individual
summands.) The other two possibilities which were not presented were



140 RICHARD ROCHBERG

identification of points of U dS; with points of U S;\ UdS; or with other
points of U dS,. Such identifications would produce subalgebras of finite
codimension of direct sums of algebras in A(%’). In the first case, the
resulting algebra would violate (1.1). (The identified point would not be a
strong peak point.) In the second case, 04 would not be a disjoint union
of circles. Thus, in neither case would the resulting algebras be in &/. The
reason for defining 2/ so as to exclude such algebras is that although the
algebras involved are interesting from the point of view of deformation
theory, the techniques for studying them would have to be slightly
different from the ones we will be using.

Informally, the surfaces S(A4), A in.«Z, can be thought of as connected
bordered subsets of singular Riemann surfaces. The requirement that the
points of U dS; not be involved in the point identifications is the require-
ment that the singularities of the surface not be at boundary points. The
singular surface may have compact components. These components are
invisible in M(A4) but have shadows, namely the restrictions on the
functions in 4 at the g,. If a small deformation of A should desingularize
the point g, then the component may become visible. (For further discus-
sion from this point of view, see [14] and §12 of [9].)

We refer to the set of all the g, together with all the identified points
of the various S; as the singular set of 4, denoted Sing(A). The two
simplest types of points of Sing(a) are those which were obtained by an
identification of exactly two points of the U S; which are not among the g;,
and those which are not among the identified points and which appear
exactly once on the list of the g,. We will refer to such points as nodes and
cusps, respectively. Analysis of the ideal of functions in 4 which vanish at
such points (this is done in §4) shows that this terminology is parallel to
that used in describing isolated singularities of algebraic curves.

The points of M(A4)\ (34 U Sing(A4)) are points where the functions
in 4 have simple behavior.

PROPOSITION 2.3. Suppose A is in /and p is in
M(A)\(34 U Sing(A4)).

The maximal ideal of functions in A which vanish at p is principal.

Proof. First we must find an f in 4 which vanishes only at p. Using
the properties of point derivations ([3]), we see that this will be accom-
plished if we find an fin A(S;) ® --- ® A(S,) which takes the value 1 at
all of the points which will be identified, vanished at p and no other point,
and has derivative which vanishes to a sufficiently high order (in terms of
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every applicable local coordinate system) at the points associated with the
point derivations. First find f, which takes the right values then let
f = foe* where k is selected in B to give the approximate vanishing of the
derivative. To see that such an f actually generates the ideal, we need the
following lemma which we will also use later.

LEMMA 2.4. We use the notation of Proposition 2.1. Suppose hisin A, g
is in B and hg is in A. Suppose further that h(q) # O for all q in Sing(A).
Then gisin A.

Proof of Lemma. We show that, in the notation of Proposition 2.1, if g
isin A, then gisin 4,. Let D be the point derivation at ¢, whose kernel
s A,

D(hg) = h(q,)D(g) + g(q,) D(h).

Since hg is in 4, D(hg) = 0. Since h is in 4, D(h) = 0. Hence h(q,)D(g)
= 0. Since g, is in Sing(A4), h(q,) # 0. Thus D(g) = 0 and hence g is in
A,.

To finish the proof of the proposition take Fin A4.

F=F(p)+ L—# f.
By the lemma, (F — F(p))/fis in A. Hence f generates the ideal.

We note that the converse is also true. The points of M(A) for which
the maximal ideals are not principal are exactly Sing(A4) U 04.

Associated with 4 in &7 are two integers. The first k = k(A), the
dimnsion of (Re 4)*, the space of real measures on 94 which annihilate
A. A is in o/, for k = k(A). The second integer is the dimension of the
real cohomology group H'(M(A),R). (The discussion of the significance
of this group in our context is in [15).) These two integers are denoted
dim X(A) and dim Y(A) in [15]. Suppose 4 is as described in Proposition
22. For i=1,...,N let g, be the genus of S, and ¢, the number of
components of 3S,. Let g =X g and let c = XY, ¢,. Hence c is the
number of components of 04. Let R be the number of point identifica-
tions made in passing to the algebra B. Since we required M(A) to be
connected, we must have R > N — 1. Let D (= M — 1) be the number of
kernels of point derivations which must be taken to pass from B to A.

PROPOSITION 2.5.
(2.1) k(A)=2g+c+2R+2D+1—-2N

(2.2) dim H'(M(A),R) =2g+c+ R+ 1 — 2N.
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In particular k(A) — c is odd. Also
(2.3) k(A4) = dim H(M(A),R)

holds if and only if R =D =0, N =1. Thus (2.3) holds if and only if
A = A(S) for some S in & .

Proof. First note that for each i, k(A(S;)) =2g; + ¢, — 1. Hence
dimRe(A(S,) ® --- & A(Sy))* = 2g + ¢ — N. Next note that if 4, and
A, are in M and A, is the subalgebra of codimension one of 4, ® 4,
obtained by identifying a point of M(A4,) with a point of M(A4,) then
dim (Re 4,;)* = (dimRe(4; ® 4,)*) + 1. Hence if we start with the
Sy,...,8y and make N — 1 of the R point identifications to obtain a
connected set and denote the resulting subalgebra of A(S;) & --- & A(Sy)
by B,, then dim(Re B;)* = 2g + ¢ — 1. The algebra A is obtained from
the algebra B, in (R — (N — 1)) + D steps each of which involves passage
to a subalgebra of codimension one of the algebra obtained at the
previous step. We will show that each such step increases k(-) by two. We
will describe the analysis at the first step. (The general step is the same.)
The passage from B, to the next algebra B, involves taking the kernel of a
linear functional r. (r is either a point derivation of a difference of point
evaluations.) Furthermore, the functional r annihilates constants. Since
M(B,) is connected, a function f in B, is determined up to an additive
constant by the values of Re f on 0B;. Hence the value of r(f) is a linear
functional on the set of functions on 9B, {Ref, f € B,}. Since r only
involves the values of f at interior points this functional in continuous.
Hence there is a complex measure u on 0B, such that

r(f) = faB (Ref) dp.

Let p, and p, be the real and imaginary parts of p. It is straightforward to
check that u, and p, are linearly independent, are in Re B;", and that, in
fact, p, and p, are a basis of (Re B;') /(Re Bi*). Combining these observa-
tions establishes (2.1).

(2.2) is an elementary exercise in algebraic topology.

The surfaces S(A) for 4 in &/ do not generally have globally defined
coordinate functions. The following proposition gives partial substitutes
for coordinate functions. Ahlfors [1] has shown that given S in ¥ and x, y
in §\ S there is a function F = F, , in A(S) which has |F| = 1 identi-
cally on 9S, F(x) = 0, F(y) # 0, and F maps S onto the closed unit disk
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in an m to one manner (counting multiplicity). Furthermore, if g denotes
the genus of S and ¢ the number of components of 95, then F can be
selected so that m satisfies

(2.4) c<m<2g+ec.

PROPOSITION 2.5. Suppose A is in ,, S = S(A), x and y are distinct
points of S\ 0S, and y is not in Sing(A). Let S,,...,S, be the components of
S ( prior to the point identifications) and let A = A(S,) ® --- ® A(S,).
There is a G in A so that

(@) G(x) =0,G(y) # 0,|G(¢t)|=1foralltindS.

(b)Let C+ GA={f€Ad;f=c+Gg,ceC, ged). ADADC+
GA. V

(c) There are a positive € and an integer M (both may depend on x, y) so
that G is an M to 1 unbranched map of a neighborhood of 9S onto { z;
1—e<|zl<1}.

(d) There is an integer K which depends only on k such that M < K.

Proof. Let Sing 4 = {w,,...,w,}. Let G, = F, 9 F, ,. Let J be the
integer in (3) of Proposition 2.1. Let G = Gj. Parts (a), (b), and (c) follow
from the properties of the F’s and from (e) of Proposition 2.2. The
estimate on M follows from the fact that r can be estimated in terms of k&
(by (2.1)), the valance of each F can be estimated in terms of k (by (2.4)
and (2.1) (note that the letters g and ¢ are used differently in those two
equations)) and the estimate on J is (e) of Proposition 2.1.

We will want to be able to separate points near d4 which are
identified by such a G.

PROPOSITION 2.6. Let A in Z,, p in 04 and n > 0 be given. There are
neighborhoods Ny, N, of p; p € N, C N, and a function F in A, ||F|| = 1 so
that

(a) F is a one-to-one map of Ny to D,= D N {Rez > 0}; FY(D,) = N,.
)| |F(t)| — 1) < nforall tindA.
(©) |F + 1| < 1 on M(A)\ N,.

Proof. Start with a function G of the sort described in the previous
proposition. Select G so that G(p) = 1. Let J = {e'%; || < #/10}. Let I
be the component of G~ !(J) which contains p. Let H be a function which
is analytic on M(A), of modulus one on I, of modulus strictly less than
one on 34\ I and has H(p)=1. (Such an H can be obtained, for
instance, by the construction in the previous proposition applied to a
surface S* which contains M(A4).) By (b) of the previous proposition,
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GH = G, is in A. Let I, be the component of G *(J) which contains p.
LetJ’ = G,(I;). Let R be a function in the disk algebra which has |R| = 1
onJ’; |R| < 1on D\ J’, the variation of arg R on R’ is less than 7 /4, and
R(1) = 1. (R could be obtained, for instance, as a conformal map.) Since
the polynomials are dense in the disk algebra, the composite function
G, = R~ G, is in A. By construction |G,| = 1 on I,,|G,] <1 on M(A)\ I,
and G, is a one-to-one map of a neighborhood of p onto a neighborhood
of 1 in D. For a small positive §, let G5 be the composition of G, with the
conformal map of D to itself which fixes 1 and sends 1 — § to 0

Gs=(G-(1-8)(1-(1-6)G)".
It is now straightforward that for sufficiently small 8, Gy is the required
function F. We set N; = Gy /(D) and N, = G5 '({z; |1 + z| < n}).

In order to apply certain results of [15] we need the following.

PROPOSITION 2.7. Suppose A is in &/. There is an € = ¢(A) so that if f
in A is invertible (i.e., f € A™') and |log |f]||., < & then f = e for some g
in A (i.e., fisine?).

Proof. We use the notation of Proposition 2.1. The algebra A(S;) &
--- @ A(Sy) satisfies the conclusion of the Proposition (since each sum-
mand does.) Thus, if |log|f]||,, < & then thereis a gin A(S;)® --- &
A(Sy) so that f = e2. We next show that if ¢ is smaller still, we can insure
that g is in B. Let p, g be two points of U S; which are not separated by B.
Since e# is in B we have

(2.5) g(p) — g(q) = 2min
for some integer n. However, Re g = log |f|. Let S = S(A4). We use the
following result.

LEMMA. Given p, q in S\ dS there is an ¢ > 0, ¢ = ¢'(p, q, S) such
that if H is continuous on S and analytic on S\ 35 and ||Re H||, < €’ then

|H(p) — H(g)| < 1.
Proof. Omitted.

By using this lemma, we can insure that, if ¢ is small, then n = 0 in
(2.5). Doing this for each such pair p, g will insure that g is in B. In fact, g
is in 4. Although this can be shown by elementary means, we invoke the
general Banach algebra result (Corollary 8.22 in [17]) which insures that
since f has a continuous logarithm on M(4) (i.e., log f = g) then f must
be the exponential of some % in 4 (and hence & = g).
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If 4 is in &7, then, by definition, dimRe 4+ = k. A4 is clearly antisym-
metric. Combining these facts with the previous proposition, we have,
using the notation of [15]

COROLLARY 2.8..%7, C N,.

Thus the continuity results of §§6 and 7 of [15] apply to the 7.

Finally we show that distinct elements of &7 yield distinct elements of
. We don’t use this result later and the proof could be postponed to §4.
We include it now to emphasize that it is independent of the later results
and because the proof uses different types of considerations from those
used in the later sections.

PROPOSITION 2.9. Suppose A,, A, are in &/ and each is isomorphic to an
ariirarily small deformation of the other, then A, = A,.

Proof. In the case when 4, = A(S;), S; € Lfor i = 1,2 it suffices to
show that S; and S, are conformally equivalent. This is Proposition 5 of
[11]. That proof can be used in this context unless both M(A4;) and
M( A,) are the disk (we consider that case later). Straightforward exten-
sion of the proof of Proposition 5 of [11] shows that M(A4,) and M(A4,)
are conformally equivalent (possibly singular) Riemann surfaces. Denote
both by S and let A(S) be the algebra of continuous functions on S which
are holomorphic on S\ 0S. We can regard both 4, and 4, as subalgebras
of A(S). We also obtain from that proof that there is a sequence of linear
maps 7, of A, to A, and a conformal automorphism 7 of S\ dS so that for
all fin A4,, T, f converges to f o 7, uniformly on compact subsets of S \ 95.
Since 7 extends continuously to S, f e 7 is in A(S). Since f o 7 is in A(S)
and is the uniform limit on compact subsets of elements of 4,. We may
use Corollary 2.2 and conclude that f o 7 is in 4,. Thus the map of f to
f o is an algebra automorphism of 4(.S) which takes 4, into 4,. Hence
dim(A(S)/A4,) = dim(A(S)/A,). By symmetry the dimensions must be
equal and hence the automorphism of 4(.S) is an isomorphism of 4, and
A,.

The proof of Proposition 5 in [11] used the presence of homology in
M(A,) to insure that 7 is an automorphism. If M(A,) = M(A,) = D then
that proof yields a sequence of linear maps 7, of 4, onto 4,, homeomor-
phism #, of dD to D, an analytic map 7 of D \ 3D into D and a sequence
of numbers ¢, tending to zero so that for all fin 4,

(2.6) S;IPIT,,f—f”nl <&/l
D
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and
(2.7) T,f—>for

uniformly on compact subsets of D \ 9D.

Let G be one of the functions in A4, of the type described in
Proposition 2.5. G is a Blaschke product with m zeros. Using (2.6) and the
argument principle we see that 7,G = B, F, with B, a Blaschke product
with m zeros and F, an analytic function which satisfies

(2.8) 1—¢,<|F(z)]<1+¢, forallzinD.

LeEMMA 2.10. Suppose H, = B, F, are functions in the disk algebra, each
B, a Blaschke product with m zeros and F, satisfy (2.8) for a sequence of ¢,
which tends to zero. Suppose H, converges uniformly on compact subsets of
D\ 9D to a limit H then either

(a) H is a Blaschke product with m zeros, or

(b) H is a constant of modulus 1.
If case (b) occurs, then the zeros of B, converge to D as n becomes large.

Proof. Elementary function theory.

We apply the lemma to H, = T,G. By (2.7) H, converges to G o 7. We
now rule out the possibility described in (b) of the conclusion by showing
that the zeros of 7,G do not converge to d0B. For any F in the disk algebra
which doesn’t vanish on 9D, denote by w(F) the winding number of
F(3D) about the origin. Thus w(F) is the size of { F~(0)} (counting
multiplicity). Suppose now that the zeros of 7,G did go out to the
boundary 9D. Then, given ¢ > 0 there is a neighborhood N of 9D such
that for any p in N\ 3D there is an F = F, in 4, with F,(p) =10,
1 —¢e<|F|<1+¢ondD, and w(F,) =1 (such F, can be obtained by
composing the functions produced in Proposition 2.6 with automorphisms
of the disk.) Suppose that for large n the zeros of 7,G are in N. Hence
T,G =I1]L, F;R where F, = F, and p, is the ith zero of 7,G. w(R) =0
and |R| is approximately 1 on dD. Since the only zeros of F; are in N, we
can apply Lemma 2.4 and conclude that R is in A We can thus apply 7, !
to the F, and to R

o=l

Using (2.6), this implies
G = (II(T'F) T, 'R + r
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for some remainder r which has norm which is O(e,). Thus, if » is large
then using (2.6) again, 7, 'R must have modulus approximately one on
0D; and, again by (2.6), w(T, 'R) = 0. Hence T, 'R is an invertible
element of the disk algebra. Since dim A(D)/A4, is finite, this implies
T,7 'R is an invertible element of 4;. Thus

(6 - r)(T,'R) " =TI(T,'F).

Evaluate the left-hand side of this at any point p in Sing(A4,). Since
G(p) = 0 and r is small, at least one of the factors 7, 'F, must be small at
p. Suppose T, 'F,( p) = § for some small 8. The function H = T, 'F, — 8
vanishes at p and at no other point of D (since w(H) = 1). H is in 4.
Hence we have found a function H in A4, with a simple zero at p and no
other zero in D. This contradicts the fact that p is in Sing(4,).

Thus G ° 7 is a Blaschke product with exactly m zeros.

LEMMA 2.11. Suppose T maps D \ 0D analytically into D and that there
is a Blaschke product G which has m zeros and such that G o 7 is also a
Blaschke product with exactly m zeros. Then 7 is a conformal automorphism
of the disk.

Proof. Elementary function theory.

Once we know 7 is an automorphism, the proof is finished as before.

The one remaining case is 4, = 4, = A(D). In that case, Sing(4,) is
empty and we can’t show 7 is an automorphism. In fact, in that case, 7
may be a constant map. However, in that case, we still have 4, = 4,.

III. The Global Theory of «/,. For any 4, B in &7; we denote by
d(A, B) the Banach-Mazur distance between the spaces 4 and B. If
d(A, B) is small then d( A4, B) is equivalent to the smallest ¢ so that B is
an e-deformation of 4 (Theorem 4.1 of [15]). We will always assume (often
without mention) that the distances involved are so small that this result
applies.

Suppose 4 is in &7, and B is in A4 with d(A4, B) < ¢ for some small e.
By Theorem 4.1 of [15], there is a T in L( A, B), a homeomorphism 7 of
0B to 04 and a universal constant ¢ so that for all f, gin 4 all y in 9B

T1=1
(3.1) 1Tf(y) — f(r(¥)) | < ce| £
IT(fg) — TfTg| < cell £1] | &l
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For any algebra A4, let A~ ! denote the invertible elements of 4. T also
satisfies the following. Given a K > 1, thereis a § = §( K) so that

(3.2) ifaisin47!, ||a||la || < K,e < § then Taisin B~ .

Let &* be the set of finite bordered connected possibly singular
surfaces which are obtained as M( A4) for 4 in./. For S in ¥ *, let A(S) be
the algebra of continuous functions on S holomorphic on S\ 9S.

THEOREM 3.1. Let k be a non-negative integer. There are positive
constants g, and c, which depend only on k so that if A is in &/, and B is a
uniform algebra with d( A, B) < € < g, then there is an S(B) in ¥ * such
that B is a subalgebra of A(S(B)), 0B = 0S(B), M(B) = S(B). Further-
more, there is a T in L( A, B) and a homeomorphism 7 of a neighborhood N
of dS(B) onto a neighborhood N, of 0S(A) so that for all f, g in A, all y in
Ny

T1=1
(3.3) 1T/ () = f(r(P)) [ < ceel £1).

I1Tfg — TfTg| < ciell f1l gl

Furthermore, on Ny \ 0S(B) the map 7 is a quasiconformal homeomorphism
with maximal dilatation at most (1 + c,¢).

Note. It is not claimed that B is in &7. That is, it is not claimed that
dim(A(S(B))/B) < oo. We will show that this is true if further assump-
tions are made on B or if we allow the constant ¢, to depend on A4.

Proof. Throughout the proof, we will use the letter ¢ for various
constants which can be selected so as to only depend on k. We start by
assuming that we have a uniform algebra B and a T in L(A, B) which
satisfies (3.1) and (3.2). The values of ¢, and ¢, will be implicit in the
proof (but will only depend on k).

Let S = S(4) = M(A).

Pick and fix a function G in 4 which satisfies the conditions described
in Proposition 2.5. Let J be the valance of G. Recall that J is bounded by
a bound which depends only on k.

We now use Proposition 2.6 to construct a neighborhood of 9S.
Suppose we have 1, p, N;, N, and F so that the hypotheses and conclu-
sions of that proposition are satisfied. Suppose N is another neighborhood
of p, p € N C N,. There are N,, N,, F with p € N, € N, C N so that the
conclusions of the proposition are satisfied with the new neighborhoods
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N,, N,, the new function F and the same 7. This can be checked by
composing F with automorphisms of the disk. Hence we can shrink the
neighborhoods N, without having to increase n. Thus we can, for fixed 7
(the size of which will be implicit later), select neighborhoods N( p),
N,(p) and functions F, which satisfy the conclusions of Proposition 2.6
and which also satisfy, for each p in 95

(34) (GHG(M(P)\N(p) " Ny(p) = 2.
That is, if we restrict to N,( p) then G is univalent on N,( p).
Let N, be the union of the sets N,( p) for p in 9S. Pick a so small that
{ge S;1-2a<|G(g)|<1} C N,
Let
Ny={qe8;1-ax<|G(q)<1}.
We will construct a map o of N, into M(B). The required map 7 will be
-1
o .
Pick y in N,. Let y; =y and let y,,...,y, be the other points of
G Y G(y)). Using (3.4) and the definition of N,, we see that if we
compose G with appropriate automorphisms of the disk, then we can
obtain for each i, i = 1,...,J, a function G,in 4 with ||G,|| = 1, G,(»;) = 0
and |G(y)| <n for j=1,...,J; j+# i Select such G, and then, for
i=1,...,J set

J
H, = I=11Gj.

J#i

Thus H;isinA andforl < i, j < J,

(3-5) ”Hz” =1, Hi(yj) =0, i#], IHi(yt) - 1| <.

Let F=F,= (G- G(y)(1 — G(y)G)"'. Thus Fisin 4, |F| =1 on 34
and F7Y0) = {y},...,0,})-

Claim. (TF)~*(0) consists of J points, x,,...,x,. There is a unique
numbering of these points so that if we set o(y,) = x; (ie., 7(x;) = y,)
then (3.3) is satisfied.

Proof of the claim. First note that if fis in A then

(3.6) f=YaH + Fr
for scalars a; and an r in 4 which satisfies
(3.7) Il < 27 + Dirll-

This estimate is an immediate consequence of the explicit choice a, =
f(y)/H,(y,) and (3.5).
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(3.6) and (3.7) express the fact that we can select a complement of the
ideal (G — G(y))4 in such a way that the norm of the projection onto
this complement doesn’t depend on y for y in N, (nor on A). This
uniformity is one of the factors in obtaining the uniform constants in the
theorem.

If ¢ is small, then the ideal (7F) B inherits this property. That is, for
each g in B there are scalars b, and a function r’ in B so that

(3.8) g=Y.bTH, +(TF)r
and
(3.9) bl<clgll, i=1,....05 |rl<clgl.

Furthermore, the b, and r’ are uniquely determined. These facts are
straightforward consequences of (3.1), (3.6) and (3.7).

Let E be the algebra of complex valued functions on the set
{»1,--->y;}. For s in E set |||slll = max|s(y,)|. Define L mapping E to
H = Span{ H,,...,H,} by

Ls = Zs(yi)Hi/Hi(yi)-

By (3.5), we have,
(3.10) lslll < [|Lsl| < llls.
We now define a new multiplication, X, on E by
sXt=r
where r satisfies
(3.11) (TLs)(TLt) = (TLr) +(TF)b
for some b in B. Since TLr is in TH we can use (3.9) and (3.10) to obtain
(3.12) 1]l < clllsIi Mzl

We now estimate the difference between the two multiplications on E.
By (3.1), (3.10) and (3.11)

(3.13) s x ¢t — stlll < c||L(s x t) — L(st)]
< c|T"*((TLs)(TLt) —(TF)b) — L(st)||
< c|LsLt — L(st) = FT7' + a, + a,|
where
a, = T *((TLs)(TLt)) — LsLt
a,=—T Y(TF)b) + FT'b



UNIFORM ALGEBRAS ON RIEMANN SURFACES 151

by (3.1) and (3.12), fori = 1,2,
(3.14) lla |l < celllslll ilzlll.

The quantity in the norm sign on the right-hand side of (3.13) is in H.
Hence, by (3.10) we can estimate its norm by evaluating at the points y,.
At each of the y,, Lst = LsLt and F is zero. Hence

lls X ¢ — stlll < clla, + a,.
When this is combined with (3.14) we obtain
(3.15) s x ¢ — stlll < celllsll Mzl

Now note that 7L is an algebra map of the algebra (E, X) to the
quotient algebra B/(TF)B. (In particular, X is an associative product.)
Hence, if ¢ is sufficiently small we can use Theorem 3.1 of [15] (which
described small deformations of uniform algebras). That theorem insures
that the spectrum of E is homeomorphic to the spectrum of B/(TF)B.
Thus {(TF)~(0)} has J points. Furthermore, that theorem insures that
there is a mapping o of the y; to o(y;) in M(B/(TF) B) so that

(3.16) lLs(y;) = (TLs)(a(y)ll < celllsll

for all s in E. Write x, for o(y,). Combining (3.16) with the earlier
estimates (3.1), (3.6), (3.7) and (3.9) and (3.10) shows

1 7(») =(TF)(a ()| < cell £

for all fin A. Finally note that elementary estimates using (3.16) and (3.5)
show that the choice of o is uniquely determined. This completes the proof
of the claim.

The proof was carried out in the language of the deformation theory
of the uniform algebra E. However, the proof actually used the norm
equivalence of E with the quotient algebra 4 /FA (which is a consequence
of the finite dimensionality of A/FA and is uniform by virtue of (3.5))
and the fact that the quotient algebra B/(TF)B is a small deformation of
A/FA. Tt would be interesting to have a deformation theory for such
quotient algebras. Also, we point out that we could have given a direct
proof of the claim (not using results of [15]). That proof would have been
a bit longer.

The construction of o(y) used the particular function F,. We now
extend the definition of o to all N, by using the same construction and
letting y vary over N,. The functions H, with the properties described in
(3.5) will then depend on the base point y. We will not, however, explicitly
exhibit this dependence.



152 RICHARD ROCHBERG

For each fixed y in N,, we have shown that card{(TF) '(0)} =
dim B/(TF)B < oo. This is sufficient to conclude that (TF) ~'{ z; |z| < .9}
can be given the structure of an open (possibly disconnected) Riemann
surface with point identifications and on which the functions in B are
analytic (VI 6.3 of [2]). Next note that the proof of the claim extends
immediately to show that if |§] < .1 then (TF) (8) consists of J points.
Hence the Riemann surface has neither ramification nor point identifica-
tion over {z; |z| <.1}. By (3.3) and (3.5), the functions TF and TH,
separate the components of (TF)~'{ z; |z| < 1.} from each other and from
the rest of M(B). Hence those functions completely determine the topol-
ogy and conformal structure of M( B) near {(TF) '(0)}.

We now show that ¢ is continuous. Suppose z,, is a sequence converg-
ing to y. The function F;, depends in a norm continuous way on {; hence
ITF,(0(z,)) — TF, (0(z,))| tends to zero. Since TF, (o(z,)) = 0 by defini-
tion, we have, for any 8 > 0, a(z,) € (TF) }{z; |z| < §} for all large n.
To see that no subsequence of 6(z,) can converge to a point of {(7F)}(0)}
other than y, note that by

[TH(o(z,)) — H(z,)| < ce|H]|

for all H in A. Hence, by (3.3) and (3.5), all of the o(z,) are in the sheet of
(TF) ' z: |z] < 8} on which a particular TH, is small and all the others
are large.

We now show that o(N,) U 0B contains an open neighborhood of 9B.
If not, we could find a sequence {x,} of points in M(B)\ 0B which
converges to some x_ in dB. Without loss of generality G(7(x,)) = 1.
For A real and slightly less than one, G, = (G — A)(1 — AG) ! is one of
the functions F, for y in N,. Also, G(7(x,)) = 1. By (3.1), |TG,(x,) — 1|
< ce. Since x, = x, |TG\(x,) — 1] < 2ce for all n larger than some N,,.
Pick x = x, and let p be a measure on 3B which is a representing
measure for x. Let » = po 77! (ie, »(R) = u(7~ }(R)) for R C 04). Since
every point of dB is a strong peak point for B (Theorem 3.1 of [15]), p has
no atoms. Hence we can select a unique point Q on 0D so that if I' is the
arc counterclockwise from Q to —1 then »(G; }(T')) = 1/2. Also note that
Q is very close to one. This can be seen by the following calculation:

1 — 2e < Re TG, (x) = Re[ (TG,) dp

= Re/ (TG,)or ' dy = Ref Gydv + ¢
394 04
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where, by (3.1), the error ¢, has size O(¢). Hence

1 — ce < Re G, dv = Re +
oa (fc;‘m faA\G;‘(r))

< iMax{Re G,(p); G,(p) € T} + 3 Max{Re G, }
<1ReQ + 3.
ThusReQ > 1 ~ ce.

Let L be the automorphism of D which fixed —1 and takes Q to 1.
An elementary calculation shows that for 0 < § < 1, the functions

Es* = (L(Gx) - 6)(1 - ’SL(GA))-I

are among the functions F, for y in N,.

We now claim that for some 8, 0 < 6 < 1, |[TFs(x)| < 2/3. First note
that Gy }(T') is a set of » measure 1/2 on which Im Fj is positive. On the
complementary set Im Fy is negative. Hence, by (3.1) and the fact that »
represents x,

|Im TF;(x)| < .6

for all 8. Now note that Re TF;(x) is a continuous function of & and is
positive when 8 = 0. Since » has no atoms, it is easy to check using (3.1)
that Re TF;(x) is negative for & near 1. The intermediate value of § for
which Re TF;(x) = 0 gives the required 6. We now denote that F; by F.

Now note that F({z; |G(z)] = 1 — «a}) is a small set near the point
—1. G, had that property for A near 1 and the passage from G, = F; to Fy
for positive § makes the situation better. Hence F~'({ z; |z| < .8}) consists
of J disjoint closed homeomorphic images of the unit disk, D,,...,D,, and
all the D, are inside N,. Pick one such D,. On D, there is defined a
continuous function R(z) = TF(o(z)). Since |R(z) — F(z)| < c¢, R(z)
maps dD; onto a curve which winds once about zero. Hence, using
standard considerations from algebraic topology, we find that there is a
point z; in D, at which R takes the value TF(x). Thus TF(o(z,)) = TFs(x)
for some z; in D,. This accounts for J distinct points of TF Y TFy(x)).
However we saw earlier that card{ TF~}(TF(x))} = J. Thus x is o(z) for
some z in N,. This contradiction shows that o(N,) U 0B contains a
neighborhood of 9B.

We now extend o from N, to N,. On the set {z; |G(z)| = 1 — a} we
use the same definition. On 3S = {z; |G(z)| = 1} we set 0 = 77! where 7
is described by (3.1). We now claim that this extended map is continuous.
Since r is a homeomorphism of dB to 95, the only real issue is to show
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that if y, are in S\ 0S and y, — y_ in 0S then o(y,) = o(y,). Suppose
we are given such y, and that x is an accumulation point of the points
o(y,)- If x is not in 9B then the argument used in the previous two
paragraphs can be used to show that there is some F, with |[TF (x)| < 2/3.
However,

|TF,(x)| > im|TF,(o(y,))| = lim|F,(y,)| - ce = 1 —e.

Thus x is in 8B. Thus o(y,) — o(y) for some y in 04. If y,, # y then there
is an H in A with ||H||=1, H(y,) =1 and H(y) = 0. Thus TH(x) =
TH(o(y)) ~ H(7(o(y))) = H(y) =0 (by (3.1)). On the other hand
TH(x) = lim TH(o(y,)) and TH(o(y,)) ~ H(y,) which converges to
H(y,) = 1. This contradiction shows y, =y and we conclude o is con-
tinuous on N,

We now show M(B)\ 0B is a Riemann surface. Select a large integer
N so that (1 — @) < 1/2. Consider the map of M(B) into {z; |z] <1 +
ce} given by R = T(G"). Note that 6(N,) is a closed subset of M(B)
which contains an open neighborhood of dB. Let U = M(B)\ o(N,). By
the local maximum modulus theorem, for all x in U, all fin B

If(x)| < max | 1.
Now note that 93U C o({z € M(A); |G(z)| =1 — a}). Hence, for x in U,
|R(x)| < sup{|T(G")(o(x))[; |G(x)| =1~ a}.
Thus, by (3.3) and the choice of ¥, for all x in U,

(3.17) [R(x)|<1/2 + ce.
Note that for x in 0B
(3.18) |IR(x)| =1 — ce.

We now claim that for each z in a small neighborhood of 3/4, { R"(z))
is a finite set. Suppose not and let x, be an accumulation point of
{ R7!(z))} for such a z. By (3.17) and (3.18), it must be that x,, is in o(N,).
Hence there is a neighborhood of x, which is an analytic disk. Hence R
takes the value z identically in an open neighorhood of x,. In this case the
interior of { R™!(z)} would be non-empty, open, and, by the argument
just given, closed. Any such set must meet the Shilov boundary (Corollary
8.16 of [17]) and by (3.18) this doesn’t meet dB. Thus { R~'(z)} is finite.
Thus we have an open set of z for which card{ R™!(z)} is finite.
Hence we may use a result of Bishop (Theorem 11.2 of [18]) to conclude
that for each with |z] <1 — ce, {R7!(z)} has a neighborhood which
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consists of a finite union of analytic disks. Thus U is an open (possibly
disconnected) Riemann surface which might have finitely many point
identifications. Also each point of o(N,) has a neighborhood which is an
analytic disk. Thus M(B)\ 0B is a finite Rieman surface.

We have not yet shown that M(B) is a finite bordered Riemann
surface. To do this we must exhibit neighborhoods of the appropriate
form for the points of 9B. This will follow immediately from the corre-
sponding facts for M( A) as soon as we know that o is a homeomorphism
onto its image. We already know o is continuous. Hence we need to verify
the following.

Claim. o is one-to-one on N,,.

Proof of the claim. Suppose o(y,) = o(y,). By (3.3) TF,(o(y)) =
TF,(a(y,)) ~ F,(y,). Hence y, is in F, '({|z| < .1}). That set consists of
J disjoint analytic disks. By using the estimates in (3.3) and (3.5) we see
that y, and y, must be in the same disk. On that disk F=F, is a
coordinate function. In terms of this I:", the function F, used to define
a(y,) is of the form F, = (F — 8)(1 — 8F) ™" with

F(y,) =8, |8] < ce.
Thus F, = F — 8 + 8F> + O(|8/*). If we apply T we obtain

= 2
(3.19) TF, = TF — 8 + 8T(F*) + O(|8").

We evaluate this at o(y,). By definition TF,(o(y,)) = 0. We assumed
o(y) = o(»,). Thus TF(a(y,)) = 0. By (3.1), T(F?) = (TF)* + O(e).
Hence T(F?)(o(y,)) = T(F?)(o(y,)) = O(e). Thus (3.19) yields
8 =380(e) + 0(|8[).

Sinc |8] < ce, this implies § = 0. Thus F(y,) = 0 and hence y, = y,. This
proves the claim.

It only remains to show that the Riemann surface M(B)\ 0B is
connected. By Theorem 6.2 of [15], M(B) is connected. Any union of
components of M(B)\ 9B together with the appropriate components of

0B would contain a connected component of M(B). Thus M(B)\ 9B is
connected.

COROLLARY 3.2. B is antisymmetric, (i.e., the only real valued functions
in B are constant).

Proof. B is a subalgebra of the algebra of homomorphic functions on
a connected Riemann surface.
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This last corollary is noteworthy since it is not known that a small
deformation of an antisymmetric uniform algebra is necessarily antisym-
metric.

With further assumptions, we can show B is in .«/.

THEOREM 3.3. Let k be a non-negative integer. There is an g, > 0 which
depends only on k such that if A is in &/, and B is a uniform algebra with
d(A, B) < ¢, and dimRe B* < oo then B is in /.

Proof. Suppose d( A, B) < &. By requiring ¢ to be small we can insure
that Theorem 3.1 can be applied. Let T be the element of L( A4, B) and 7
the homeomorphism of dB to 34 which exist by Theorem 3.1 and which
satisfy (3.1) and (3.3).

Let S = M(B) be the finite bordered singular Riemann surface on
which the functions in B are defined. Let S;, i = 1,...,n, be the elements
of #from which S is constructed by point identifications. Fori = 1,...,n,
select p, in S, so that p, is not one of the points which are involved in the
later point identifications. Hence the points p, can also be regarded as
points of S.

A positive measure » on 9B is a representing measure for p if for all f
in B

f(p)=[ fdv.
3B

We denote the set of all such measures by M,,. Since the difference of two
elements of M, is in Re B+, and we have assumed dim Re B+ < o0, the
set M, is finite dimensional for any p in S. We now use the terminology
and some of the results of Chapter IV of the book by Gamelin [2]. For
i=1,...,ny we select a core measure »; in Mp,' For our purposes this
means that if 7, is any other element of M, then
(3.20) <,
(This by Theorem 4.1 of Chapter IV of [2].) This choice will also allow us
to use Theorem 6.2 of Chapter IV of [2] which describes the “nice case” of
abstract Hardy space theory.
Let B+ be the space of measures on dB which are orthogonal to B.
Letpy, =L,

LEMMA 3.4. If p € B* then p < v,,.

Proof of the Lemma. Let g be a point of S(A)\ 94 and let A be a
measure on 34 which represents g for all gin 4. Let » be a measure in M),
which represents p, for A(S)); i.e., so that [ fdv = f(p,) for all fin A(S; )
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We start by showing that 7~ ! is an absolutely continuous map of (94, A)
to (3B, v).

Let G be a function in 4 of the type described in Proposition 2.5.
Suppose 77! is not absolutely continuous. Then there is a set E with
A(E) =0 and »(7~}(E)) > 0. The mapping G is a finite to one mapping
of 34 to dD. Furthermore, the measure obtained on 04 by using G to pull
df back to A4 is mutually boundedly absolutely continuous with respect to
A. Hence we can find E; C E,i=1,2, so that

G(El) N G(Ez) =4,

faD XG(E) do = faD XG(E) dg =0

and
V(’T—l(Ei)) > 0, i=1,2.

Since the G(E,) are closed subsets of 3D of Lebesgue measure zero, they
are peak interpolation sets for the disk algebra. Since the composition of
G with an element of the disk algebra is an element of A4, the sets E; are
peak interpolation sets for 4. Using this fact and (3.1) we now construct a
function in B which vanishes on 77 !(E,) and doesn’t vanish identically.
Start with Fin 4 which has F|; = 0, F|g, = 1 and || F|| = 1. TF is almost
the required function. By (3.1)

(3.21) on E;, |[TF(77(x))| < ce
(3.22) on E,, |1 — TF(r7}(x))| < ce.
We now construct a convergent infinite series of corrections. For i =

1,2,... define g, by the requirements that g, be in 4, for x in E;

i—1

etor= e~ E a0

j=1

and for x in E,
g(x)=1- T(F— lg:lgj)('r‘l(x))

and ||g,|| = supg, , g, 18:(x)|- Since the E, are peak interpolation sets for 4,
such g; can be found. A straightforward induction starting with (3.21) and
(3.22) and using (3.1) shows that ||g,|| = O((ce)"). Hence the function
F=F+Y®, g is in A. By construction TF vanishes identically on
7~ !(E,) and is identically one on 7 !(E,). We now claim that this is
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impossible. The representing measures for A(S,;) have the property that if
a function in A4(.S;) vanishes on a set of positive measure with respect to
such a measure, then it must vanish identically. Hence 77! is absolutely
continuous as a map of (94, A) to (0B, »).

Now note that if we had selected a » which represents p; for all fin
A(S;) we would have obtained the same conclusion.

Select p in B+ . The abstract F. and M. Riesz Theorem (Theorem 23.6
of [17]) insures that p can be written as

(3.23) p=po+2p,

where there are points g, in distinct Gleason parts of #( B) and represent-
ing measures o, for g, so that p, << o, and p, is singular with respect to
any representing measure for any point of M(B), and p, py, pt5,... are all
in B+ . The Gleason parts of M(B) are the single points of 9B and the
single part M( B) \ dB. Hence (3.23) becomes
B=pgt

with u, L v, and p, is absolutely continuous with respect to ¢ for some o
in some M, for some p in M(B)\ 0B. Since ¢ < 7, (by (3.20)), we have
g, < v,. Thus to complete the proof we must show that there are no
measures in B+ which are singular with respect to »,. Suppose a were such
a measure, ||a|| = 1. Consider the linear function on C(34), the space of
continuous functions of 04, given by

l(f)='£3f0dx))da(x)

The norm of / on A is small. If fis in 4 then

1N =|[ £(r(x)) da(x)

s] |Tf—F°1-|d|a|+’f Tf de

The first term is at most ce|| f|| (by (3.1)) and the second is zero since « is
in B*. Thus, by the Hahn-Banach Theorem, we may select a measure 8
on 34 so that

1(f) = [a fdB

for all fin A4 and ||B|| < &. The measure a7 — B is orthogonal to 4. Any
measure on 04 which is orthogonal to A is absolutely continuous with
respect to A. Hence,

(3.24) aot— B =hA
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for some A in LY(0A4, d\). We now use 7~ to pull (3.24) to 9B.
a—Bor = (h\)or™L.
Since 77! is absolutely continuous as a map from (94, A) to (0B, »)

d(Aor1)
dv

Combining the last two equations we find that

(AN)er7 = (hor™1) dv.

a—Berl=gdy

for some g in L'(9B, dv). We now take the Lebesgue decompositon of this
equation with respect to »,. By hypothesis a is singular with respect to »,.
gdv < dvy. Hence o = (B o 771) . Thus

1 =llall=[[(Bor )sag <l|B o7 =lIBll < ce.

This contradiction completes the proof of the lemma.

We now use abstract Hardy space theory to complete the proof of the
theorem. Let B = A(Sy) @ - - ® A(S,,). We must show dim f?/B < o0.
It suffices to show that there is a finite dimensional subspace M of
C(9B)* so that

(3.25) B*c B + M.

Take a functional in B+ . By the lemma this functional can be realized as
integration against an fin L'(d,).

Let o, be measures on S; which represent p, for the algebra A(S;) (and
hence also for B). Then

(3.26) Ay(S,)" = H'(ds,) + M,

where A4,(S,;) is the subspace of A(S;) of functions which vanish at p, and
H'(do,) is the closure of A(S;) in L'(3S,, ds,) and M, is a finite dimen-
sional set of functions defined on d5S;. Since

B+*=NA(S)".

We can establish (3.25) by showing that for each i there is a finite
dimensional set of functions N, which are supported on 3S; and so that
given fin B+ there is, for each i, an n, in N, so that f — n, € A(S,)*. By
(3.26) this will be established if we show that we could select n, so that
f— n,is in H(ds,). We know f is in L'(dv,). Hence it is in L'(dv,). By
Theorem 4.5 of Chapter IV of [2], we must have f = f; + n where f] is in
the closure of B in L'(d»,) and n is in the complexification of the finite
dimensional space Re B+ . Since », is a core measure for the algebra B and
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o, represents p, for B, we have (Chapter IV, Theorem 5.1 of [2]) do,/dv; < ¢
for some constant c. Hence f — n is in the L'(do,) closure of B. Hence
f—(n,xss) = f— n, is the required function in H (da;). The proof is
complete.

Hence, &7, is open.

COROLLARY 3.5. Given A in &, there is an ¢(A) > 0 so that if B is a
uniform algebra with d( A, B) < €( A) then B is in <7, .

Proof. This follows from the previous Theorem and Theorem 6.3 of
[15].

Also %7, is complete (and in particular closed).

COROLLARY 3.6. Each &, is a closed subset of # and a complete metric
space.

Proof. o/, C M and it is shown in [15] that .# is complete. Thus we
need to show <7, is closed. Let 4 be in 7,. By the continuity on .# of the
function dimRe( )*, we know dimRe 4+ = k. Hence we can apply the
previous theorem to see that 4 is in «/and hence in %7, .

Question. We just saw .o, = .&7,. Is o7 = o/? The results in [15] leave
open the possibility that there is a sequence 4; in lekj which is a Cauchy
sequence in # and for which lim k; = co. For example, It 4, = {f €
A(D); f(0) =0,n=1,2,...,j}. 4,is inoZ, . I don’t know how to show
that 4 ; is not a Cauchy sequence in ..

IV. The Local Theory of «7,. Corollary 3.5 states that if 4 is in
some 7, and B is sufficiently close to 4 then B is in the same 7, . In this
section we develop further information about B starting with the assump-
tion that B is sufficiently near 4.

Informally, there are two types of changes which can occur as we go
from A to a nearby B. First is a small change in the conformal structure of
M(A) away from the points of Sing(A). This phenomenon will be
described by a quasiconformal map of part of M(A4) into M(B). The
second type of change is a change in the structure of 4 near the singular
points. Presumably this type of deformation can be described using the
algebraic theory of deformation of singularities. However, the situation is
unclear except in simple cases.
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We begin by noting that if 4 has no singular points (i.e., Sing(4) = @)
then the change from A4 to a nearby B is exactly that induced by a small
change in the conformal structure of M(A) \ 04.

Recall that for S, S’ in &, the Teichmiuller distance between S and S’
is defined by

d.(S, S’) = inf{log K; there is a K-quasiconformal
homeomorphism of S and S’} .

THEOREM 4.1. Suppose S is in Sand A = A(S). There is an € = g(A)
> 0 such that the set of function algebras B with d(A, B) < e consists
entirely of algebras of the form B = A(S’) for some S’ in . Furthermore,
for such B, d(A, B) ~ d.(S,S’). Also, if S” is any element of & with
d. (S, S") sufficiently small then d( A, A(S")) < e.

Proof. First select € so small that, by Corollary 3.5, we know B is in
<Z,. By Proposition 2.5 we know that for any such B

k(A) = k(B) > dim H'(M(B),R).
By Corollary 7.7 of [15],
dim H*(M( ), R) is lower semi-continuous on .7, .

Hence k(B) = dim H'(M(B),R) for all B in an open neighborhood of 4.
As noted in Proposition 2.5, this insures that B = A(S’) for some S’ in &
The result now follows from the fact that for algebras of the form A(S’),
S’ in &, the Banach-Mazur metric is equivalent, in the small, to the
Teichmiller distance [12].

We now prove an analogous result for algebras with singularities. The
basic idea is that if the constants are allowed to depend on A then the
basic construction of o in the proof of Theorem 3.1 can be carried out for
points which are not close to pre-images of images of branch points of G.

THEOREM 4.2. Let A be in Z,. There is a finite set R in M(A) with
Sing( A) € R and the cardinality of R dominated by a function of k alone
such that given any open neighborhood N of R there are constants €, and c
(both of which depend on A and N) so that the following holds. If B is a
uniform algebra with d(A, B) < ¢ < g, then there is a T in L(A, B), an
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open set U in M(B), 0B C U, and a map  of U into M( A) so that
@4nT1=1
(4.2) |Tfg — Tf Tgll < cel|fllligl| for all f, g in A.
4.3)|Tf(x) — f(7(x))| < ce||fl| for all fin A, x in U.
(4.4) 7 is a continuous map of U onto M(A)\ N.
(4.5) on U\ 9B, 7 is a quasiconformal homeomorphism and
sup\apldilatation of 7| < 1 + ce.

Note. The proof actually shows that if 7 is given so that (4.1) and
(4.2) hold, then 7 can be constructed so that (4.3), (4.4) and (4.5) are
satisfied (with a different constant c).

Proof. We start with g, so small that Corollary 3.5 applies and the
results of [15] apply. Further conditions on ¢, will be implicit in the proof.
Using Corollary 3.5 and Theorem 3.1, we may assume that B is in =7, and
that we have a T in L(A, B) which satisfies (4.1) and (4.2) and a
homeomorphism 7 of 0B to 04 so that (4.3) is satisfied for x in 0B.

Pick and fix a function G in A which satisfies the conclusions of
Proposition 2.5. Thus G maps M(A) onto D in a J to one manner (when
multiplicity is taken into account) and G vanishes on Sing(a) (and
possibly at other points). Let R be the preimages of points over which G is
not strictly J to 1; R = { p € M(A); card{ G (G(p))} < J)}. Note that
Sing(A) C R. The integer J and all the topological data of M(A) can be
estimated using only the integer k. Hence, using the Riemann-Hurwitz
formula (e.g., (2) of [12]), the cardinality of R can be estimated using only
k.

Pick & so small that for each p in R, the set

{a.e M(4); |(6(q) ~ G(p)1 ~G(p)G(q) | <8}

splits into connected components, each of which contains exactly one
point of R. Denote the component of this set which contains p by M,. By
choosing & to be smaller still, we can insure that M, C N. Finally, by
choosing § to be smaller still, we can insure that the sets G(M,), p in R,
are disjoint or identical. Let Dy = D\ (0D U (U,cr G(M,))}. Let S, =
G~Y(D,).

LEMMA 4.3. There is a constant M so that if z is in Dy, (G '(z2)} =
{P1---,P,}, then there are functions H,,...,H, in A such that

(4.6) H(p,)= 8. 1<i,j<J,

(4.7) IH|<M, i=1,..J.
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Proof of the Lemma. The construction at the beginning of the proof of
Theorem 3.1 shows how to construct the required H, for all z near 0D and
with M = 2. Pick z outside of the neighborhood N, of 3D on which that
construction works. Let {G™Y(2)} = { py,...,p,}. Given i, j, i # j, we can
find, by Proposition 2.5, functions F;; in 4 so that F,,(p,) =0 and
F,;(p;) # 0. By taking appropriate scalar multiples of products of the F;;
we can obtain functions H? which satisfy (4.6) and satisfy (4.7) with a
constant M, which depends on z. Now note that there is a neighborhood
N, of z such that for each w in N, we can find H;” which satisfy (4.6) and
(4.7) on the set { G~ '(w)} with the constant M = 2 M,. To see this, denote
by g,, i = 1,...,J, the J analytic choices of G™' near z, normalized by
g8,(z) = p,. The required H” are obtained by applying the matrix
((Hg j)(w))‘1 to the vector (H},...,H;). The existence of the required
neighborhood is insured by continuity.

The neighborhood N, of 3D together with these N, give a cover of D,.
We extract a finite subcover and select for M of (4.7) the maximum of the
associated estimates. This completes the proof of the lemma.

Let p be any point of S,. Let G, = (G — G(p))(1 — G(0)G) . Let
H, be the functions associated with the point G(p) by the previous
lemma. Thus, if fis in 4, then

(4.8) f=2aH +G,r

with scalars a, (a;, = f(p;)) and r in A. (r is in A by Lemma 2.4.) Using
(4.7), (4.8) and the fact that |G| = 1 on d4 we obtain

(4.9) lal <71, el < M7+ DS

With the decomposition (4.8) and estimates (4.9) as substitutes for the
decomposition (3.6) and estimates (3.7), the construction of ¢ (= 77!) as
in the proof of Theorem 3.1 goes through unchanged. The same argument
as those used in that proof shows that 7 has the required mapping
properties (4.3) and (4.4).

The calculation which shows that 7 is quasi-conformal is done in
Lemma 3.4 of [16].

The proof is complete.

It seems to be a flaw that the previous proof allows the possibility
that R is strictly larger than Sing(A4). Although we do not know how to
improve the previous result to R = Sing(A4), there are various ways in
which the result can be improved. For instance, the map 7 can be
extended across the parts of N which do not contain points of Sing(A4) so



164 RICHARD ROCHBERG

that (4.5) still holds (but not necessarily (4.3)). Here is a sketch of one way
to accomplish this. Suppose p, is in R\ Sing(A4). By Proposition 2.3, we
can find an F in 4 so that F( p,) = 0 and F has no other zeros. Without
loss of generality F~'(D\ 0D) is a neighborhood of p, on which F is
one-to-one. Suppose T is an element of L( A, B) which satisfies (4.1) and
(4.2). If & is small then the map A of points p near p, into M(B) given by

N(p) = (TF)"(F(p)) = (T(F ~ F(p)))"'(0)
is a well-defined map of N, = F"X{z; |z| < 1/2}) into M(B) which
satisfies for all Hin 4, all pin N,

(4.10) ITH(A(p)) — H(p)| < ce|H].

The fact that A is well defined and satisfies (4.10) follows from a
simplified version of the proof of Theorem 3.1 or, alternatively, Proposi-
tion 8.1 of [15]. A is explicitly exhibited as a composite of analytic
functions and thus is analytic. The composite 7~ o A (where 7 is given in
the previous theorem) is a quasiconformal map of a ring about p, to
another such ring. Using extension theorems for quasiconformal maps
(page 86 of [7)) it is then possible to extend 7, across N, so that (4.4) and
(4.5) remain true. It is not clear how to adapt this approach to obtain
(4.4), (4.5) and (4.3). (The theory of quasiconformal maps seems to show
that 7 produces this way will satisfy

(4.3) 1 Tf(x) = f(7(x))] < ce*| f]]
for some positive constant a.)

We will regard 7 in Theorem 4.2 as extended across all such sets N, so
that (4.4) and (4.5) hold.

Associated with the change from 4 to B are changes associated with
the structure of M(A4) near the points in Sing(A) and/or changes in the
behavior of the functions in 4 near those points. The previous theorem
and discussion indicate that the analysis of the changes near points in
Sing(A) can be localized to neighborhoods of the individual points. The
next three propositions describe explicitly the changes that can happen to
the three simplest singularities. The explicit constructions in [14] and in
the verification of the properties of Example 7.9 is [15] show that all of the
geometric possibilities allowed by these propositions can actually occur.

We start with the simplest singularity. Suppose A4 is in &/, and p in
Sing( A4) is a node, the removal of which would disconnect M(4). Thus
there are two connected, possibly singular, finite bordered Riemann
surfaces S; and S,, and points p; in S;\ 9S,, i = 1,2, so that M(A) is
S, U S, with the points p, and p, identified to the single point p. Let A, be
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the algebra A restricted to S;,. For i = 1,2, 4, is in &/ and p, is not in
Sing(A;). Let A; & A, be the algebra pairs ( f,, f,) with f; in 4,. We will
regard f, as defined on S; U §, by setting f, = 0 on S, j # i. Hence 4 is
the subalgebra of A, & A4, of pairs (f,, f,) which satisfy f,(p,) = £,(p,)-
By Proposition 2.3, we can find f; in 4; which vanish at p, and at no other
point of S;. Select such f; and let X, = (f;,0), X, = (0, f,). We have

(4.11) X, X; €4, X.(p) = X,(p).
Also, for all g in A4 there are g, g, in 4 so that

(4-12) &= 8(1’) + X8, + X,8,.

If we further require that X,g, = X;g, = 0 then the g, are uniquely
determined and depend linearly and continuously on g, i.e., for all g in 4

(4.13) lgl < cllgll, i=1,2.

The constant ¢ depends only on the choices of X, and X,. Finally
(4.14) X, X,=0.

The situation summarized by (4.11)—(4.14) completely characterizes
this type of singularity.

For sufficiently small positive 8, { p € M(A); | Xi(p) + X5(p)| = 8}
is a union of two curves v;, v, with v, C S,, v, = { p € M(A); |X,| =6,
| X;| = 0,/ # i} and y, bounds a small neighborhood of p,in S;.y = v; U v,
bounds a small neighborhood M of p. Topologically M is two disks with
their centers identified. Choose § so small that M contains no points of
the set R of Theorem 4.2 other than p. We now apply Theorem 4.2 to 4.
We select the set N so that N N M C { p; |X; + X,| < §/10}. Suppose
now that B is a uniform algebra close to A. We wish to describe the points
of M( B) which “correspond” to the points of M in M( A).

PROPOSITION 4.4. There are constants ¢,, ¢,, ¢, (Which depend on A, X;,
X,, M, and N) so that if B satisfies the hypotheses of Theorem 4.2, and
d(A, B) < & < g then the following additional conclusions can be drawn.
There are X, and X, in B such that

(4.15) ITX, — X < cie, i=1,2.

There are linear maps R, of B to itself, i = 1,2, and a linear functional L on
B so that for all fin B

(4-16) f‘:L(f)+XlR1(f)+X/2R2(f)-



166 RICHARD ROCHBERG

These operators satisfy X, T 'R\(f)=0 and X,T"'R,(f) =0 for all f,
and are bounded
(4.17) LI < ¢y, R < ¢y, i=1,2.
Furthermore there is a constant a, |a| < c,& so that
(4.18) XX, =a.
Finally, the map of M(B) into C* which sends p to H( p) = (p( X)), p(X,))
is a one-to-one analytic map of
{peM(B): |X(p)| <cyfori=1.2
onto

E = {(zl, z,) € C% |z < cyfori=1,2andzz, = a}.

Proof. First we construct 5{, which satisfy (4.15) and (4.18). We do
this by an iterative process which will converge if ¢ is sufficiently small.

For i = 1,2, let L, be the linear map of A to A which sends g in 4 to
the function g, of (4.12).

The construction is most easily described in terms of the multiplica-
tion on B pulled back to 4 by 7. That is, let X be defined by

(4.19) fxg=T IfTg).
Since X, X, = 0, by (4.2)
(4.20) X\ X X,=r

for some r with ||r|| < ce. By (4.12)
X, X X, =r(p)+ X,L,(r) + X,L,(r).
Using the estimates on r, (4.13) and (4.2), this gives
X, X X, =r(p)+ X, X L(r)+ X, X Ly(r) +r,
with ||r’]| < ce?. Thus
(X, = Ly(r) X(X, = Ly(r)) = r(p) +r,

for some r, with ||r;|| < ce?. Set XV = X; — L,(r) and X{" = X, — L(r).
Then

XV x XM =r(p)+r.

We now iterate this construction. The next step is X{? = X" — L,(r)),
X = X{V — L,(r,). Then

XPx XP=r(p)+r(p)+r
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and ||r,|| < ce’. Denoting the limit, lim, X by X*, i = 1,2, we obtain
X* X XP = a

for some constant a, |a| < ce. If we set X, = TX> for i = 1,2 then (4.15)
and (4.18) are satisfied. By (4.12), (4.13), (4.15) and (4.2), if fis in A then

(4.21) f=1f(p) + X2 X Li(f) + X5* X Ly(f) +r

where the “error term” r satisfies ||r|| < ce. We apply the decompositon
(4.21) to r and add the resulting quantity to (4.21). This yields

f=f(p)+r(p)+ X2 X Li(f+r)+ X2 X Ly(f+r)+ 1

with ||7’|| < ce?. Iteration of this process and passage to the limit (since
the process converges for small ) yields

f=c(f)+ X2 X Li(S,(f)) + X3 X Ly(S,(f))

where c is a bounded linear functional and the S, are linear operators with
Il — S;|| < ce. If we apply T to this equation and take note of (4.19) we
obtain an equation which can be rewritten in the form (4.16) and satisfies
(4.17).

Since we have assumed e is small, we know by the results of the
previous section that B is in &/. Hence the functions in B are analytic on
M(B)\ 0B. Thus the map H( p) is an analytic map which, by (4.18) goes
into the required set. Now note that if p is in M(B) and | X,( p)| is small
for i = 1,2 then, by (4.16) and (4.17), the value of f( p) is completely
determined by these values. That is, n-fold iteration of the decomposition
produces

n

f=0+ X XRXSs.(f)

k=0
where Q is a polynomial in X, and X, and the S, are linear maps with

2 Sl < e
k=0

for some constant ¢ which depends only on the constant ¢, in (4.17).
Hence, if |X,(p)| < 1c then the value of f(p) is determined by the
numbers X ( p). Thus H is one-to-one on the indicated domain.

We now show that if ¢, is small then the image of the map H is all of
the set E. First, for convenience, suppose that a in (4.18) is not zero. Let 7
be the map produced in Theorem 4.2. For i = 1,2, 77(y,) are curves in
M(B) and for points x on v,,

| T(x)(r7H(x)) = X7°(x)] < ce X7].
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If we now use the fact that 7X° = 5(,. and use (4.15), we obtain
|)~(’,(T“1(x)) - Xi(x)| < cel| Xl
Hence, for x on v,,
]X(T—l(x))’ =8+ 0(e).

(8 is the parameter used to define y,.) Hence, if § was selected to be small,
then this together with (4.18) insures that for x in y; U v,, H(x) is in E.
By assumption, at each point of 34, either | X;| > 1 or | X,| > 1. Hence, if ¢
is small and ¢, < 1/2, then the points of 04 are not mapped into E by H.
We have seen that H(M(A)) N E is not empty. Since the map H is open
or constant on each of the Riemann surfaces which make up M(A4)\ 94,
and since H(dA) N E = &, H(M(A)) N E must be open. Since H is
continuous and M(A) is compact, H(M(A)) N E is relatively closed.
Thus, since E is connected, we conclude that £ € H(M( A)).

Finally, if @« = 0, we argue as we just did to show separately that both
E, = {(2,,0); |z,] < ¢;} and E, = {(0, z2,); |z,| < ¢, } are in H(M(A)).

The proof is complete.

The main thrust of this proposition is that near p, M( 4) contains part
of the singular algebraic curve z,z, = 0 and that the corresponding region
is the spectrum of the “deformed algebra” B is part of the “deformed
curve” z,z, = a (which is generally non-singular). Another way to de-
scribe the geometry of this situation is in terms of covering maps of the
disk. On M( A) we consider two functions # = X; + X, and k = X, — X,.
These functions separate points near p and satisfy the equation h> = k2.
Thus the function 4 exhibits the region of M( A) near p as a two sheeted
covering of a region near the origin in the k plane and the singularity of
this covering is a double point over the origin. The analogous functions in
Bareh= X, + X, and k = X, — X,. They satisfy h? = k% + 4a. Thus h
exhibits a region on M(B) as a two sheeted covering of a region near the
origin of the k plane. This covering map has simple branch points over
+2a. (A double covering of the disk branched over +2a is seen to be
conformally equivalent to a ring { w; B < |w| < 1} where B is a parameter
which is determined by a and tends to zero as « tends to zero.) Thus the
double point in M( A) has been replaced by a thin neck.

On M( A4), removal of the point p or the neighborhood of p bounded
by v, U v, would disconnect M( 4). M(B) has a similar property; removal
of the region bounded by the curves 7~ (y,) U 77(y,) (i.e., the region
where both )~(, are small) disconnects M( B). To see this, fori = 1,2, let

U= {peM(B);|X(p) > imin(c,,3)}
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and let

V={peM(B);|X(p)| < bc,fori=1andi=2}.
The U, are open and non-empty. By (4.18) they are disjoint. Since
(M(B)\ U)) " (M(B)\ U,) C V, the removal of V" disconnects M(B).

Finally we should note the interpretation that goes with the case
a =0 of (4.18). In that case B has a realization as a subalgebra of
codimension one of B, & B, for B, in /. There is a singularity in M(B) of
the same sort as that at p in M(A). Furthermore d(A4;, B;) < ce for
i = 1,2. In this case the passage from A to B consists of deforming both
A, and A4, and a slight change in the selection of the points p,.

We now do a similar analysis for the cusp singularity. This type of
singularity is obtained by taking the kernel of a derivation at a non-singu-
lar point. We start with 4 * in &Zand p, in M(A ")\ (347U Sing(4™)). By
Proposition 2.3 we can find f, in 4 * which has a simple zero at p, and no
other zeros. We assume |f,| > 1 on 94 *. Since f gives a local coordinate
at p,, we may use it to describe the point derivations at p,. Any gin 4%
can be written near p, as g = h o f,, for some function 4 analytic near zero.
Any point derivation at p is a scalar multiple of the functional D defined
by Dg = h’(0) (i.e., Dg = (dg/df,)( p,).) Let A be the subalgebra of 4™
consisting of those gin A* with Dg = 0. Equivalently, (using Lemma 2.4)

A= {gEA+;g=c+f02h,cEC,h€A+}.

Suppose we start with g in 4 and write g = ¢ + fh with ¢ in C and 4 in
A*. The function h can be written as ¢; + ¢, f, + f7k for scalars ¢, and
some k in A*. Combining these representations we find that any g in 4
can be written as

g=c+t czf03 +f02h

with & in A. Thus f? and f; generate the ideal of functions in A4 which
vanish at p,. We now set W = f2, V = f;. The previous equation can be
rewritten as

(4.22) g =rn(g) + n(g)V + WR(g)

with r; and r, linear functionals, R a linear map of A4 to itself, and all three
bounded:

(4.23) Irl <¢, i=1,2 and |R|| <c.

(4.22) and (4.23) are the analogs of (4.12) and (4.13). The equation relating
the generators of the ideal is more complicated than (4.14). V and W
satisfy

(4.24) V= w3,
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The main content of the next proposition is that a small deformation of 4
changes this singular point to a subset of a (possibly degenerate) elliptic
curve given by an equation

V2=W>3+aW+b
for small scalars a and b.

We wish to use Theorem 4.2 on A4. Select § to be sufficiently small so
that vy = { p; |fo(p)| =48} is a simple closed curve in M(A) which
surrounds a neighborhood M of p, in M(A) and M contains no other
points of the set R of Theorem 4.2. Select N so that NN M C {|f,] <
8/10}. We now suppose B is a uniform algebra with d( A4, B) sufficiently
small so that we can use Theorem 4.2. Thus d(A4, B) <& < ¢, and we
obtain 7 and 7 which satisfy (4.1)—(4.5). We now wish to describe the
points in M( B) which correspond to M in M( A).

PROPOSITION 4.5. There are constants ¢,, ¢; and ¢, (which depend on A,
fo» M, and N) so that if B satisfies the hypotheses of Theorem 4.2 and T and
T satisfy the conclusions of Theorem 4.2 and d(A, B) < € < g then the
following additional conclusions can be drawn.

There are V and W in B with

TV =Vl < e, NTW = W] < cpe.

There are linear functionals 7,, i = 1,2, and a linear map R of B to itself so
that for all f in B

(4.26) f=r(f)+R(f)V + WR(f).
These maps are bounded
(4.27) 7l < e i=1,2;  |IR] <.

There are constants o, a, which satisfy |a,| < c,&,i = 1,2, so that
(4.28) V2=W?+ aW + a,.
Finally, the map H of M(B) into C? given by H(p) = (V(p), W(p)) is a
one-to-one analytic map of
M(B) n{|V] < c,} n{IW] < c,}
onto the set of points (z,, z,) in C? which are in the set

(=2 + oz, +a,) n{lz] <) n{|z,) < ¢, ).

Proof. The proof is in the same pattern and spirit as the proof of the
previous proposition, however the computational details are more
elaborate. We again use the notation f X g = T~} TfTg) for f, gin A. We
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will write O(&") to represent any function in 4 or B which satisfies a norm
estimate ||O(&")|| < ce” where ¢ is the small number in the hypotheses of
the proposition and ¢ is a universal constant (which changes from use to
use).

LEMMA 4.6. Suppose V, and W, are in A and satisfy ||V — Vi|| < &,
[|[W — W,|| < e. Then there ae linear functionals k;on A, i = 1,...,6, and a
linear map S of A to A such that any f in A can be written as

(4.29) f=k(f)+ k(i + k()W + k(f)Viv,
+ks(FIWE + ko(f)VIWE + W3S(f).
Furthermore these operators are bounded
lkll <¢, i=1,...,6,
(N

and the bounds can be chosen so as not to depend on ¢ (if € is small) but only
on the norm estimates in (4.23).

Proof of the Lemma. Three applications of the decomposition (4.23);
first to f, then to R( f), then to R(R( f)) produce the desired result for the
case V=1V,, W= W,. We now perturb that result from (V,W) to
(V1, W)). Start with f written in the form (4.29) with ¥ and W in the places
of V; and W,. Replace V with ¥V, + O(¢) and W with W, + O(e).
Multiplication and collecting terms from the resulting expression produces
an equation of the form

(4.30) f=g+ 0(e)

with g of the required form (involving ¥, and W,). We now apply the
decomposition (4.30) to the error term O(¢e). When this is combined with
(4.30) we obtain

f=g+ 0(82)

where g, is of the required form. Iteration of this process produces a
sequence of g, which converge to the required decomposition. This proves
the lemma.

We now apply the decomposition (4.29) to the function f= W X W
X W — V X V. By (4.2) and (4.24) we know that.f = O(¢). Hence

(431) WXWXW-VXV=ci+c,V+ W+ VW
+e W2+ c VW2 + W3S(f)
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for small constants c,, |c;,| < ce, i = 1,...,6. We now make two types of
changes on the right hand side of (4.31). First we change the type of
multiplication; that is, we replace VW by V X W, W>by W X W, VIW?
by VX W X W and W3S(f) by WX W X W X S(f). Using (4.2) and
the estimates on the c; and S( f) we see that this produces an error term of
the form O(e?). The second change is to replace W = W, by a new
element W, which is related by

Wo=m X(l + %S(f))
(Since S(f) is small T(1 + 3S(f)) is an invertible element of B and
W, =W, x T"N(T(1 + 1S(f))~").) Rewrite Wy as W, + W, X S(f) +
O(€%) in the equation. After multiplying out and collecting terms we
obtain, for new constants c;,
(432) WX W, X W, = VX V=c +c,V+c ;W +c,VXW
+esW, X W, + ¢V X W) X W,

+O(£2), 7
and the constants c; satisfy |¢;| < ce. Now write V = V| — 3¢, — 3¢,W
— 3¢ceW X W. When we substitute this in (4.32) and collect terms we
obtain

(4.33) WX Wy X W, =V, XV, =d, +d,W, +d; W, X W, + O(¢?)

for constants d; which satisfy |d,| < ce.

We now iterate the process that led from (4.24) and (4.33). First use
Lemma 4.6 to expand the O(¢?) term in (4.33) in terms of W, and V.
Next, change the multiplication in this expansion of O(&?) from ordinary
multiplication to the multiplication X. By (4.2) this produces an error of
the form O(e*). The right-hand side of the resulting expression will then
have as term of the form W, X W, X W, X S(O(&*)). By changing W, to
W, = W, + O(&?) this term can be cancelled leaving an error of the form
O(&%). The resulting analog of (4.32) will have terms involving V;, V; X W,
and V, X W, X W,. Those terms were produced by the last application of
Lemma 4.6 and have coefficients of size O(e?). Hence they can be
eliminated in the same way in which (4.32) was changed to (4.33). That is,
after changing V, to appropriate V, of the form V, = V;, + O(&?) we
obtain

(4.34) W2 X Wz X W2 - V2 X V2 = dl + dez + dez X Wz + 0(83)

where the d; are new constants which satisfy |d,| < ce. Iteration of the

process that goes from (4.33) to (4.34) and passage to the limit produces
W, XW, XW, -V XW, =d +d,W +dW X W,
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(for still different constants d,). We apply T to this equation, set W =
T(W,), V = T(V,) and obtain

W3 —V2=d, +d,W+dW>

When we set W = W?2 — d,/3 we obtain (4.28).

The rest of the proof goes as the proof of Proposition 4.4. We omit
the details.

The region on M(B) bounded by 7~ !(); that is, the region described
by (4.28), is either a compact Riemann surface of genus one (i.e., a torus)
from which an analytic disk has been removed or is one of the two
degenerate forms of that configuration; a disk with two points identified
or a disk with a distinguished singular point at which all the functions in
B have vanishing derivative. These facts can be verified by geometric
analysis or by noting that the algebraic equation being considered is

(4.35) zi=z23+ oz, + a,

and that the classical parametrization of the torus is by the Weierstrass
function and its derivative which are related by the equation

(p")’ = 4p° — 820 — &

for constants g, and g,.

Roughly, the region where |z,| is small corresponds to the comple-
ment of a neighborhood of the pole of » on the torus. An explicit
construction of this type of deformation of an algebra A4 is given in [14].

For certain values of the constants «; and «, in (4.28) the torus is
degenerate. In particular if a; = a, = 0, then the algebra B has a cusp
singularity inside 7~ !(y) and B can be regarded as being obtained from A
by first deforming the larger algebra A* to a B* and then moving the
singular point a bit. One way to understand this type of singularity is to
regard the singular point as the “shadow” of a compact component of the
spectrum M( A) (in this case the compact component is a torus which is
attached to the rest of M(A4) at p,). Since a compact component carries no
non-constant analytic functions, this component can’t be “seen” by
functions in 4.

There is another choice for a;, a, which gives a singular curve for
(4.35). Let F(zy, z,) =z} — 23 — ayz, — ay. If a, = —(4/27)"%a; then
the curve F = 0 has a singular point (ie., F, =0 and F, = 0) at z, =
+(—a,/3)1/?). If @, is not zero then this singularity is a double point (a
node) and the part of M(B) inside 77 !(y) is a small disk with two points
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identified. This can be understand as a deformation obtained by replacing
the condition of a vanishing derivative with the conditions that a dif-
ference quotient (involving nearby points) vanish. (See, for instance,
example 7.9 of [15].)

The third type of singularity which we discuss is a node the removal
of which doesn’t disconnect M(4). An alternative description is that the
singular point is obtained by identifying two points on the same con-
nected, possibly singular, finite bordered Riemann surface. From the
point of view of local analytic geometry, this type of singularity is the
same as the first one considered—two patches of (complex) curve crossing
at a point. However, in this case, we cannot choose X; and X, which give
local coordinates and satisfy (4.14). (Since M(A) with the singular point
removed is connected, we cannot, in general, prevent functions which
satisfy (4.14) from vanishing identically.) Thus, although the local analytic
geometry is the same as that described in Proposition 4.4, the algebraic
expression of that geometry is more awkward.

We start with an 4™ in #/and two points p, and p, in

M(A*)\(d47U Sing(4™)).
Let f, be functions in 4 * which vanish at p, and no other points of M(A4™)
(Proposition 2.3). Let 4 = {g in A™; g(p,) = g(p,)}. Thus M(A4) is
obtained from M(A4¥) by identifying the two points p, and p, to a single
point p,. We consider the following functions in A
W=t X=ffh Y=HhHI

These functions generate the ideal of functions in 4 which vanish at p,,. If
fisin A4 then

(4.36) f=1(po) +r(f) X + WR(f)

where r( f) is a linear functional, R is a linear map of 4 to A and both are
bounded

(4.37) Il <e, IRl <e

This decomposition is obtained by writing ( f — f( p))/W = h for some h
in A" (Lemma 2.4) and then writing = ¢, + ¢, f; + Wk for constants c,
and ¢, and some k in 4* (Lemma 2.4 again). We obtain (4.36) by setting
r(f) = c,and R(f) = ¢; + Wk. In particular Y can be written

(4.38) Y=cX+ Wg

for some c in C, gin 4, g( p,) # 0. If we multiply (4.38) by X and use the
relation

(4.39) XY = w3
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we obtain the equation

(4.40) W3 =cX*+ WXg

with g(p,) # 0. This equation is the more complicated substitute for
(4.14).

Using (4.36) repeatedly, one can write the function g in (4.40) as a
formal power series in X and W. By (4.37), this power series actually
converges in a small neighborhood of p,. Hence, near p, we can regard g
as a function of the two “coordinate variables” X and W. Using this
interpretation of g as a function of two variables, we introduce the set

Ey= {(zl’ 22) € CZ; |21| <9, |22| <4, 213 = 0222 + lezg(zl, 22)}-
It is straightforward to verify that the map of p to (W(p), X(p)) is an
analytic map of a neighborhood M of p, in M(A) into E, for some § and
if @ is chosen to be sufficiently small and M is chosen appropriately then
the map is one-to-one and onto Ej.

As before, we wish to apply Theorem 4.2. First choose M so small
that M contains no points of R other than p,. Select N so that the part of
N near p, is inside M. Again, suppose that d( A, B) is small and that T
and 7 satisfy (4.1)—(4.5).

PROPOSITION 4.7. There are constants ¢,, ¢,, and c, (which depend on A,
N, W, X, Y) so that if B satisfies the hypotheses of Theorem 4.2 and T and v
satisfy the conclusions of that theorem and d(A, B) < e < g then the

following additional conclusions can be drawn.
There are X, W, in B with

(4.40) ITX — X|| <cie, |TW — W) < ce
and linear functionals ¥, i = 1,2, and a linear map R of B to itself so that
any fin B can be written.

(4.41) f=r(f) +H(f)X + WR(f).
These maps are bounded
7l < ¢, i=1,2;  |R| <.

Let L = {q in M(B), |)~((q)| < ¢y, |W(q)| < ¢,}. There is a function g in
B with ¢;* < |g(q)| < ¢, for all q in L and a constant ¢ so that

W= c X2 + P(X, W) + Wiz
where P is a polynomial
P(X,W)=a, +a, X+ aW+ a,W?+ aWX + a,W?X
with small coefficients

la| < ce,  i=1,...,7.
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Finally the map H of L into C? given by H(q) = (W(q), X(q)) is ( for
appropriate c,), a one-to-one analytic map of L onto an open subset of the
( possibly singular) curve in C* given near (0,0) by

Ey={(z21,2,) € C% |z)| <0, ]|z,| < Oand
213 = 6023 + P(zy, z,) + 2;2,8( 2y, 21)}

(&( ,) is defined analogously to g( ,)). The image of L contains E, for some
small §’.

Proof. The proof is essentially the same as that of the previous two
propositions. We still just outline the differences.

First we need a lemma which is the analog of Lemma 4.6. We
describe it informally. We need to know that given X near X, W near W,
then given any fin 4, f can be written
(442) f=c,+c, X+ W+ e WX+ e W+ W2 X+ Wy
for suitable constants ¢, and function gin 4.

(4.42) follows from (4.36) in the same way as the way (4.29) follows
from (4.22).

Again we write h X g = T }(ThTg) for h, g in A. Next use the
decomposition (4.42) on the function

h=XXY—-WXWXW

which, by (4.39) and (4.2), is small. This produces an equation # = P +
W3g with P a polynomial with small coefficients and g in 4, ||g|| < ce.
Next replace P and W3g by the corresponding expressions involving the
multiplication X. This introduces a correction of the sort O(e*). Next
write Y as Y = Y, X (1 + g) and multiply on both sides of the equation
(using the X multiplication) by the multiplicative inverse (with respect to
X) of 1 + g. This produces a new equation

XXY-WXWXW=P+ 0(¢?).
Iteration and passage to the limit produces
XXY —WXWXW=P

for some appropriate polynomial with respect to the multiplication X.
Application of the map T and setting X = TX, Y= TY, and W = TW
gives

XY=w>+P
(4.41) now follows from (4.36) by the same argument that gave (4.16) from
(4.12). When (4.41) is applied to Y we obtain

V= #(Y) + 5(F) X + WR(T).
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Wenowset ¥ = ¥ — ry( f’) and obtain
Y=cX+ Wg.

Since XY = W? + P for some (modified) polynomial we can combine
these two equations to obtain the desired relation between X and W. The
estimates on g follow from the fact that § = Tf + O(¢) and estimates
using the map 7. The proof is finished the same way that that of
Propositions 4.4 was. To follow that pattern, we need to know that the
geometric configurations are the same. This follows from a local analytic
geometric analysis of E,. (We need to know that E, is connected to know
that the map L is onto some E‘o .) This finishes the proof outline.

The geometric content of this proposition is the same as that of
Proposition 4.4. One can see this by analyzing the equation defining E, or
alternatively by regarding E, as a deformation (in the sense of analytic
geometry) of the curve singularity given at the origin in C? by E, and
using the theory of deformation of curve singularities.

An explicit example of an algebra B to which the previous Proposi-
tion applies is given in Proposition 2 of [14].

If 4 is in o7 and the only singularities of 4 are nodes and cusps then
the results of this section can be combined to give a fairly complete
description of algebras B close to A. For example, if B is close to A then
the only singularities of B are nodes and cusps (and thus the set of
algebras with only such singularities is open). Also, both the number of
cusps on B and total number of singular points of B are dominated by the
corresponding quantities for 4.

Combining the results of this section with the counting formulas (2.1)
and (2.2) and the constructions of [14] we can obtain a fairly complete
description of elements in the neighborhoods of points of &/, for very
small k.

First we introduce a bit more notation. For integers r, j, k with
l<r<j<k+1let

&,

v.j.r = {A € ;04 has j components and

M(A)\ Sing(4) has r components} .

Let &7, ;= U,/ ;. We noted in Proposition 2.5 that &, ; is empty if
k — jis even.

By [16], 7, is an isolated point of k.

A, =, = ,, U, ,,. First consider an 4 in &7, ,;. M(A) is
doubly connected and hence can be taken to be S, = {z; r < |z| < 1} for
some r, 0 < r < 1. By (2.1) we must have 4 = A(S,). By Theorem 4.1, 4
has a neighborhood consisting of other A(S,) for ¢ near r. Now suppose A



178 RICHARD ROCHBERG

is in 2/, ,,. In this case M(4) must consist of two simply connected
Riemann surfaces with a pair of points identified. By composing with
conformal automorphisms we may assume that the algebras are both
copies of the disk algebra and that the identified points are the two
origins. Thus A4 is the subalgebra of functions in the direct sum of two
copies of the disk algebra consisting of functions which take the same
value at the two centers. By Proposition 4.4, any close neighbor of this 4
is either of the same sort (and hence is isomorphic to this 4) or is of the
type A(S,) for small r. Proposition 1 of [14] shows that both possibilities
occur. In particular we note that %/, , , is dense in <.

We now describe &,. &7, = #/,, U &/, ,. Since nearby algebras have
homeomorphic Shilov boundaries, d(.%,,, #,3) > 0; hence we describe
the two separately.

«Z,, contains three types of algebras. First there are algebras of the
form A(S) with S in ¥, S a finite bordered Riemann surface of genus one
with one boundary component (i.e. a torus with a hold cut out). By
Theorem 4.1, any such 4 has an open neighborhood consisting entirely of
algebras of the same sort. The other possibilities for elements of <7, are
subalgebras of codimension one of the disk algebra A(D) (see (2.1)). If
such an A is obtained by a point identification then it is equivalent to an
algebra 4, = { f € A(D); f(0) = f(r)} for some r, 0 < r < 1. By Proposi-
tion 4.7, a small neighborhood of A4, contains algebras of the form A(S)
for S as just described and algebras of the form A4, for some 7, 0 < ¢ < 1.
The analysis in Example 7.9 of [15] shows that # would have to be close to
r and that example together with the constructions in [14] show that both
possibilities occur. Finally we consider the algebra 4, = { f € A(D);
f’(0) = 0}. Proposition 4.6 allows the possibility that arbitrarily small
neighborhoods of A4, will contain algebras of the sort A4, (for small r) and
algebras of the sort A(.S) for S in Fas described. The example in [15] and
constructions in [14] show that both possibilities occur in every neighbor-
hood of A,. Thus the algebras of the form A(S), S in ¥ form a dense
subset of o7, ;. Since it is known from Teichmuller theory that the moduli
space for surfaces in &of fixed topological type is connected, A(¥) N .7,
is connected. Thus.2/, ; is connected. Also note that theset { 4,;0 < r < 1}
is a closed subset of &7, ;.

We now consider &, ;. )3 = )3, U3, Uslyz5 If Aisin, ;)
then 4 = A(S) for an § in ¥ of genus zero and with three boundary
contours. Such an S is conformally equivalent to a ring with a disk
removed, i.e.,

(4.43) S={zr<l <1}\{z |z — | < 8}
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where r, r;, § > 0, r <r, — 8, r; + § < 1. By Theorem 4.1, 4 has a full
neighborhood consisting of algebras of the same type. By Teichmiller
theory the associated surfaces can be realized in the way just described
and with nearby parameters 7, 7,, 8. If 4 is in 2,5, then A must be a
subalgebra of codimension one of the sum A(S,) ® A(D) which is ob-
tained by identifying a point of S, (which we may assume to be real and
positive) and a point of D (which we may take to be the origin). By
Proposition 4.4 any such 4 has a neighborhod consisting entirely of other
such algebras and algebras in &/, ;,. Again, both possibilities occur in
every neighborhood of such an A4. Finally we consider the algebras A4 in
7, 35. By (2.1) such an 4 must be obtained from a direct sum of three
copies of the disk algebra by making two point identifications. One
possibility is that the points which are identified were two distinct pairs of
points. Such algebras could be realized, for instance, as algebras of
continuous boundary value analytic functions on
{z;]z] <1} U{z; |z = 3|< 1} U{z; |z = 5|< 1)

which identify 0 and 3 and 3 + r with 5 for some r, 0 < r < 1. This
algebra has two nodes and no other singularites. Thus Theorem 4.2 and
Proposition 4.4 apply and we find that all the algebras near such an A4 are
either of the same type or are elements of &/,;, or of «/,;,. Both
possibilities occur. Finally there is the possibility that the point identifica-
tions involved three points, not four. The only such A is the subalgebra of
a direct sum of three copies of the disk algebra obtained by identifying the
three origins. (That is, the case » = 0 in the construction just described.)
This singularity is not a node or a cusp. (In fact, it is not a complete
intersection.) Deformation of this type of singularity is discussed in
Examples 4 and 9 of [9]. It is possible to prove an analog of Proposition
4.4 for this singularity. For now we just note that straightforward varia-
tions on the constructions on [14] and [15] show that every neighborhood
of this algebra contains algebras of all the other types described for .7, ;.
Using the fact that dim H(M(A), R) is semi-continuous, (Corollary 7.7
of [15]) we see that o/,,; and &/,;, U %/, ;, are closed subset of 27, ;.
Since &7, ;, is connected and dense, %7, ; is connected.

On the basis of this analysis, we speculate the 2/, ; are always
connected.

Conjecture 4.8. The connected components of 7, are exactly the
non-trivial 27, .

The analysis just given shows that the conjecture is true for k = 0,1, 2.
The same type of analysis works for k = 3. For k = 4, &/, = o/, s U &, ,
U o7, ;. Analyses similar to the ones given work for <7, s and ./, ;. For &/, ,



180 RICHARD ROCHBERG

new techniques are needed (for example, to show that { f € &/(D);
f’(0) = f"(0) = 0} and { f € A(D); f’(0) = f ”"(0) = 0} are in the same
component of &7, , i.e., the component containing those 4 with Sing(A4) =
@ .) In this particular case, elementary ad hoc considerations suffice and
the conjecture is true for k = 4. We have not pursued the issue further.

By Theorem 4.1, those A with Sing(A4) = @ form an open set. In the
examples just described, this set is dense in the component which contains
it. This suggests

Conjecture 4.9. For each k, { A € o/; Sing(A) = @} is dense in &7,;
ie. A(F) N, is dense in .

The analysis described for k£ = 0,1,2 extends to k =3 and the
conjecture is true for 0 < k < 3. The intuitive content of the
conjecture—that all elements of &/ are limits of elements of A(%)—is
attractive. Furthermore the failure of the conjecture would leave open the
problem of describing 4(.%). However, an analogous conjecture in alge-
braic deformation theory is known to be false [8]. (Since our theory is
based on small deformations rather than infinitesimal deformations, it is
not clear how much evidence is provided by that failure.)

It should be pointed out that the description given of &7, was in terms
of the topology of M(B) for B near A. We have still not given a
description of the conformal geometry. If Sing( 4) is empty, then Theorem
4.1 is decisive (even if not explicit). Consider, however, for example, the
algebrad = { f € A(D); f(0) = f(1/2)}. We noted that neighborhoods of
this algebra contain algebras 4, = { f € A(D); f(0) = f(¢)} for some ¢,
0 < ¢ < 1. The fact that ¢ will be near 1/2 for small neighborhoods of 4
uses the continuity of the successive minima of the normed integer
cohomology group (Theorem 7.2 of [15]). We also know that neighbor-
hoods of this same 4 contain algebras of the form A(S) for S in &%, S of
genus one with one boundary contour. We do not have a convenient
description of which S arise this way. (The continuity of successive
minima gives some information, but not an easy to understand descrip-
tion.)
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