THE BOUNDARY REGULARITY OF THE SOLUTION OF THE $\bar{\partial}$-EQUATION IN THE PRODUCT OF STRICTLY PSEUDOCONVEX DOMAINS

Piotr Jakóbczak

Abstract

Let D be a strictly pseudoconvex domain in \mathbf{C}^{n}. We prove that for every $\bar{\partial}$-closed differential $(0, q)$-form $f, q \geqq 1$, with coefficients of class $\mathscr{C}^{\infty}(D \times D)$, and continuous in the set $\bar{D} \times \bar{D} \backslash \Delta(D)$, the equation $\bar{\partial} u=f$ admits a solution u with the same boundary regularity properties. As an application, we prove that certain ideals of analytic functions in strictly pseudoconvex domains are finitely generated.

1. Introduction. Let D be a bounded strictly pseudoconvex domain in \mathbf{C}^{n} with \mathscr{C}^{2} boundary. It is known ([2], Theorem 2) that given a $(0, q)$-form f in D with coefficients of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\bar{D} \times \bar{D}$, such that $\bar{\partial} f=0, q=1, \ldots, 2 n$, there exists a $(0, q-1)$-form u in $D \times D$ such that the coefficients of u are also of class $\mathscr{C}^{\infty}(D \times D)$ and continuous in $\bar{D} \times \bar{D}$, and such that $\bar{\partial} u=f$.

In this paper, using the results from [2], and the method of [6], we prove the following theorem:

Theorem 1. Let D be a bounded strictly pseudoconvex domain in \mathbf{C}^{n} with \mathscr{C}^{2} boundary. Set $Q=(\bar{D} \times \bar{D}) \backslash\{(z, z) \mid z \in \partial D\}$. Suppose that f is $a(0, q) \bar{\partial}$-closed differential form with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap \mathscr{C}(Q)$. Then there exists a $(0, q-1)$-form u with coefficients in $\mathscr{C}^{\infty}(D \times D) \cap$ $\mathscr{C}(Q)$, such that $\bar{\partial} u=f$.

As an application, we prove a following theorem on the existence of the decomposition operators in some spaces of holomorphic functions in the product domain $D \times D$: Let D and Q be as above. Denote by $A_{Q}(D \times D)$ the space of all functions holomorphic in $D \times D$, which are continuous in Q. Let $\left(A_{Q}\right)_{0}(D \times D)$ be the subspace of $A_{Q}(D \times D)$, consisting of all functions which vanish on $\Delta(D)$, the diagonal in $D \times D$.

Theorem 2. Let $g_{1}, \ldots, g_{N} \in\left(A_{Q}\right)_{0}(D \times D)$ satisfy the following properties: (i) $\left\{(z, s) \in Q \mid g_{1}(z, s)=\cdots=g_{N}(z, s)=0\right\}=\Delta(D)$; (ii) for every $z \in D$, the germs at (z, z) of the functions $g_{i}, i=1, \ldots, N$, generate
the ideal of germs at (z, z) of holomorphic functions which vanish on $\Delta(D)$. Then for every $f \in\left(A_{Q}\right)_{0}(D \times D)$ there exist functions f_{1}, \ldots, f_{N} $\in A_{Q}(D \times D)$, such that $f=\sum_{i=1}^{N} g_{i} f_{i}$.

This theorem is an improvement of several results, obtained previously by different authors. Namely, Ahern and Schneider proved in [1], that if $f \in A(D)$, then there exist functions $f_{i}(z, s) \in A_{Q}(D \times D)$, such that

$$
f(z)-f(s)=\sum_{i=1}^{n}\left(z_{i}-s_{i}\right) f_{i}(z, s), \quad z, s \in D
$$

Øvrelid showed in [5], that if $s \in D$ is fixed and $g_{1}, \ldots, g_{N} \in A(D)$ are such that $\left\{z \in \bar{D} \mid g_{1}(z)=\cdots=g_{N}(z)=0\right\}=\{s\}$ and the germs of the functions g_{i} at s generate the ideal of germs at s of holomorphic functions which vanish at s, then every $f \in A(D)$ with $f(s)=0$ can be written in the form

$$
f(z)=\sum_{i=1}^{N} g_{i}(z) f_{i}(z), \quad z \in D
$$

for some $f_{i} \in A(D)$. In [4], the validity of Theorem 2 was shown in the special case, when $D=U$-the unit disc in \mathbf{C}-and under the additional assumption, that there exists a neighborhood V of $\Delta(\partial U)$ in $\bar{U} \times \bar{U}$ such that g_{1}, \ldots, g_{N} have no zeros in $V \cap(Q \backslash \Delta(U))$. The proof given in [4] is different from that in the present paper.

It could seem unnatural to omit the boundary diagonal $\Delta(\partial D)$ from study. However, when $f \in A(D \times D)$ and $\left.f\right|_{\Delta(\bar{D})} \equiv 0, g_{i}(z, s)=z_{i}-s_{i}$, $i=1, \ldots, n$, and

$$
f(z, s)=\sum_{i=1}^{n}\left(z_{i}-s_{i}\right) f_{i}(z, s)
$$

then, as in [1],

$$
\frac{\partial f}{\partial z_{k}}(z, s)=f_{k}(z, s)+\sum_{i=1}^{n}\left(z_{i}-s_{i}\right) \frac{\partial f_{i}}{\partial z_{k}}(z, s)
$$

and so, setting $s=z$, we obtain

$$
\frac{\partial f}{\partial z_{k}}(z, z)=f_{k}(z, z), \quad z \in D
$$

therefore, the functions f_{i} need not be in $A(D \times D)$, even if $f \in$ $A(D \times D)$. In the sequel we will always assume that the considered domains are bounded. We will also use the following notations:

Given a domain $D \subset \mathbf{C}^{n}$, we denote by $\mathcal{O}(D)$ the space of holomorphic functions in D, and by $A(D)$ the algebra of all functions holomorphic in D and continuous in \bar{D}.

If $F(D)$ is a function space in the domain D, and $q=1,2, \ldots, F_{0 q}(D)$ denotes the space of all differential forms of type $(0, q)$ with coefficients in $F(D)$.

Given a set $X, \Delta(X)$ is a diagonal in the Cartesian product $X \times X$.
This work was done during my stay at Sonderforschungsbereich "Theoretische Mathematik" at the University in Bonn. I would like to express my gratitude for the hospitality and support, given to me by this institution. I am also very indebted to I. Lieb and J. Michel for helpful discussions.
2. The solution of the $\bar{\partial}$-equation. In this section we give the proof of Theorem 1 . Let $D \subset \mathbf{C}^{n}$ be a strictly pseudoconvex domain, with the defining function σ, i.e. σ is of class \mathscr{C}^{2} and strictly plurisubharmonic in some neighborhood \tilde{D} of $\bar{D}, D=\{z \in \tilde{D} \mid \sigma(z)<0\}$, and $d \sigma(z) \neq 0$ for $z \in \partial D$. For $\varepsilon>0$, set $\tau_{\varepsilon}(z, w)=\sigma(z)+\sigma(w)-\varepsilon|z-w|^{2},(z, w) \in \tilde{D} \times$ \tilde{D}. Then, if ε is sufficiently close to zero, the domain $G_{\varepsilon}=\{(z, w) \in \tilde{D} \times$ $\left.\tilde{D} \mid \tau_{\varepsilon}(z, w)<0\right\}$ is strictly pseudoconvex in $\mathbf{C}^{2 n}$ with the defining function τ_{ε}. Moreover, $\bar{D} \times \bar{D} \subset \bar{G}_{\varepsilon}$, and $\partial(\bar{D} \times \bar{D}) \cap \partial G_{\varepsilon}=\Delta(\partial D)$; therefore Q $\subset G_{\varepsilon}$ (we recall that $\left.Q=(\bar{D} \times \bar{D}) \backslash \Delta(\partial D)\right)$. It follows, that if $t<0$ is sufficiently close to 0 , the sets $G_{\varepsilon, t}=\left\{(z, w) \in \tilde{D} \times \tilde{D} \mid \tau_{\varepsilon}(z, w)<t\right\}$ are strictly pseudoconvex with \mathscr{C}^{2} boundary, and $G_{\varepsilon, t} \subset G_{\varepsilon, t^{\prime}} \subset G_{\varepsilon}$ for $t<t^{\prime}$ <0. Set $E_{\varepsilon, t}=G_{\varepsilon, t} \cap(D \times D)$.

We want to apply [2], Theorem 2 to the domains $E_{\varepsilon, t}$. Note first, that if we define the mappings $\chi^{i}: \mathbf{C}^{n} \times \mathbf{C}^{n}, \rightarrow \mathbf{C}^{n}, i=1,2$, and $\chi^{3}: \mathbf{C}^{n} \times \mathbf{C}^{n}$ $\rightarrow \mathbf{C}^{n} \times \mathbf{C}^{n}$ by $\chi^{1}(z, w)=z, \chi^{2}(z, w)=w$, and $\chi^{3}(z, w)=(z, w)$, and set, for fixed $\varepsilon>0$ and $t<0, \rho_{1}=\rho_{2}=\sigma$, and $\rho_{3}=\tau_{\varepsilon}-t$, then

$$
E_{\varepsilon, t}=\left\{(z, w) \in \tilde{D} \times \tilde{D} \mid \rho_{i}\left(\chi^{i}(z, w)\right)<0, i=1,2,3\right\}
$$

Therefore, $E_{\varepsilon, t}$ is a pseudoconvex polyhedron in the sense of [2]. We must also verify, that $E_{\varepsilon, t}$ satisfies the assumptions (C) and (CR) from [2], p. 523. Set

$$
\operatorname{grad}_{\mathbf{c}} f=^{t}\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}, \frac{\partial f}{\partial w_{1}}, \ldots, \frac{\partial f}{\partial w_{n}}\right)
$$

and

$$
\operatorname{grad}_{\mathbf{R}} f=t\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial w_{n}}, \frac{\partial f}{\partial \tilde{z}_{1}}, \ldots, \frac{\partial f}{\partial \bar{w}_{n}}\right) .
$$

The condition (C) says, that for every ordered subset $A \subset\{1,2,3\}$, $A=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$, the number $m_{A}=\operatorname{rank}\left(\operatorname{grad}_{\mathbf{C}} \chi^{\alpha_{1}}, \ldots, \operatorname{grad}_{\mathbf{C}} \chi^{\alpha_{s}}\right)$ is constant in the neighborhood of the set

$$
S_{A}=\left\{(z, w) \in \partial E_{\varepsilon, t} \mid \rho \alpha_{1}\left(\chi^{\alpha_{1}}(z, w)\right)=\cdots=\rho_{\alpha_{s}}\left(\chi^{\alpha_{s}}(z, w)\right)=0\right\} .
$$

This condition is trivially satisfied, since the mappings χ^{i} are linear. It rests to verify the condition (CR): For every pair of ordered subsets $A, B \subset\{1,2,3\}, A=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}, B=\left\{\beta_{1}, \ldots, \beta_{t}\right\}$, such that for every $\beta_{i} \in B$,

$$
\begin{equation*}
\operatorname{rank}\left(\operatorname{grad}_{\mathbf{C}} \chi^{\beta_{i}}, \operatorname{grad}_{\mathbf{C}} \chi^{\alpha_{1}}, \ldots, \operatorname{grad}_{\mathbf{C}} \chi^{\alpha_{s}}\right)>m_{A}, \tag{2.1}
\end{equation*}
$$

it follows that
(2.2) $\operatorname{rank}\left(\operatorname{grad}_{\mathbf{R}}\left(\rho_{\beta_{1}} \circ \chi^{\beta_{1}}\right), \ldots, \operatorname{grad}_{\mathbf{R}}\left(\rho_{\beta_{\mathrm{t}}}{ }^{\circ} \chi^{\beta_{t}}\right), \operatorname{grad}_{\mathbf{R}} \chi^{\alpha_{1}}\right.$,

$$
\left.\ldots, \operatorname{grad}_{\mathbf{R}} \chi^{\alpha_{s}}, \operatorname{grad}_{\mathbf{R}} \overline{\chi^{\alpha_{1}}}, \ldots, \operatorname{grad}_{\mathbf{R}} \overline{\chi^{\alpha_{s}}}\right)=t+2 m_{A}
$$

in a neighborhood of the set $S_{A \cup B}$. Note that if $3 \in A$ or $A=\{1,2\}$, then $m_{A}=2 n$, and hence for any β,

$$
\operatorname{rank}\left(\operatorname{grad}_{\mathbf{C}} \chi^{\beta}, \operatorname{grad}_{\mathbf{C}} \chi^{\alpha_{1}}, \ldots, \operatorname{grad}_{\mathbf{c}} \chi^{\alpha_{s}}\right)=2 n=m_{A}
$$

and so (2.1) is not satisfied. On the other hand, if $A=\{1\}$ or $A=\{2\}$, one can show that for every $B \subset\{1,2,3\}$ such that $A \cap B=\varnothing$, (2.1) holds. Therefore, in all those cases, we should verify (2.2).

Consider first the case $A=\{1\}$ and $B=\{2,3\}$. Then

$$
S_{123}=\left\{(z, w) \in \tilde{D} \times \tilde{D}|z, w \in \partial D,-\varepsilon| z-\left.w\right|^{2}=t\right\}
$$

and the matrix

$$
\left(\operatorname{grad}_{\mathbf{R}}\left(\rho_{2} \circ \chi^{2}\right), \operatorname{grad}_{\mathbf{R}}\left(\rho_{3} \circ \chi^{3}\right), \operatorname{grad}_{\mathbf{R}} \chi^{1}, \operatorname{grad}_{\mathbf{R}} \overline{\chi^{1}}\right)
$$

at a point $(z, w) \in \tilde{D} \times \tilde{D}$ has the form
$\left[\begin{array}{c|c|cc|cc} & \sigma_{1}(z)-2 \varepsilon\left(\bar{z}_{1}-\bar{w}_{1}\right) & 1 & & & \\ & \vdots & & & \\ & \sigma_{n}(z)-2 \varepsilon\left(\bar{z}_{n}-\bar{w}_{n}\right) & & & 1 & \\ \hline \sigma_{1}(w) & \sigma_{1}(w)-2 \varepsilon\left(\bar{w}_{1}-\bar{z}_{1}\right) & & & & \\ \vdots & \vdots & & & \\ \sigma_{n}(w) & \sigma_{n}(w)-2 \varepsilon\left(\bar{w}_{n}-\bar{z}_{n}\right) & & & \\ \hline & \sigma_{\overline{1}}(z)-2 \varepsilon\left(z_{1}-w_{1}\right) & & 1 & \\ & \vdots & & & \ddots & \\ & \sigma_{\bar{n}}(z)-2 \varepsilon\left(z_{n}-w_{n}\right) & & & & 1 \\ \hline \sigma_{\overline{1}}(w) & \sigma_{\overline{1}}(w)-2 \varepsilon\left(w_{1}-z_{1}\right) & & & & \\ \vdots & \vdots & & & & \\ \sigma_{\bar{n}}(w) & \sigma_{\bar{n}}(w)-2 \varepsilon\left(w_{n}-z_{n}\right) & & & & \end{array}\right]$
where we have set $\sigma_{i}=\partial \sigma / \partial \zeta_{i}$ and $\sigma_{i}=\partial \sigma / \partial \bar{\zeta}_{i}$. Since $z \neq w$ for $(z, w) \in$ S_{123}, this is true also for some neighborhood of S_{123}. Moreover, $\left(\sigma_{1}(w), \ldots, \sigma_{n}(w), \sigma_{\overline{1}}(w), \ldots, \sigma_{\bar{n}}(w)\right) \neq 0$ for $w \in \partial D$, since $d \sigma(w) \neq 0$ there. Therefore, in order to prove that the above matrix has rank $2+2 m_{A}=2+2 n$, it is sufficent to show, that the vectors

$$
u=\left(\sigma_{1}(w), \ldots, \sigma_{n}(w), \sigma_{\overline{1}}(w), \ldots, \sigma_{\bar{n}}(w)\right)=\left(u_{1}, \bar{u}_{1}\right)
$$

and

$$
v=\left(\bar{w}_{1}-\bar{z}_{1}, \ldots, \bar{w}_{n}-\bar{z}_{n}, w_{1}-z_{1}, \ldots, w_{n}-z_{n}\right)=\left(v_{1}, \bar{v}_{1}\right)
$$

are linearly independent (over \mathbf{C}) in some neighborhood of S_{123}. But if $z, w \in \partial D$ and $u=\alpha v$ for some $\alpha \in \mathbf{C}, \alpha \neq 0$, then $u_{1}=\alpha v_{1}$ and $\bar{u}_{1}=$ $\alpha \bar{v}_{1}$. Hence α is real. Therefore the vectors $z-w$ and $v(w)=$ $\left(\sigma_{\overline{1}}(w), \ldots, \sigma_{\bar{n}}(w)\right)$ (the normal vector to ∂D at w) are linearly dependent over \mathbf{R}, as the vectors in $\mathbf{R}^{2 n}$. This is impossible, if $z, w \in \partial D$ and z is sufficiently close to w, i.e. if t is sufficiently near 0 . Hence, if we choose t sufficiently close to 0 , vectors u and v are linearly independent over \mathbf{C}, for (z, w) in some neighborhood of S_{123}, and thus the condition (CR) is satisfied.

In order to prove (2.2) in the case $A=\{1\}$ and $B=\{2\}$ (resp. $B=\{3\})$, it suffices to note, that $S_{12}=\left\{(z, w) \in \partial E_{\varepsilon, t} \mid \sigma(z)=\sigma(w)=0\right\}$ and $\left(\sigma_{1}(w), \ldots, \sigma_{n}(w), \sigma_{\overline{1}}(w), \ldots, \sigma_{\bar{n}}(w)\right) \neq 0$ for w in a neighborhood of ∂D (resp. that since

$$
S_{13}=\left\{(z, w) \in \partial E_{\varepsilon, t}|\sigma(z)=0, \sigma(w)-\varepsilon| z-\left.w\right|^{2}=t\right\}
$$

then also

$$
\begin{aligned}
& \left(\sigma_{1}(w)-2 \varepsilon\left(\bar{w}_{1}-\bar{z}_{1}\right), \ldots, \sigma_{n}(w)-2 \varepsilon\left(\bar{w}_{n}-\bar{z}_{n}\right)\right. \\
& \left.\quad \sigma_{\overline{1}}(w)-2 \varepsilon\left(w_{1}-z_{1}\right), \ldots, \sigma_{\bar{n}}(w)-2 \varepsilon\left(w_{n}-z_{n}\right)\right) \neq 0 \quad \text { for }(z, w)
\end{aligned}
$$

in some neighborhood of S_{13}, provided that ε and t are sufficiently close to 0).

The verification of the condition (CR) for $A=\{2\}$ is similar. We obtain therefore the following corollary, which is Theorem 2 from [2] in this special situation:

Corollary 2.1. If D is as above, then there exist $\varepsilon>0$ and $t_{0}<0$ such that for every t with $t_{0}<t<0$, for every $q=1, \ldots, 2 n$, for every $f \in \mathscr{C}_{0 q}^{\infty}\left(E_{\varepsilon, t}\right) \cap \mathscr{C}_{0 q}\left(\overline{E_{\varepsilon, t}}\right)$ with $\bar{\partial} f=0$, there exists $u \in \mathscr{C}_{0 q-1}^{\infty}\left(E_{\varepsilon, t}\right) \cap$ $\mathscr{C}_{0 q-1}^{\infty}\left(\overline{E_{\varepsilon, t}}\right)$ such that $\bar{\partial} u=f$.

In the next part of the proof of Theorem 1 we apply a method used in [6]. Consider first the case $q \geq 2$. Let $f \in \mathscr{C}_{0 q}^{\infty}(D \times D) \cap \mathscr{C}_{0 q}(Q)$ with $\bar{\partial} f=0$. Take a strictly increasing sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ of negative real numbers, such that $\lim _{n \rightarrow \infty} t_{n}=0$, and $t_{1}>t_{0}$. Set $E_{n}=E_{\varepsilon, t_{n}}$ for simplicity. We shall construct a sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ of differential forms such that

$$
\begin{gather*}
u_{n} \in \mathscr{C}_{0 q-1}^{\infty}\left(E_{n}\right) \cap \mathscr{C}_{0 q-1}\left(\overline{E_{n}}\right), \quad \bar{\partial} u_{n}=f \text { in } \overline{E_{n}}, \quad \text { and } \tag{2.3}\\
u_{n+1 \mid \overline{E_{n-1}}}=u_{n \mid \overline{E_{n-1}}} .
\end{gather*}
$$

Suppose that u_{1}, \ldots, u_{m} are constructed. By Corollary 2.1, there exists $v \in \mathscr{C}_{0 q-1}^{\infty}\left(E_{m+1}\right) \cap \mathscr{C}_{0 q-1}\left(\overline{E_{m+1}}\right)$ such that $\bar{\partial} v=f$ in $\overline{E_{m+1}}$. Then

$$
\bar{\partial}\left(u_{m}-v\right)=0 \quad \text { on } \overline{E_{m}} .
$$

Hence, by Corollary 2.1, there exists $w \in \mathscr{C}_{0 q-2}^{\infty}\left(E_{m}\right) \cap \mathscr{C}_{0 q-2}\left(\overline{E_{m}}\right)$ such that $\bar{\partial} w=u_{m}-v$. Let χ be a \mathscr{C}^{∞} function on $\mathbf{C}^{2 n}$, such that $0 \leq \chi \leq 1$, $\chi \equiv 1$ on $\overline{E_{m-1}}, \chi \equiv 0$ on $(\bar{D} \times \bar{D}) \backslash E_{m}$. Then the form χw, extended trivially by 0 , is in $\mathscr{C}_{0 q-2}^{\infty}\left(E_{m+1}\right) \cap \mathscr{C}_{0 q-2}\left(\overline{E_{m+1}}\right)$, and

$$
\bar{\partial}(\chi w)=(\bar{\partial} \chi) w+\chi\left(u_{m}-v\right) \in \mathscr{C}_{0 q-1}^{\infty}\left(E_{m+1}\right) \cap \mathscr{C}_{0 q-1}\left(\overline{E_{m+1}}\right)
$$

Define u_{m+1} on $\overline{E_{m+1}}$ by $u_{m+1}=v+\bar{\partial}(\chi w)$. Then u_{m+1} satisfies (2.3). Since $\cup_{n=1}^{\infty} \bar{E}_{n}=Q$, the desired solution u is defined by setting $u=u_{n}$ on \bar{E}_{n}. Now let $q=1$. We need some auxiliary approximation lemmas:

Lemma 2.2. Let D, ε, t_{0} be as in Corollary 2.1. Let $t, t^{\prime} \in \mathbf{R}$ satisfy the condition $t_{0}<t^{\prime}<t<0$. Then there exists a neighborhood U of $\overline{E_{\varepsilon, t}}$ such that every function f holomorphic in a neighborhood of $\overline{E_{\varepsilon, t^{\prime}}}$ can be approximated on $\overline{E_{\varepsilon, t^{\prime}}}$ by functions holomorphic in U.

Proof. By Theorems 4.3.2 and 4.3.4 of [3], it is sufficient to find a neighborhood U of $\overline{E_{\varepsilon, t}}$ such that $\left(\overline{E_{\varepsilon, t^{\prime}}}\right) \hat{U}=\overline{E_{\varepsilon, t^{\prime}}}$, where $\left(\overline{E_{\varepsilon, t}}\right) \hat{U}$ denotes the holomorphic convex hull of $\overline{E_{\varepsilon, t^{\prime}}}$ in U. Fix $t^{\prime \prime}$ such that $t<t^{\prime \prime}<0$, and let $D_{\eta}=\{z \in \tilde{D} \mid \sigma(z)<\eta\}$. If $\eta>0$ is sufficiently small, then $(\bar{D})_{\hat{D}_{\eta}}=\bar{D}$, and hence

$$
\begin{equation*}
(\bar{D} \times \bar{D})_{\hat{D}_{\eta} \times D_{\eta}}=\bar{D} \times \bar{D} \tag{2.4}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left(\overline{G_{\varepsilon, t^{\prime}}}\right)_{G_{\varepsilon, t^{\prime \prime}}}^{\wedge}=\overline{G_{\varepsilon, t^{\prime}}} \tag{2.5}
\end{equation*}
$$

Set $U=\left(D_{\eta} \times D_{\eta}\right) \cap G_{\varepsilon, t^{\prime \prime}}$. Then U is a neighborhood of $\overline{E_{\varepsilon, t}}$, and it follows from (2.4) and (2.5) that

$$
\left(\overline{E_{\varepsilon, t^{\prime}}}\right)_{U}^{\wedge}=\left((\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t^{\prime}}}\right)_{U}^{\wedge}=(\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t^{\prime}}}=\overline{E_{\varepsilon, t^{\prime}}}
$$

Lemma 2.3. Let D, ε, t_{0}, t and t^{\prime} be as in Lemma 2.2. Then every function $f \in A\left(E_{\varepsilon, t}\right)$ can be uniformly approximated on $\overline{E_{\varepsilon, t^{\prime}}}$ by functions which are holomorphic in a neighborhood of $\overline{E_{\varepsilon, t^{\prime}}}$.

Proof. We prove first one result on the separation of singularities:
Lemma 2.4. Given $\varepsilon>0$, there exists $N \in \mathbf{N}$ and the strictly pseudoconvex domains $D_{i} \subset \mathbf{C}^{n}, i=i, \ldots, N$, such that $D \subset D_{i}, \operatorname{diam}\left(\partial D \backslash D_{i}\right)$ $<\varepsilon$, and such that for every $f \in A\left(E_{\varepsilon, t}\right)$ there exist functions $L_{i} f \in$ $A\left(\left(D_{i} \times D\right) \cap G_{\varepsilon, t}\right)$, such that $f=\sum_{i=1}^{N} L_{i} f$.

Proof. While \bar{D} is compact, there exist a positive integer N, and points $z_{1}, \ldots, z_{N} \in \partial D$, such that $\partial D \subset \bigcup_{i=1}^{N} B\left(z_{i}, \varepsilon / 4\right)$. Let $f \in A\left(E_{\varepsilon, t}\right)$. Choose a function $\varphi_{1} \in \mathscr{C}^{\infty}\left(\mathbf{C}^{n}\right)$, such that $0 \leq \varphi_{1} \leq 1, \varphi_{1 \mid \partial D \cap B\left(z_{1}, \varepsilon / 2\right)}=1$, $\varphi_{1 \mid \partial D \backslash B\left(z_{1}, 3 \varepsilon / 4\right)}=0$. Set $w_{1}=f \bar{\partial} \varphi_{1}$. Then there exist strictly pseudoconvex domains D_{1} and D_{1}^{\prime} in C^{n} such that $D \cup\left(\partial D \backslash B\left(z_{1}, \varepsilon\right)\right) \subset D_{1}, D \cup(\partial D$ $\left.\cap \overline{B\left(z_{1}, \varepsilon / 4\right)}\right) \subset D_{1}^{\prime}, \quad D_{1}^{\prime \prime}=D_{1} \cup D_{1}^{\prime}$ is strictly pseudoconvex, and w_{1}, extended trivially by 0 , is in

$$
\mathscr{C}_{01}^{\infty}\left(\left(D_{1}^{\prime \prime} \times D\right) \cap G_{\varepsilon, t}\right) \cap \mathscr{C}_{01}\left(\left(\bar{D}_{1}^{\prime \prime} \times \bar{D}\right) \cap \overline{G_{\varepsilon, t}}\right)
$$

and $\bar{\partial} w=0$ there. Moreover, if $D_{1}^{\prime \prime}$ is sufficiently close to D, then the domain ($\left.D_{1}^{\prime \prime} \times D\right) \cap G_{\varepsilon, t}$ satisfies the assumptions (C) and (CR) from [2]. Therefore, by [2], Theorem 2, there exists $\alpha_{1} \in \mathscr{C}^{\infty}\left(\left(D_{1}^{\prime \prime} \times D\right) \cap G_{\varepsilon, t}\right) \cap$ $\mathscr{C}\left(\left(\overline{D_{1}^{\prime \prime}} \times \bar{D}\right) \cap \overline{G_{\varepsilon, t}}\right)$ such that $\bar{\partial} \alpha_{1}=w_{1}$. Set

$$
L_{1} f=\varphi_{1} f-\alpha_{1}, \quad L_{1}^{\prime} f=\left(1-\varphi_{1}\right) f+\alpha_{1}
$$

Then

$$
L_{1} f \in A\left(\left(D_{1} \times D\right) \cap G_{\varepsilon, t}\right), \quad L_{1}^{\prime} f \in A\left(\left(D_{1}^{\prime} \times D\right) \cap G_{\varepsilon, t}\right)
$$

and $f=L_{1} f+L_{1}^{\prime} f$.
Suppose that for $k<N-1$ we have constructed the strictly pseudoconvex domains D_{1}, \ldots, D_{k} and D_{k}^{\prime} in \mathbf{C}^{n} such that $D \cup\left(\partial D \backslash B\left(z_{i}, \varepsilon\right)\right)$ $\subset D_{i}, i=1, \ldots, k$, and $D \cup\left(\partial D \cap \cup_{i=1}^{k} \overline{B\left(z_{i}, \varepsilon / 4\right)}\right) \subset D_{k}^{\prime}$, and the functions $L_{1} f, \ldots, L_{k} f$ and $L_{k}^{\prime} f$ such that $L_{i} f \in A\left(\left(D_{i} \times D\right) \cap G_{\varepsilon, t}\right), i=$ $1, \ldots, k, L_{k}^{\prime} f \in A\left(\left(D_{k}^{\prime} \times D\right) \cap G_{\varepsilon, t}\right)$, and $f=\sum_{i=1}^{k} L_{i} f+L_{k}^{\prime} f$. Choose a function $\varphi_{k+1} \in \mathscr{C}^{\infty} \mathbf{C}^{n}$) such that $0 \leq \varphi_{k+1} \leq 1, \varphi_{k+1}=1$ on $\partial D \cap$ $B\left(z_{k+1}, \varepsilon / 4\right)$, and $\varphi_{k+1}=0$ on $\partial D \backslash B\left(z_{k+1}, 3 \varepsilon / 4\right)$. Set $w_{k+1}=$ $\left(L_{k}^{\prime} f\right) \bar{\partial} \varphi_{k+1}$. Then there exist strictly pseudoconvex domains D_{k+1} and $D_{k+1}^{\prime} \subset \mathbf{C}^{n}$, such that

$$
\begin{gathered}
D_{k}^{\prime} \cup\left(\partial D \backslash B\left(z_{k+1}, \varepsilon\right)\right) \subset D_{k+1}, \quad D_{k}^{\prime} \cup\left(\partial D \cap \overline{B\left(z_{k+1}, \varepsilon / 4\right)}\right) \subset D_{k+1}^{\prime} \\
D_{k+1}^{\prime \prime}=D_{k+1} \cup D_{k+1}^{\prime}
\end{gathered}
$$

is strictly pseudoconvex, the domain $\left(D_{k+1}^{\prime \prime} \times D\right) \cap G_{\varepsilon, t}$ satisfies the assumptions (C) and (CR) from [2], the form w_{k+1} extended trivially by 0 , is in

$$
\mathscr{C}_{01}^{\infty}\left(\left(D_{k+1}^{\prime} \times D\right) \cap G_{\varepsilon, t}\right) \cap \mathscr{C}_{01}\left(\overline{D_{k+1}^{\prime \prime}} \times \bar{D} \cap \overline{G_{\varepsilon, t}}\right)
$$

and $\bar{\partial} w_{k+1}=0$ there. By [2], Theorem 2, there exists

$$
\alpha_{k+1} \in \mathscr{C}^{\infty}\left(\left(D_{k+1}^{\prime \prime} \times D\right) \cap G_{\varepsilon, t}\right) \cap \mathscr{C}\left(\left(\overline{D_{k+1}^{\prime \prime}} \times \bar{D}\right) \cap \overline{G_{\varepsilon, t}}\right)
$$

such that $\bar{\partial} \alpha_{k+1}=w_{k+1}$. Set

$$
L_{k+1} f=\varphi_{k+1} L_{k}^{\prime} f-\alpha_{k+1}, \quad L_{k+1}^{\prime} f=\left(1-\varphi_{k+1}\right) L_{k}^{\prime} f+\alpha_{k+1}
$$

Then

$$
\begin{gathered}
L_{k+1} f \in A\left(\left(D_{k+1} \times D\right) \cap G_{\varepsilon, t}\right), \quad L_{k+1}^{\prime} f \in A\left(\left(D_{k+1}^{\prime} \times D\right) \cap G_{\varepsilon, t}\right), \\
f=\sum_{i=1}^{k+1} L_{i} f+L_{k+1}^{\prime} f, \quad D \cup\left(\partial D \backslash B\left(z_{i}, \varepsilon\right)\right) \subset D_{i}, \quad i=1, \ldots, k+1,
\end{gathered}
$$

and

$$
D \cup\left(\partial D \cap \bigcup_{i=1}^{k+1} \overline{B\left(z_{i}, \varepsilon / 4\right)}\right) \subset D_{k+1}^{\prime}
$$

After $N-1$ steps, we obtain the decomposition $f=\sum_{i=1}^{N-1} L_{i} f+L_{N-1}^{\prime} f$. It remains to put $D_{N}=D_{N-1}^{\prime}$ and $L_{N} f=L_{N-1}^{\prime} f$.

We return to the proof of Lemma 2.3. We can choose N, ε and the domains D_{i} in Lemma 2.4 in such a way, that there exist $t_{1} \in \mathbf{R}$ with $t^{\prime}<t_{1}<t$ (where t and t^{\prime} are as in the assumption of Lemma 2.3), $\delta>0$, and $v_{1}, \ldots, v_{N} \in \mathbf{C}^{n}$, such that for every $i=1, \ldots, N$, for every s such that $0<s<\delta$, the set $\left\{\left(z+s v_{i}, w\right) \mid(z, w) \in\left(D_{i} \times \bar{D}\right) \cap G_{\varepsilon, t}\right\}$ contains $(\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t_{1}}}$. Therefore, if $f \in A\left(E_{\varepsilon, t}\right)$ and $f=\sum_{i=1}^{N} L_{i} f$ is the decomposition of f according to Lemma 2.4, then the functions $g_{i, s}(z, w)$ $=L_{i} f\left(z-s v_{i}, w\right)$ are defined in the set $\left(D_{s}^{\prime} \times \bar{D}\right) \cap \overline{G_{\varepsilon, t_{1}}}$, where D_{s}^{\prime} is some neighborhood of \bar{D}, and $g_{i, s} \rightarrow f$ uniformly on $(\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t_{1}}}$ as $s \rightarrow 0$. Given a function $g_{i, s}$, we can apply the decomposition procedure, described in Lemma 2.4, but now with respect to the second group of variables, and with respect to the domain $\left(D_{s}^{\prime} \times D\right) \cap G_{\varepsilon, t_{1}}$. We obtain then for some $N^{\prime}=N^{\prime}\left(g_{i, s}\right)$ the decomposition $g_{i, s}=\sum_{j=1}^{N^{\prime}, l_{1}} L_{j} g_{i, s}$, where for $j=1, \ldots, N^{\prime}, L_{j} g_{i, s} \in A\left(\left(D_{s}^{\prime} \times D_{j}\right) \cap G_{\varepsilon, t_{1}}\right)$, and $D_{j} \subset \mathbf{C}^{n}$ is a strictly pseudoconvex domain such that $D \subset D_{j}$ and $\operatorname{diam}\left(\partial D \backslash D_{j}\right)<\varepsilon$. We choose then t_{2} with $t^{\prime}<t_{2}<t_{1}$ and shift the functions $L_{j} g_{i, s}$ similarly as
above, but now with respect to the second group of variables, in order to approximate every function $L_{j} g_{i, s}$ uniformly on $(\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t_{2}}}$ by functions of the form $h_{i, j, s, r}(z, w)=L_{j} g_{i, s}\left(z, w-r u_{j}\right), u_{j} \in \mathbf{C}^{n}, r>0$, defined in a set $\left(D_{s}^{\prime} \times D_{r}^{\prime \prime}\right) \cap G_{\varepsilon, t_{2}}$, where $D_{r}^{\prime \prime}$ is some neighborhood of \bar{D}. Since $\overline{E_{\varepsilon, t^{\prime}}} \subset(\bar{D} \times \bar{D}) \cap \overline{G_{\varepsilon, t_{2}}}$, we obtain the conclusion of Lemma 2.3.

Having proved Lemmas 2.2 ane 2.3, we can finish the proof of Theorem 1 for $q=1$. Choose two sequences $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ of negative real numbers, such that $t_{n}, s_{n} \rightarrow 0$ as $n \rightarrow \infty, t_{0}<s_{1}$, and $s_{n}<t_{n}<s_{n+1}$, $n=1,2, \ldots$. Set $E_{n}=E_{\varepsilon, t_{n}}, F_{n}=E_{\varepsilon, s_{n}}$. We shall construct a sequence of functions $\left\{u_{n}\right\}$ such that $u_{n} \in \mathscr{C}^{\infty}\left(E_{n}\right) \cap \mathscr{C}\left(\overline{E_{n}}\right), \bar{\partial} u_{n}=f$ on $\overline{E_{n}}$, and the uniform norm $\left\|u_{n+1}-u_{n}\right\|_{\bar{F}} \leq 2^{-n}$. Suppose that u_{1}, \ldots, u_{m} are constructed. By [2], Theorem 2, there exists $v \in \mathscr{C}^{\infty}\left(E_{m+1}\right) \cap \mathscr{C}\left(\overline{E_{m+1}}\right)$, such that $\bar{\partial} v=f$ in $\overline{E_{m+1}}$. Then $u_{m}-v \in A\left(E_{m}\right)$. By Lemma 2.3 there exists a function w holomorphic in a neighborhood of $\overline{F_{m}}$, such that

$$
\left\|w-\left(u_{m}-v\right)\right\|_{\overline{F_{m}}} \leq 2^{-(m+1)} .
$$

By Lemma 2.2 there exists a neighborhood U of $\overline{E_{m+1}}$ and a function t holomorphic in U, such that $\|t-w\|_{\bar{F}} \leq 2^{-(m+1)}$. Let $u_{m+1}=t+v$ on $\overline{E_{m+1}}$. Then $u_{m+1} \in \mathscr{C}{ }^{\infty}\left(E_{m+1}\right) \cap \mathscr{C}\left(\overline{E_{m+1}}\right), \bar{\partial} u_{m+1}=f$ on $\overline{E_{m+1}}$, and $\left\|u_{m+1}-u_{m}\right\|_{\bar{F}_{m}} \leq 2^{-m}$. Since $u_{m+1}-u_{m}$ is holomorphic in E_{m}, it follows that the sequence $\left\{u_{n}\right\}$ converges to the function $u \in \mathscr{C}^{\infty}(D \times D) \cap$ $\mathscr{C}(Q)$, such that $\bar{\partial} u=f$.
3. The decomposition in the algebra $A_{Q}(D \times D)$. We prove here Theorem 2. The method of the proof is that used by Øvrelid [5], therefore we give only the necessary modifications. It follows from the assumptions that at every point $(z, s) \in D \times D$, the germs at (z, s) of the functions g_{i} generate the ideal of germs at (z, s) of holomorphic functions vanishing on $\Delta(D)$. Therefore, by [3], Theorem 7.2.9, for every $f \in\left(A_{Q}\right)_{0}(D \times D)$ there exist functions $(R f)_{1}, \ldots,(R f)_{N} \in \mathcal{O}(D \times D)$ such that $f=$ $\sum_{i=1}^{N} g_{i}(R f)_{i}$. Let $N_{i}=\left\{(z, s) \in Q \backslash \Delta(\underline{D}) \mid g_{i}(z, s)=0\right\}, \quad i=1, \ldots, N$. Since the sets N_{i} are closed in $\mathbf{C}^{2 n} \backslash \Delta(\bar{D})$, there exist functions $\tilde{\varphi}_{i} \in$ $\mathscr{C}^{\infty}\left(\mathbf{C}^{2 n} \backslash \Delta(\bar{D})\right)$ such that $0 \leq \tilde{\varphi}_{i} \leq 1, \sum_{i=1}^{N} \tilde{\varphi}_{i}=1$, and $\tilde{\varphi}_{i}$ vanishes in a neighborhood of N_{i} in $\mathbf{C}^{2 n} \backslash \Delta(\bar{D}), i=1, \ldots, N$.

Choose $\varphi_{0} \in \mathscr{C}^{\infty}\left(\mathbf{C}^{2 n} \backslash \Delta(\partial D)\right)$, such that $0 \leq \varphi_{0} \leq 1, \varphi_{0}=1$ in some neighborhood W of $\Delta(D)$ in $D \times D$, and $\varphi_{0}=0$ in a neighborhood of $\partial(D \times D) \backslash \Delta(\partial D)$. Set $\varphi_{i}=\left(1-\varphi_{0}\right) \tilde{\varphi}_{i}$, and define $(S f)_{i}=\varphi_{0}(R f)_{i}$ $+\varphi_{i} f / g_{i}, i=1, \ldots, N$. Then $\sum_{i=1}^{N} g_{i}(S f)_{i}=f$ in Q. Choose the neighborhoods W_{1} and W_{2} of $\Delta(D)$ in $D \times D$ such that $\overline{W_{1}} \subset W$ and $\overline{W_{2}} \subset W_{1}$
(the closures in Q), and let φ be a function in $\mathscr{C}^{\infty}\left(\mathbf{C}^{2 n} \backslash \Delta(\partial D)\right.$) such that $0 \leq \varphi \leq 1, \varphi=1$ outside W_{1}, and $\varphi=0$ in W_{2}. Set $L_{r}=\{u \in$ $\left.\mathscr{C}_{0 r}^{\infty}(D \times D) \cap \mathscr{C}_{0 r}(Q) \mid \bar{\partial} f \in \mathscr{C}_{0 r}(Q)\right\}$. Define $L_{r}^{s}, 0 \leq r, s$, the operators $\bar{\partial}$ and P_{r} on L_{r}^{s} similarly as in [5], and let $M_{r}^{s}=\left\{k \in L_{r}^{s}|k|_{W_{1}} \equiv 0\right\}$, and $k_{0}=\sum_{i=1}^{N} \varphi \tilde{\varphi}_{i} / g_{i} \otimes e_{i} \in L_{0}^{1}$ (here e_{1}, \ldots, e_{N} is some basis of \mathbf{C}^{N}). Using then Theorem 1 in place of Lemma 1 from [5], we end the proof similarly as in [5] (of course, after the suitable change of notations, according to that given above; in particular, the functions g_{i}^{\prime} and h_{i} from the final part of the proof of [5], Theorem 1 should be replaced by ($S f_{i}$) and f_{i} respectively).

Note. The operator $f \rightarrow\left(f_{1}, \ldots, f_{N}\right)$ from Theorem 2 is in general neither linear nor continuous. Nevertheless, if $n=1$ (i.e. $D \subset \mathbf{C}$), then every $f \in\left(A_{Q}\right)_{0}(D \times D)$ can be represented as $f(z, s)=$ $(z-s)(R f)(z, s)$ with (uniquely determined) $R f \in A_{Q}(D \times D)$, and the mapping $f \rightarrow R f$ is linear and continuous (where $A_{Q}(D \times D)$ is equipped with the topology of uniform convergence on compact subsets of Q). Moreover, by Theorem 2, the function $z-s$ can be decomposed with respect to the functions g_{i} in the form $z-s=\sum_{i=1}^{N} g_{i} h_{i}$ with some $h_{i} \in A_{Q}(D \times D)$. Therefore, setting $f_{i}=(R f) h_{i}, i=1, \ldots, N$, we obtain the continuous and linear operator

$$
\left(A_{Q}\right)_{0}(D \times D) \ni f \rightarrow\left((R f) h_{1}, \ldots,(R f) h_{N}\right) \in\left[A_{Q}(D \times D)\right]^{N},
$$

such that

$$
\begin{equation*}
f=\sum_{i=1}^{N} g_{i} f_{i} . \tag{3.1}
\end{equation*}
$$

We obtain therefore the full generalization of Theorem 2 in [4]. Similarly, if $D \subset \mathbf{C}^{n}$ is strictly pseudoconvex with \mathscr{C}^{2} boundary, then, by a theorem of Ahern and Schneider [1], every function

$$
f \in A_{0}(D \times D)=\left\{f \in A(D \times D)|f|_{\Delta(D)}=0\right\}
$$

can be decomposed with respect to the functions $z_{1}-s_{1}, \ldots, z_{n}-s_{n}$ into $f(z, s)=\sum_{i=1}^{n}\left(z_{i}-s_{i}\right) \tilde{f}_{i}(z, s)$ with some functions $f_{i} \in A_{Q}(D \times D)$, and the operator $A_{0}(D \times D) \ni f \rightarrow\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right) \in\left[A_{Q}(D \times D)\right]^{n}$ is linear and continuous. Applying Theorem 2 to the functions $z_{i}-s_{i}, i=1, \ldots, n$, and proceeding as above, we obtain the linear and continuous operator $A_{0}(D \times D) \ni f \rightarrow\left(f_{1}, \ldots, f_{N}\right) \in\left[A_{Q}(D \times D)\right]^{N}$, satisfying (3.1).

References

[1] P. Ahern and R. Schneider, The boundary behavior of Henkin's kernel, Pacific J. Math., 66 (1976), 9-14.
[2] G. M. Henkin and A. G. Sergeev, Uniform estimates of the solutions of the $\bar{\partial}$-equation in pseudoconvex polyhedra, Mat. Sbornik, 112 (1980), 523-567 (in Russian).
[3] L. Hörmander, An Introduction to Complex Analysis in Several Variables, American Elsevier Publ. Co. Inc., New York, 1973.
[4] P. Jakóbczak, The decomposition theorems in the bidisc, Lecture Notes Math., 1039 (1984), 245-256.
[5] N. Øvrelid, Generators of the maximal ideals of $A(D)$, Pacific J. Math., 39 (1971), 219-223.
[6] G. Tomassini, Sur les algèbres $A^{0}(\bar{D})$ et $A^{\infty}(\bar{D})$ d'un domaine pseudoconvexe non-borné, Ann. Sci. Norm. Sup. Pisa, Sér. IV, 10 (1983), 243-256.

Received June 10, 1984 and in revised form October 1, 1984. This work was done during the author's stay at the Sonderforschungsbereich "Theoretische Mathematik" in Bonn.

Uniwersytetu Jagiellonskiego
Ul. Reymonta 4
Krakow, Poland

