THE BOUNDARY REGULARITY OF THE SOLUTION OF THE **∂**-EQUATION IN THE PRODUCT OF STRICTLY PSEUDOCONVEX DOMAINS

PIOTR JAKÓBCZAK

Let *D* be a strictly pseudoconvex domain in \mathbb{C}^n . We prove that for every $\overline{\partial}$ -closed differential (0, q)-form $f, q \ge 1$, with coefficients of class $\mathscr{C}^{\infty}(D \times D)$, and continuous in the set $\overline{D} \times \overline{D} \setminus \Delta(D)$, the equation $\overline{\partial}u = f$ admits a solution *u* with the same boundary regularity properties. As an application, we prove that certain ideals of analytic functions in strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with \mathscr{C}^2 boundary. It is known ([2], Theorem 2) that given a (0, q)-form f in D with coefficients of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\overline{D} \times \overline{D}$, such that $\overline{\partial} f = 0$, $q = 1, \ldots, 2n$, there exists a (0, q - 1)-form u in $D \times D$ such that the coefficients of u are also of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\overline{D} \times \overline{D}$, and such that $\overline{\partial} u = f$.

In this paper, using the results from [2], and the method of [6], we prove the following theorem:

THEOREM 1. Let D be a bounded strictly pseudoconvex domain in \mathbb{C}^n with \mathscr{C}^2 boundary. Set $Q = (\overline{D} \times \overline{D}) \setminus \{(z, z) | z \in \partial D\}$. Suppose that f is a (0, q) $\overline{\partial}$ -closed differential form with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$. Then there exists a (0, q - 1)-form u with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$, $\mathscr{C}(Q)$, such that $\overline{\partial} u = f$.

As an application, we prove a following theorem on the existence of the decomposition operators in some spaces of holomorphic functions in the product domain $D \times D$: Let D and Q be as above. Denote by $A_Q(D \times D)$ the space of all functions holomorphic in $D \times D$, which are continuous in Q. Let $(A_Q)_0(D \times D)$ be the subspace of $A_Q(D \times D)$, consisting of all functions which vanish on $\Delta(D)$, the diagonal in $D \times D$.

THEOREM 2. Let $g_1, \ldots, g_N \in (A_Q)_0(D \times D)$ satisfy the following properties: (i) $\{(z, s) \in Q | g_1(z, s) = \cdots = g_N(z, s) = 0\} = \Delta(D)$; (ii) for every $z \in D$, the germs at (z, z) of the functions g_i , $i = 1, \ldots, N$, generate

the ideal of germs at (z, z) of holomorphic functions which vanish on $\Delta(D)$. Then for every $f \in (A_Q)_0(D \times D)$ there exist functions $f_1, \ldots, f_N \in A_Q(D \times D)$, such that $f = \sum_{i=1}^N g_i f_i$.

This theorem is an improvement of several results, obtained previously by different authors. Namely, Ahern and Schneider proved in [1], that if $f \in A(D)$, then there exist functions $f_i(z, s) \in A_Q(D \times D)$, such that

$$f(z) - f(s) = \sum_{i=1}^{n} (z_i - s_i) f_i(z, s), \qquad z, s \in D.$$

Øvrelid showed in [5], that if $s \in D$ is fixed and $g_1, \ldots, g_N \in A(D)$ are such that $\{z \in \overline{D} | g_1(z) = \cdots = g_N(z) = 0\} = \{s\}$ and the germs of the functions g_i at s generate the ideal of germs at s of holomorphic functions which vanish at s, then every $f \in A(D)$ with f(s) = 0 can be written in the form

$$f(z) = \sum_{i=1}^{N} g_i(z) f_i(z), \qquad z \in D,$$

for some $f_i \in A(D)$. In [4], the validity of Theorem 2 was shown in the special case, when D = U—the unit disc in C—and under the additional assumption, that there exists a neighborhood V of $\Delta(\partial U)$ in $\overline{U} \times \overline{U}$ such that g_1, \ldots, g_N have no zeros in $V \cap (Q \setminus \Delta(U))$. The proof given in [4] is different from that in the present paper.

It could seem unnatural to omit the boundary diagonal $\Delta(\partial D)$ from study. However, when $f \in A(D \times D)$ and $f|_{\Delta(\overline{D})} \equiv 0$, $g_i(z, s) = z_i - s_i$, i = 1, ..., n, and

$$f(z,s) = \sum_{i=1}^{n} (z_i - s_i) f_i(z,s),$$

then, as in [1],

$$\frac{\partial f}{\partial z_k}(z,s) = f_k(z,s) + \sum_{i=1}^n (z_i - s_i) \frac{\partial f_i}{\partial z_k}(z,s),$$

and so, setting s = z, we obtain

$$\frac{\partial f}{\partial z_k}(z,z) = f_k(z,z), \qquad z \in D;$$

therefore, the functions f_i need not be in $A(D \times D)$, even if $f \in A(D \times D)$. In the sequel we will always assume that the considered domains are bounded. We will also use the following notations:

Given a domain $D \subset \mathbb{C}^n$, we denote by $\mathcal{O}(D)$ the space of holomorphic functions in D, and by A(D) the algebra of all functions holomorphic in D and continuous in \overline{D} .

 $\mathbf{372}$

If F(D) is a function space in the domain D, and $q = 1, 2, ..., F_{0q}(D)$ denotes the space of all differential forms of type (0, q) with coefficients in F(D).

Given a set X, $\Delta(X)$ is a diagonal in the Cartesian product $X \times X$.

This work was done during my stay at Sonderforschungsbereich "Theoretische Mathematik" at the University in Bonn. I would like to express my gratitude for the hospitality and support, given to me by this institution. I am also very indebted to I. Lieb and J. Michel for helpful discussions.

2. The solution of the $\bar{\partial}$ -equation. In this section we give the proof of Theorem 1. Let $D \subset \mathbb{C}^n$ be a strictly pseudoconvex domain, with the defining function σ , i.e. σ is of class \mathscr{C}^2 and strictly plurisubharmonic in some neighborhood \tilde{D} of \overline{D} , $D = \{z \in \tilde{D} | \sigma(z) < 0\}$, and $d\sigma(z) \neq 0$ for $z \in \partial D$. For $\varepsilon > 0$, set $\tau_{\varepsilon}(z, w) = \sigma(z) + \sigma(w) - \varepsilon |z - w|^2$, $(z, w) \in \tilde{D} \times$ \tilde{D} . Then, if ε is sufficiently close to zero, the domain $G_{\varepsilon} = \{(z, w) \in \tilde{D} \times \tilde{D} | \tau_{\varepsilon}(z, w) < 0\}$ is strictly pseudoconvex in \mathbb{C}^{2n} with the defining function τ_{ε} . Moreover, $\overline{D} \times \overline{D} \subset \overline{G}_{\varepsilon}$, and $\partial(\overline{D} \times \overline{D}) \cap \partial G_{\varepsilon} = \Delta(\partial D)$; therefore $Q \subset G_{\varepsilon}$ (we recall that $Q = (\overline{D} \times \overline{D}) \setminus \Delta(\partial D)$). It follows, that if t < 0 is sufficiently close to 0, the sets $G_{\varepsilon,t} = \{(z, w) \in \tilde{D} \times \tilde{D} | \tau_{\varepsilon}(z, w) < t\}$ are strictly pseudoconvex with \mathscr{C}^2 boundary, and $G_{\varepsilon,t} \subset G_{\varepsilon,t'} \subset G_{\varepsilon}$ for t < t'< 0. Set $E_{\varepsilon,t} = G_{\varepsilon,t} \cap (D \times D)$.

We want to apply [2], Theorem 2 to the domains $E_{\varepsilon,t}$. Note first, that if we define the mappings χ^i : $\mathbb{C}^n \times \mathbb{C}^n$, $\to \mathbb{C}^n$, i = 1, 2, and χ^3 : $\mathbb{C}^n \times \mathbb{C}^n$ $\to \mathbb{C}^n \times \mathbb{C}^n$ by $\chi^1(z, w) = z$, $\chi^2(z, w) = w$, and $\chi^3(z, w) = (z, w)$, and set, for fixed $\varepsilon > 0$ and t < 0, $\rho_1 = \rho_2 = \sigma$, and $\rho_3 = \tau_{\varepsilon} - t$, then

$$E_{\varepsilon,t} = \left\{ (z,w) \in \tilde{D} \times \tilde{D} | \rho_i(\chi^i(z,w)) < 0, i = 1,2,3 \right\}.$$

Therefore, $E_{\epsilon,t}$ is a pseudoconvex polyhedron in the sense of [2]. We must also verify, that $E_{\epsilon,t}$ satisfies the assumptions (C) and (CR) from [2], p. 523. Set

$$\operatorname{grad}_{\mathbf{C}} f = {}^{t} \left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}, \frac{\partial f}{\partial w_{1}}, \ldots, \frac{\partial f}{\partial w_{n}} \right)$$

and

$$\operatorname{grad}_{\mathbf{R}} f = {}^{t} \left(\frac{\partial f}{\partial z_{1}}, \dots, \frac{\partial f}{\partial w_{n}}, \frac{\partial f}{\partial \overline{z}_{1}}, \dots, \frac{\partial f}{\partial \overline{w}_{n}} \right)$$

The condition (C) says, that for every ordered subset $A \subset \{1, 2, 3\}$, $A = \{\alpha_1, \ldots, \alpha_s\}$, the number $m_A = \operatorname{rank}(\operatorname{grad}_C \chi^{\alpha_1}, \ldots, \operatorname{grad}_C \chi^{\alpha_s})$ is constant in the neighborhood of the set

$$S_{\mathcal{A}} = \Big\{ (z,w) \in \partial E_{\varepsilon,t} | \rho \alpha_1(\chi^{\alpha_1}(z,w)) = \cdots = \rho_{\alpha_s}(\chi^{\alpha_s}(z,w)) = 0 \Big\}.$$

This condition is trivially satisfied, since the mappings χ^i are linear. It rests to verify the condition (CR): For every pair of ordered subsets $A, B \subset \{1, 2, 3\}, A = \{\alpha_1, \ldots, \alpha_s\}, B = \{\beta_1, \ldots, \beta_t\}$, such that for every $\beta_i \in B$,

(2.1)
$$\operatorname{rank}(\operatorname{grad}_{\mathbf{C}}\chi^{\beta_i}, \operatorname{grad}_{\mathbf{C}}\chi^{\alpha_1}, \ldots, \operatorname{grad}_{\mathbf{C}}\chi^{\alpha_s}) > m_A,$$

it follows that

(2.2)
$$\operatorname{rank}\left(\operatorname{grad}_{\mathbf{R}}\left(\rho_{\beta_{1}}\circ\chi^{\beta_{1}}\right),\ldots,\operatorname{grad}_{\mathbf{R}}\left(\rho_{\beta_{1}}\circ\chi^{\beta_{t}}\right),\operatorname{grad}_{\mathbf{R}}\chi^{\alpha_{1}},\ldots,\operatorname{grad}_{\mathbf{R}}\chi^{\alpha_{s}},\operatorname{grad}_{\mathbf{R}}\overline{\chi^{\alpha_{1}}},\ldots,\operatorname{grad}_{\mathbf{R}}\overline{\chi^{\alpha_{s}}}\right)=t+2m_{A}$$

in a neighborhood of the set $S_{A \cup B}$. Note that if $3 \in A$ or $A = \{1, 2\}$, then $m_A = 2n$, and hence for any β ,

$$\operatorname{rank}(\operatorname{grad}_{\mathbf{C}}\chi^{\beta},\operatorname{grad}_{\mathbf{C}}\chi^{\alpha_{1}},\ldots,\operatorname{grad}_{\mathbf{C}}\chi^{\alpha_{s}})=2n=m_{A},$$

and so (2.1) is not satisfied. On the other hand, if $A = \{1\}$ or $A = \{2\}$, one can show that for every $B \subset \{1, 2, 3\}$ such that $A \cap B = \emptyset$, (2.1) holds. Therefore, in all those cases, we should verify (2.2).

Consider first the case $A = \{1\}$ and $B = \{2, 3\}$. Then

$$S_{123} = \left\{ (z,w) \in \tilde{D} \times \tilde{D} | z, w \in \partial D, -\varepsilon | z - w |^2 = t \right\},\$$

and the matrix

$$(\operatorname{grad}_{\mathbf{R}}(\rho_2 \circ \chi^2), \operatorname{grad}_{\mathbf{R}}(\rho_3 \circ \chi^3), \operatorname{grad}_{\mathbf{R}} \chi^1, \operatorname{grad}_{\mathbf{R}} \overline{\chi^1})$$

at a point $(z, w) \in \tilde{D} \times \tilde{D}$ has the form

	$\sigma_1(z) - 2\varepsilon(\overline{z}_1 - \overline{w}_1)$	1			
		••••	1		
	$\sigma_n(z)-2\varepsilon(\bar{z}_n-\bar{w}_n)$		1		
$\sigma_1(w)$	$\sigma_1(w) - 2\varepsilon(\overline{w}_1 - \overline{z}_1)$				
:					
$\sigma_n(w)$	$\sigma_n(w) - 2\varepsilon(\overline{w}_n - \overline{z}_n)$				
	$\sigma_{\overline{1}}(z) - 2\varepsilon(z_1 - w_1)$			1	
	•		1	•	
	$\sigma_{\overline{n}}(z)-2\varepsilon(z_n-w_n)$				1
$\sigma_{\overline{1}}(w)$	$\sigma_{\bar{1}}(w) - 2\varepsilon(w_1 - z_1)$				
	•				
$\int \sigma_{\bar{n}}(w)$	$\sigma_{\bar{n}}(w) - 2\varepsilon(w_n - z_n)$				

where we have set $\sigma_i = \partial \sigma / \partial \zeta_i$ and $\sigma_{\bar{i}} = \partial \sigma / \partial \bar{\zeta}_i$. Since $z \neq w$ for $(z, w) \in S_{123}$, this is true also for some neighborhood of S_{123} . Moreover, $(\sigma_1(w), \ldots, \sigma_n(w), \sigma_{\bar{1}}(w), \ldots, \sigma_{\bar{n}}(w)) \neq 0$ for $w \in \partial D$, since $d\sigma(w) \neq 0$ there. Therefore, in order to prove that the above matrix has rank $2 + 2m_A = 2 + 2n$, it is sufficient to show, that the vectors

$$u = (\sigma_1(w), \ldots, \sigma_n(w), \sigma_{\overline{1}}(w), \ldots, \sigma_{\overline{n}}(w)) = (u_1, \overline{u}_1)$$

and

$$v = (\overline{w}_1 - \overline{z}_1, \ldots, \overline{w}_n - \overline{z}_n, w_1 - z_1, \ldots, w_n - z_n) = (v_1, \overline{v}_1),$$

are linearly independent (over C) in some neighborhood of S_{123} . But if $z, w \in \partial D$ and $u = \alpha v$ for some $\alpha \in C$, $\alpha \neq 0$, then $u_1 = \alpha v_1$ and $\overline{u}_1 = \alpha \overline{v}_1$. Hence α is real. Therefore the vectors z - w and $v(w) = (\sigma_{\overline{1}}(w), \ldots, \sigma_{\overline{n}}(w))$ (the normal vector to ∂D at w) are linearly dependent over **R**, as the vectors in \mathbb{R}^{2n} . This is impossible, if $z, w \in \partial D$ and z is sufficiently close to w, i.e. if t is sufficiently near 0. Hence, if we choose t sufficiently close to 0, vectors u and v are linearly independent over **C**, for (z, w) in some neighborhood of S_{123} , and thus the condition (CR) is satisfied.

In order to prove (2.2) in the case $A = \{1\}$ and $B = \{2\}$ (resp. $B = \{3\}$), it suffices to note, that $S_{12} = \{(z, w) \in \partial E_{\epsilon,t} | \sigma(z) = \sigma(w) = 0\}$ and $(\sigma_1(w), \ldots, \sigma_n(w), \sigma_{\overline{1}}(w), \ldots, \sigma_{\overline{n}}(w)) \neq 0$ for w in a neighborhood of ∂D (resp. that since

$$S_{13} = \left\{ (z, w) \in \partial E_{\varepsilon, t} | \sigma(z) = 0, \, \sigma(w) - \varepsilon | z - w |^2 = t \right\},$$

then also

$$(\sigma_1(w) - 2\varepsilon(\overline{w}_1 - \overline{z}_1), \dots, \sigma_n(w) - 2\varepsilon(\overline{w}_n - \overline{z}_n), \sigma_{\overline{1}}(w) - 2\varepsilon(w_1 - z_1), \dots, \sigma_{\overline{n}}(w) - 2\varepsilon(w_n - z_n)) \neq 0 \quad \text{for } (z, w)$$

in some neighborhood of S_{13} , provided that ε and t are sufficiently close to 0).

The verification of the condition (CR) for $A = \{2\}$ is similar. We obtain therefore the following corollary, which is Theorem 2 from [2] in this special situation:

COROLLARY 2.1. If D is as above, then there exist $\varepsilon > 0$ and $t_0 < 0$ such that for every t with $t_0 < t < 0$, for every q = 1, ..., 2n, for every $f \in \mathscr{C}^{\infty}_{0q}(E_{\varepsilon,t}) \cap \mathscr{C}_{0q}(\overline{E_{\varepsilon,t}})$ with $\overline{\partial}f = 0$, there exists $u \in \mathscr{C}^{\infty}_{0q-1}(E_{\varepsilon,t}) \cap \mathscr{C}^{\infty}_{0q-1}(\overline{E_{\varepsilon,t}})$ such that $\overline{\partial}u = f$.

In the next part of the proof of Theorem 1 we apply a method used in [6]. Consider first the case $q \ge 2$. Let $f \in \mathscr{C}_{0q}^{\infty}(D \times D) \cap \mathscr{C}_{0q}(Q)$ with $\overline{\partial}f = 0$. Take a strictly increasing sequence $\{t_n\}_{n=1}^{\infty}$ of negative real numbers, such that $\lim_{n\to\infty} t_n = 0$, and $t_1 > t_0$. Set $E_n = E_{\varepsilon,t_n}$ for simplicity. We shall construct a sequence $\{u_n\}_{n=1}^{\infty}$ of differential forms such that

(2.3)
$$u_n \in \mathscr{C}^{\infty}_{0q-1}(E_n) \cap \mathscr{C}_{0q-1}(\overline{E_n}), \quad \overline{\partial} u_n = f \text{ in } \overline{E_n}, \text{ and}$$

 $u_{n+1|\overline{E_{n-1}}} = u_{n|\overline{E_{n-1}}}.$

Suppose that u_1, \ldots, u_m are constructed. By Corollary 2.1, there exists $v \in \mathscr{C}^{\infty}_{0q-1}(E_{m+1}) \cap \mathscr{C}_{0q-1}(\overline{E_{m+1}})$ such that $\overline{\partial} v = f$ in $\overline{E_{m+1}}$. Then

$$\overline{\partial}(u_m - v) = 0$$
 on $\overline{E_m}$

Hence, by Corollary 2.1, there exists $w \in \mathscr{C}_{0q-2}^{\infty}(E_m) \cap \mathscr{C}_{0q-2}(\overline{E_m})$ such that $\overline{\partial}w = \underline{u_m} - v$. Let χ be a \mathscr{C}^{∞} function on \mathbb{C}^{2n} , such that $0 \le \chi \le 1$, $\chi \equiv 1$ on $\overline{E_{m-1}}$, $\chi \equiv 0$ on $(\overline{D} \times \overline{D}) \setminus E_m$. Then the form χw , extended trivially by 0, is in $\mathscr{C}_{0q-2}^{\infty}(E_{m+1}) \cap \mathscr{C}_{0q-2}(\overline{E_{m+1}})$, and

$$\overline{\partial}(\chi w) = (\overline{\partial}\chi)w + \chi(u_m - v) \in \mathscr{C}_{0q-1}^{\infty}(E_{m+1}) \cap \mathscr{C}_{0q-1}(\overline{E_{m+1}}).$$

Define u_{m+1} on E_{m+1} by $u_{m+1} = v + \partial(\chi w)$. Then u_{m+1} satisfies (2.3). Since $\bigcup_{n=1}^{\infty} \overline{E}_n = Q$, the desired solution u is defined by setting $u = u_n$ on \overline{E}_n . Now let q = 1. We need some auxiliary approximation lemmas:

LEMMA 2.2. Let D, ε , t_0 be as in Corollary 2.1. Let $t, t' \in \mathbb{R}$ satisfy the condition $t_0 < t' < t < 0$. Then there exists a neighborhood U of $\overline{E}_{\varepsilon,t}$ such that every function f holomorphic in a neighborhood of $\overline{E}_{\varepsilon,t'}$ can be approximated on $\overline{E}_{\varepsilon,t'}$ by functions holomorphic in U.

Proof. By Theorems 4.3.2 and 4.3.4 of [3], it is sufficient to find a neighborhood U of $\overline{E_{\varepsilon,t}}$ such that $(\overline{E_{\varepsilon,t'}})_U^{\wedge} = \overline{E_{\varepsilon,t'}}$, where $(\overline{E_{\varepsilon,t'}})_U^{\wedge}$ denotes the holomorphic convex hull of $\overline{E_{\varepsilon,t'}}$ in U. Fix t'' such that t < t'' < 0, and let $D_{\eta} = \{z \in \tilde{D} | \sigma(z) < \eta\}$. If $\eta > 0$ is sufficiently small, then $(\overline{D})_{D_{\varepsilon}}^{\wedge} = \overline{D}$, and hence

(2.4)
$$(\overline{D} \times \overline{D})^{\wedge}_{D_{\eta} \times D_{\eta}} = \overline{D} \times \overline{D}.$$

Moreover,

(2.5)
$$(\overline{G_{\varepsilon,t'}})^{\wedge}_{G_{\varepsilon,t''}} = \overline{G_{\varepsilon,t''}}$$

Set $U = (D_{\eta} \times D_{\eta}) \cap G_{\epsilon,t''}$. Then U is a neighborhood of $\overline{E_{\epsilon,t'}}$, and it follows from (2.4) and (2.5) that

$$\left(\overline{E_{\varepsilon,t'}}\right)_U^{\wedge} = \left(\left(\overline{D} \times \overline{D}\right) \cap \overline{G_{\varepsilon,t'}}\right)_U^{\wedge} = \left(\overline{D} \times \overline{D}\right) \cap \overline{G_{\varepsilon,t'}} = \overline{E_{\varepsilon,t'}}.$$

LEMMA 2.3. Let D, ε , t_0 , t and t' be as in Lemma 2.2. Then every function $f \in A(E_{\varepsilon,t})$ can be uniformly approximated on $\overline{E_{\varepsilon,t'}}$ by functions which are holomorphic in a neighborhood of $\overline{E_{\varepsilon,t'}}$.

Proof. We prove first one result on the separation of singularities:

LEMMA 2.4. Given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ and the strictly pseudoconvex domains $D_i \subset \mathbb{C}^n$, i = i, ..., N, such that $D \subset D_i$, diam $(\partial D \setminus D_i) < \varepsilon$, and such that for every $f \in A(E_{\varepsilon,t})$ there exist functions $L_i f \in A((D_i \times D) \cap G_{\varepsilon,t})$, such that $f = \sum_{i=1}^N L_i f$.

Proof. While *D* is compact, there exist a positive integer *N*, and points $z_1, \ldots, z_N \in \partial D$, such that $\partial D \subset \bigcup_{i=1}^N B(z_i, \varepsilon/4)$. Let $f \in A(E_{\varepsilon,i})$. Choose a function $\varphi_1 \in \mathscr{C}^{\infty}(\mathbb{C}^n)$, such that $0 \leq \varphi_1 \leq 1$, $\varphi_{1|\partial D \cap B(z_1, \varepsilon/2)} = 1$, $\varphi_{1|\partial D \setminus B(z_1, 3\varepsilon/4)} = 0$. Set $w_1 = f \overline{\partial} \varphi_1$. Then there exist strictly pseudoconvex domains D_1 and D'_1 in \mathbb{C}^n such that $D \cup (\partial D \setminus B(z_1, \varepsilon)) \subset D_1$, $D \cup (\partial D \cap \overline{B(z_1, \varepsilon/4)}) \subset D'_1$, $D''_1 = D_1 \cup D'_1$ is strictly pseudoconvex, and w_1 , extended trivially by 0, is in

$$\mathscr{C}^\infty_{01}ig(ig(D_1'' imes Dig)\cap G_{\epsilon,t}ig)\cap \mathscr{C}_{01}ig(ig(\overline{D}_1'' imes\overline{D}ig)\cap\overline{G_{\epsilon,t}}ig),$$

and $\bar{\partial}w = 0$ there. Moreover, if D_1'' is sufficiently close to D, then the domain $(D_1'' \times D) \cap G_{\epsilon,t}$ satisfies the assumptions (C) and (CR) from [2]. Therefore, by [2], Theorem 2, there exists $\alpha_1 \in \mathscr{C}^{\infty}((D_1'' \times D) \cap G_{\epsilon,t}) \cap \mathscr{C}((\overline{D_1''} \times \overline{D}) \cap \overline{G_{\epsilon,t}})$ such that $\bar{\partial}\alpha_1 = w_1$. Set

$$L_1 f = \varphi_1 f - \alpha_1, \quad L'_1 f = (1 - \varphi_1) f + \alpha_1.$$

Then

$$L_1 f \in A((D_1 \times D) \cap G_{\varepsilon,\iota}), \qquad L'_1 f \in A((D'_1 \times D) \cap G_{\varepsilon,\iota}),$$

and $f = L_1 f + L'_1 f$.

Suppose that for k < N - 1 we have constructed the strictly pseudoconvex domains D_1, \ldots, D_k and D'_k in \mathbb{C}^n such that $D \cup (\partial D \setminus B(z_i, \varepsilon)) \subset D_i$, $i = 1, \ldots, k$, and $D \cup (\partial D \cap \bigcup_{i=1}^k \overline{B(z_i, \varepsilon/4)}) \subset D'_k$, and the functions L_1f, \ldots, L_kf and L'_kf such that $L_if \in A((D_i \times D) \cap G_{\varepsilon,i}), i = 1, \ldots, k, L'_kf \in A((D'_k \times D) \cap G_{\varepsilon,i}),$ and $f = \sum_{i=1}^k L_if + L'_kf$. Choose a function $\varphi_{k+1} \in \mathscr{C}^\infty \mathbb{C}^n$ such that $0 \le \varphi_{k+1} \le 1$, $\varphi_{k+1} = 1$ on $\partial D \cap B(z_{k+1}, \varepsilon/4)$, and $\varphi_{k+1} = 0$ on $\partial D \setminus B(z_{k+1}, 3\varepsilon/4)$. Set $w_{k+1} = (L'_kf)\overline{\partial}\varphi_{k+1}$. Then there exist strictly pseudoconvex domains D_{k+1} and $D'_{k+1} \subset \mathbb{C}^n$, such that

$$D'_{k} \cup (\partial D \setminus B(z_{k+1}, \varepsilon)) \subset D_{k+1}, \quad D'_{k} \cup (\partial D \cap \overline{B(z_{k+1}, \varepsilon/4)}) \subset D'_{k+1},$$
$$D''_{k+1} = D_{k+1} \cup D'_{k+1}$$

is strictly pseudoconvex, the domain $(D_{k+1}'' \times D) \cap G_{\varepsilon,t}$ satisfies the assumptions (C) and (CR) from [2], the form w_{k+1} extended trivially by 0, is in

$$\mathscr{C}_{01}^{\infty}((D'_{k+1} \times D) \cap G_{\varepsilon,\iota}) \cap \mathscr{C}_{01}(\overline{D''_{k+1}} \times \overline{D} \cap \overline{G_{\varepsilon,\iota}}),$$

and $\bar{\partial} w_{k+1} = 0$ there. By [2], Theorem 2, there exists

$$\alpha_{k+1} \in \mathscr{C}^{\infty}((D_{k+1}'' \times D) \cap G_{\varepsilon,t}) \cap \mathscr{C}((\overline{D_{k+1}''} \times \overline{D}) \cap \overline{G_{\varepsilon,t}})$$

such that $\overline{\partial} \alpha_{k+1} = w_{k+1}$. Set

$$L_{k+1}f = \varphi_{k+1}L'_kf - \alpha_{k+1}, \quad L'_{k+1}f = (1 - \varphi_{k+1})L'_kf + \alpha_{k+1}.$$

Then

$$L_{k+1}f \in A((D_{k+1} \times D) \cap G_{\varepsilon,t}), \quad L'_{k+1}f \in A((D'_{k+1} \times D) \cap G_{\varepsilon,t}),$$
$$f = \sum_{i=1}^{k+1} L_i f + L'_{k+1}f, \quad D \cup (\partial D \setminus B(z_i,\varepsilon)) \subset D_i, \qquad i = 1, \dots, k+1,$$

and

$$D \cup \left(\partial D \cap \bigcup_{i=1}^{k+1} \overline{B(z_i, \varepsilon/4)}\right) \subset D'_{k+1}.$$

After N-1 steps, we obtain the decomposition $f = \sum_{i=1}^{N-1} L_i f + L'_{N-1} f$. It remains to put $D_N = D'_{N-1}$ and $L_N f = L'_{N-1} f$.

We return to the proof of Lemma 2.3. We can choose N, ε and the domains D_i in Lemma 2.4 in such a way, that there exist $t_1 \in \mathbf{R}$ with $t' < t_1 < t$ (where t and t' are as in the assumption of Lemma 2.3), $\delta > 0$, and $v_1, \ldots, v_N \in \mathbb{C}^n$, such that for every $i = 1, \ldots, N$, for every s such that $0 < s < \delta$, the set $\{(z + sv_i, w) | (z, w) \in (D_i \times \overline{D}) \cap G_{\varepsilon, t}\}$ contains $(\overline{D} \times \overline{D}) \cap \overline{G_{\epsilon,t}}$. Therefore, if $f \in A(E_{\epsilon,t})$ and $f = \sum_{i=1}^{N} L_i f$ is the decomposition of f according to Lemma 2.4, then the functions $g_{i,s}(z, w)$ $= L_i f(z - sv_i, w)$ are defined in the set $(D'_s \times \overline{D}) \cap \overline{G_{\varepsilon,t_1}}$, where D'_s is some neighborhood of \overline{D} , and $g_{i,s} \to f$ uniformly on $(\overline{D} \times \overline{D}) \cap \overline{G_{\varepsilon,t_1}}$ as $s \rightarrow 0$. Given a function $g_{i,s}$, we can apply the decomposition procedure, described in Lemma 2.4, but now with respect to the second group of variables, and with respect to the domain $(D'_s \times D) \cap G_{s,t}$. We obtain then for some $N' = N'(g_{i,s})$ the decomposition $g_{i,s} = \sum_{j=1}^{N'} L_j g_{i,s}$, where for $j = 1, ..., N', L_j g_{i,s} \in A((D'_s \times D_j) \cap G_{\varepsilon,t_i})$, and $D_j \subset \mathbb{C}^n$ is a strictly pseudoconvex domain such that $D \subset D_i$ and diam $(\partial D \setminus D_i) < \epsilon$. We choose then t_2 with $t' < t_2 < t_1$ and shift the functions $L_j g_{i,s}$ similarly as

378

above, but now with respect to the second group of variables, in order to approximate every function $L_j g_{i,s}$ uniformly on $(\overline{D} \times \overline{D}) \cap \overline{G_{\epsilon,t_2}}$ by functions of the form $h_{i,j,s,r}(z,w) = L_j g_{i,s}(z,w-ru_j), u_j \in \mathbb{C}^n, r > 0$, defined in a set $(D'_s \times D''_r) \cap G_{\epsilon,t_2}$, where D''_r is some neighborhood of \overline{D} . Since $\overline{E_{\epsilon,t'}} \subset (\overline{D} \times \overline{D}) \cap \overline{G_{\epsilon,t_2}}$, we obtain the conclusion of Lemma 2.3.

Having proved Lemmas 2.2 ane 2.3, we can finish the proof of Theorem 1 for q = 1. Choose two sequences $\{t_n\}$ and $\{s_n\}$ of negative real numbers, such that $t_n, s_n \to 0$ as $n \to \infty$, $t_0 < s_1$, and $s_n < t_n < s_{n+1}$, $n = 1, 2, \ldots$ Set $E_n = E_{\varepsilon,t_n}$, $F_n = E_{\varepsilon,s_n}$. We shall construct a sequence of functions $\{u_n\}$ such that $u_n \in \mathscr{C}^{\infty}(E_n) \cap \mathscr{C}(\overline{E_n})$, $\overline{\partial}u_n = f$ on $\overline{E_n}$, and the uniform norm $||u_{n+1} - u_n||_{\overline{F}} \le 2^{-n}$. Suppose that u_1, \ldots, u_m are constructed. By [2], Theorem 2, there exists $v \in \mathscr{C}^{\infty}(E_{m+1}) \cap \mathscr{C}(\overline{E_{m+1}})$, such that $\overline{\partial}v = f$ in $\overline{E_{m+1}}$. Then $u_m - v \in A(E_m)$. By Lemma 2.3 there exists a function w holomorphic in a neighborhood of $\overline{F_m}$, such that

$$\|w-(u_m-v)\|_{\overline{F_m}}\leq 2^{-(m+1)}.$$

By Lemma 2.2 there exists a neighborhood U of $\overline{E_{m+1}}$ and a function tholomorphic in U, such that $||t - w||_{\overline{F}} \leq 2^{-(m+1)}$. Let $u_{m+1} = t + v$ on $\overline{E_{m+1}}$. Then $u_{m+1} \in \mathscr{C}^{\infty}(E_{m+1}) \cap \mathscr{C}(\overline{E_{m+1}})$, $\overline{\partial}u_{m+1} = f$ on $\overline{E_{m+1}}$, and $||u_{m+1} - u_m||_{\overline{E_m}} \leq 2^{-m}$. Since $u_{m+1} - u_m$ is holomorphic in E_m , it follows that the sequence $\{u_n\}$ converges to the function $u \in \mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$, such that $\overline{\partial}u = f$.

3. The decomposition in the algebra $A_Q(D \times D)$. We prove here Theorem 2. The method of the proof is that used by Øvrelid [5], therefore we give only the necessary modifications. It follows from the assumptions that at every point $(z, s) \in D \times D$, the germs at (z, s) of the functions g_i generate the ideal of germs at (z, s) of holomorphic functions vanishing on $\Delta(D)$. Therefore, by [3], Theorem 7.2.9, for every $f \in (A_Q)_0(D \times D)$ there exist functions $(Rf)_1, \ldots, (Rf)_N \in \mathcal{O}(D \times D)$ such that f = $\sum_{i=1}^N g_i(Rf)_i$. Let $N_i = \{(z, s) \in Q \setminus \Delta(D) | g_i(z, s) = 0\}, i = 1, \ldots, N$. Since the sets N_i are closed in $\mathbb{C}^{2n} \setminus \Delta(\overline{D})$, there exist functions $\tilde{\varphi}_i \in$ $\mathscr{C}^{\infty}(\mathbb{C}^{2n} \setminus \Delta(\overline{D}))$ such that $0 \leq \tilde{\varphi}_i \leq 1, \sum_{i=1}^N \tilde{\varphi}_i = 1$, and $\tilde{\varphi}_i$ vanishes in a neighborhood of N_i in $\mathbb{C}^{2n} \setminus \Delta(\overline{D})$, $i = 1, \ldots, N$.

Choose $\varphi_0 \in \mathscr{C}^{\infty}(\mathbb{C}^{2n} \setminus \Delta(\partial D))$, such that $0 \leq \varphi_0 \leq 1$, $\varphi_0 = 1$ in some neighborhood W of $\Delta(D)$ in $D \times D$, and $\varphi_0 = 0$ in a neighborhood of $\partial(D \times D) \setminus \Delta(\partial D)$. Set $\varphi_i = (1 - \varphi_0)\tilde{\varphi}_i$, and define $(Sf)_i = \varphi_0(Rf)_i$ $+ \varphi_i f/g_i$, i = 1, ..., N. Then $\sum_{i=1}^N g_i(Sf)_i = f$ in Q. Choose the neighborhoods W_1 and W_2 of $\Delta(D)$ in $D \times D$ such that $\overline{W_1} \subset W$ and $\overline{W_2} \subset W_1$ (the closures in Q), and let φ be a function in $\mathscr{C}^{\infty}(\mathbb{C}^{2n} \setminus \Delta(\partial D))$ such that $0 \leq \varphi \leq 1$, $\varphi = 1$ outside W_1 , and $\varphi = 0$ in W_2 . Set $L_r = \{u \in \mathscr{C}^{\infty}_{0r}(D \times D) \cap \mathscr{C}_{0r}(Q) | \overline{\partial} f \in \mathscr{C}_{0r}(Q) \}$. Define L_r^s , $0 \leq r, s$, the operators $\overline{\partial}$ and P_r on L_r^s similarly as in [5], and let $M_r^s = \{k \in L_r^s | k |_{W_1} \equiv 0\}$, and $k_0 = \sum_{i=1}^N \varphi \widetilde{\varphi}_i / g_i \otimes e_i \in L_0^1$ (here e_1, \ldots, e_N is some basis of \mathbb{C}^N). Using then Theorem 1 in place of Lemma 1 from [5], we end the proof similarly as in [5] (of course, after the suitable change of notations, according to that given above; in particular, the functions g'_i and h_i from the final part of the proof of [5], Theorem 1 should be replaced by (Sf_i) and f_i respectively).

Note. The operator $f \to (f_1, \ldots, f_N)$ from Theorem 2 is in general neither linear nor continuous. Nevertheless, if n = 1 (i.e. $D \subset C$), then every $f \in (A_Q)_0(D \times D)$ can be represented as f(z, s) = (z - s)(Rf)(z, s) with (uniquely determined) $Rf \in A_Q(D \times D)$, and the mapping $f \to Rf$ is linear and continuous (where $A_Q(D \times D)$) is equipped with the topology of uniform convergence on compact subsets of Q). Moreover, by Theorem 2, the function z - s can be decomposed with respect to the functions g_i in the form $z - s = \sum_{i=1}^N g_i h_i$ with some $h_i \in A_Q(D \times D)$. Therefore, setting $f_i = (Rf)h_i$, $i = 1, \ldots, N$, we obtain the continuous and linear operator

$$(A_Q)_0(D \times D) \ni f \to ((Rf)h_1, \dots, (Rf)h_N) \in [A_Q(D \times D)]^N,$$

such that

$$(3.1) f = \sum_{i=1}^{N} g_i f_i$$

We obtain therefore the full generalization of Theorem 2 in [4]. Similarly, if $D \subset \mathbb{C}^n$ is strictly pseudoconvex with \mathscr{C}^2 boundary, then, by a theorem of Ahern and Schneider [1], every function

$$f \in A_0(D \times D) = \left\{ f \in A(D \times D) | f|_{\Delta(D)} = 0 \right\}$$

can be decomposed with respect to the functions $z_1 - s_1, \ldots, z_n - s_n$ into $f(z, s) = \sum_{i=1}^{n} (z_i - s_i) \tilde{f}_i(z, s)$ with some functions $f_i \in A_Q(D \times D)$, and the operator $A_0(D \times D) \ni f \to (\tilde{f}_1, \ldots, \tilde{f}_n) \in [A_Q(D \times D)]^n$ is linear and continuous. Applying Theorem 2 to the functions $z_i - s_i$, $i = 1, \ldots, n$, and proceeding as above, we obtain the linear and continuous operator $A_0(D \times D) \ni f \to (f_1, \ldots, f_N) \in [A_Q(D \times D)]^N$, satisfying (3.1).

References

- [1] P. Ahern and R. Schneider, *The boundary behavior of Henkin's kernel*, Pacific J. Math., **66** (1976), 9-14.
- [2] G. M. Henkin and A. G. Sergeev, Uniform estimates of the solutions of the δ-equation in pseudoconvex polyhedra, Mat. Sbornik, 112 (1980), 523-567 (in Russian).
- [3] L. Hörmander, An Introduction to Complex Analysis in Several Variables, American Elsevier Publ. Co. Inc., New York, 1973.
- [4] P. Jakóbczak, The decomposition theorems in the bidisc, Lecture Notes Math., 1039 (1984), 245-256.
- [5] N. Øvrelid, Generators of the maximal ideals of A(D), Pacific J. Math., **39** (1971), 219-223.
- [6] G. Tomassini, Sur les algèbres $A^0(\overline{D})$ et $A^{\infty}(\overline{D})$ d'un domaine pseudoconvexe non-borné, Ann. Sci. Norm. Sup. Pisa, Sér. IV, 10 (1983), 243–256.

Received June 10, 1984 and in revised form October 1, 1984. This work was done during the author's stay at the Sonderforschungsbereich "Theoretische Mathematik" in Bonn.

Uniwersytetu Jagiellonskiego ul. Reymonta 4 Krakow, Poland