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ON THE GROWTH OF MEROMORPHIC FUNCTIONS
WITH RADIALLY DISTRIBUTED ZEROS AND POLES

JOSEPH MILES

The lowest possible rate of growth of a meromorphic function f of
genus g with zeros and poles restricted to a given finite set of rays
through the origin is determined in terms of g and the rays carrying the
zeros and poles. For a > 1 the ratio T(ar,f)/T(r,f) is shown to be
bounded as r tends to infinity for all such entire functions, but not for all
such meromorphic functions.

1. Introduction. In this paper we are concerned with the rate of
growth of the Nevanlinna characteristic of meromorphic functions whose
zeros and poles are restricted to lie on a finite number of rays through the
origin. We consider the relationship between the order and lower order of
such functions as well as upper bounds for T(ar, f)/T(r, f) for a > 1.

We first specify the class of functions that we will consider. Suppose
X=1{0,0,,...0,} and {Y = 0,,,,,0,,.,,...0,} each consist of distinct
members of [0,2), are not both empty, and have an empty intersection.
For a nonnegative integer g, let ./ (X,Y) be the collection of all
functions meromorphic in the complex plane with zeros z, and poles w,
satisfying

(1.1) (1) argz, € X,
(i) argw, € Y,
1 1
(i) AR
and
) 1 1
) L e

For X # @, let £,(X) be the collection of entire functions /# (X, &).
We note it is immediate from (1.1iii) that f € # (X, Y) has order A > g.

Our principal result (Theorem 1) enables us to determine the mini-
mum of the lower orders p of f&€.# (X,Y) by applying a certain
criterion, essentially geometric in character, to the sets

(12) S,=f{e™:1<j<M}u{-e™ M+1<j<L)

147
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for 0 < k < gq. Theorem 1 extends earlier results of Edrei and Fuchs [1, p.
308], Gol’dberg [5] and [6, pp. 338—344], and Steinmetz [11], who obtained
the sharp bounds p > ¢ for fe &, (X) if M=1 ([1] and [S]) and
p = max(0,q — 1) for f € &,(X) if M = 2 ([5] and [11)).

THEOREM 1. Let the nonnegative integer p = p(q, X,Y) be associated
with the class # (X, Y) in the following way.

(a) Ifg=0, p=0.

(b) Suppose q > 1. For each integer m,, 0 < m, < g, consider the
system of ¢ — m, + 1 equations

M L

(1.3) Yage ™~ Y a,e* =0, my<k=<gq,
j=1 j=M+1

subject to the following conditions:

(1.4) (1) a,; =0, my<k<gq, 1<j<L;

L
(i1) Zakj=1, my <k <gq;
j=1
and
(iii) forl1<j<0L,ifa,;=0
thena, ;=0 fork <k’ < q.
If, for every m,, 0 < m, < q, system (1.3) has solutions satisfying condi-
tions (1.4), let p = 0. Otherwise let p be the largest my, 0 < m, < q, for

which system (1.3) has no solutions satisfying (1.4).
Then for all f € M (X, Y), we have

a5 0 im0
and
(i1) rlirrclo Zl(or—g’{—)_ =o0ifp=0.

Furthermore, given y(r) — oo as r — oo, there exists f € M (X, Y)
such that

(1.6) () timinf ig ){ 2 =0 ifp>0,

and
.. ... T(r,f) .
f— = = 0.
(i) hrrggl Y(r)logr 0 ip=0
Clearly (1.5) asserts that f &€ .# (X,Y) has lower growth at least
order p, maximal type, and (1.6) asserts that this result is best possible. It
is trivial that p = q if Y= & and M = 1, giving the result for entire



GROWTH OF MEROMORPHIC FUNCTIONS 149

functions with zeros on a single ray in [1] and [5]. If Y = & and M = 2,
an easy verification gives p > max(0, g — 1), in agreement with the result
in [5] and [11].

A geometric interpretation can be given to the integer p in most cases.
Let us suppose that p > 1 and note that (1.3), (1.4i), and (1.4ii) express
the fact that 0 is in the convex hull of S, (defined in (1.2)) for m, < k < gq.
For p > 1 we thus have in the cases where we may ignore the rather
technical condition (1.4iii) that p is the largest integer m, < g for which 0
does not lie in the convex hull of S, .

It would perhaps be helpful to consider an example in which the
above geometric interpretation of p fails, i.e. an example in which
condition (1.4ii1) plays an essential role. Suppose X = {0,7/4,7/3},
Y = @, and g = 4. It is elementary that the only solution of (1.3) with
k = 4 subject to (1.4i) and (1.4ii) is
(1.7) ag=1/2, a,=1/2, and a, =0.

Similarly the only solution of (1.3) with k = 3 satisfying (1.4i) and (1.4ii)
is
(1.8) ay, =1/2, a;, =0, and a,;; =1/2.
There is no solution of (1.3) with & = 2 subject to (1.4i) and (1.4ii). Thus
from (1.4iii), (1.7), and (1.8), it is clear that p = 3, even though 2 is the
largest integer m, not exceeding 4 for which 0 is not in the convex hull of
A Y ‘
Although Theorem 1 gives complete information concerning possible
lower growth rates of f € 4 A(XY) in terms of ¢, X, and Y, it does not
give information in terms of ¢ and L alone concerning possible lower
growth rates of a function of genus ¢ with zeros and poles restricted to
any L distinct rays. It would be of interest to determine

p(q, L) = infp(q, X,Y),
where X and Y vary over all disjoint sets in [0, 277) whose union has L
members, and also to consider only entire functions and to determine
r.(q, M) = infp(q, X, @),
where X varies over all sets of M members in [0, 27).

From [1], [5], and [11] we have
(1.9) p.(g, M) =max(0,g — M + 1)
for M =1 or M = 2. The possibility of extending (1.9) to other values of
M is considered in [11]. In particular it is shown there that if M is a
positive integer and X C [0,27) consists of M members, then

inf wp(f)=max(0,g — M +1),
feg,(x)
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where, for general X, ¢ (X) is the subclass of &,(X) consisting of
functions with zeros regularly distributed on each ray, and, for sets X
whose members are themselves regularly distributed in [0,27), ,(X) =
E(X).

Theorem 1 shows that (1.9) does not hold in general. Suppose, for
example, that X = {0, 7 /180, 7/90} and g = 120. Using Theorem 1, we
have

©.(120,3) < p(120, X, @) =90 < 120 — 3 + 1.

The quantity p (g, M) has also been studied by E. V. Gleizer. It is my
understanding that Gleizer, in a paper [4] submitted to the Ukrainian
Journal of Mathematics simultaneously to the submission of this paper,
showed

p.(g,3) = max(O, —g— — )

Gleizer also obtained a result for entire functions very close to Theorem 1
applied to & ( X).
The estimate

p(q. M) > [SLM]

appears in [2, p. 25]. (The lower growth of entire functions of infinite
order with radially distributed zeros is also dealt with in [2, p. 25].) An
exact determination of (¢, L) and pn (g, M) remains open in the general
case, as does the probably easier question of whether or not p(q, L) =

r.(q, L).
We also consider the ratio T(ar, f)/T(r, f) for f € M (X, Y).

THEOREM 2. For a > 1 and f € €,(X) of finite order A, there exists
K = K(\, a, X) > O such that

(1.10) T(ar,f) <KT(r,f), r>r(f).

Theorem 2 generalizes to meromorphic functions in many, but not all,
cases. A discussion of the possibility of such a generalization appears in
§4.

It is elementary that (1.10) implies

. T(r+1,f)

lim ————~=1.
r—-*rEo T( r, f)
(Compare to Corollary 2 of [5].) In [12] it is shown that (1.11) implies that
the Nevanlinna deficiency is independent of the choice of the origin. From
Theorem 2 we thus conclude that any entire function of finite order for

(1.11)
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which the Nevanlinna deficiency is origin dependent cannot have its zeros
restricted to a finite number of rays through any one point. (See for
example [8].)

We conclude the Introduction by collecting certain elementary facts
needed in the proofs of Theorem 1 and Theorem 2. Our arguments
depend heavily on the Fourier series of log|f(re”®)|, where f has the form

(112) /() = (exph(e) T o) — (exph(2)s().

E(z, q) is the Weierstrass factor of genus g,
E(z,q9)= (1 - 2)exp(z + z22/2 + --- +2%/q),

and
h(z)= Y dpem, |z]< co.
m=1
Letting
c.(r,f)= 21—'”‘[)2” e ™ log| f(re™) | 49,
we have

(1.13) (1) co(r,f) = N(r,0) — N(r,0);
i)  c,(r.f)=c(r.f), m<O0;

() cnlrif) =2 4 co(rg)

and

d
) eulrif) = Zr"+ c0lr.)

e {2 (B 2 (2))
(3 ()

m>q+1.
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A derivation of these formulas, originally due to F. Nevanlinna [10],
can be found in many places, including [9]. Letting m,(7, f) and m,(r, f)
denote the L' and L? norms of log|f(re’’)| respectively, we observe
trivially from Nevanlinna’s first fundamental theorem that for each inter-
ger m

le,.(r, f)I _ my(r,[)
2 =7 2

We shall need the following elementary lemma.

(1.14) <T(r,f) <m,(r,f)+ N(r, ).

LEMMA A. Suppose m; <m, < --- <m, and n, <n, < --- <n,
are nonnegative integers. If w is any permutation of {1,2,...,k} other than
a7(j)=k—-j+1,1<j<k, then

k k
(1.15) Yman < Y mn, .
j=1 j=1

Proof. Since 7(j) # k — j + 1, there exist 1 < j; < j, < k with 7( ;)
< @ (j,). Certainly

MR,y tMin.y=mn,y+tmn.,+ (mjz - mjl)(”w(m - ”w(jn)-

We have

Roiipy ™ Mgy > 0

since 7( j,) > 7(j,). Since m, > m, we conclude

m_hn‘”(.h) + mjzn 7(J2) > m/lnﬂ(jz) + mjzn”(./l)’

proving the permutation 7 is not a permutation that minimizes the right
side of (1.15).

2. Proof of Theorem 1. We first prove (1.5). Certainly (1.5ii) is
trivial by (1.1iii). We thus restrict our attention to the case p > 1. With no
loss in generality we suppose f(0) = 1. We let z,; denote the zeros of f on
argz =0, 1 <j <M, and let z,; denote the poles of f on argz =6,
M+1<j<L Forl<j<L weletn/(t)be the counting function of
{z,;} and for p < k < g define

(2.1) Akf(’)E‘zli{ ) ((lzr-l)k—(@)k)}

Iz, 1< \\ 19

L) ()
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For0 < n < g welet

l1<j<Mand),

T

J: M+1<J<Landzlz G oo},
vj

22 @ {
(i) ={6:jeC},
(i) {

v

and
(iv) Y,={6: j€D,}.
Certainly
(2.3) X,cX,,, and Y,CY,,,, O<n<gqg-1.

We note by (1.1iii) that X, U ¥, ¢ X U Y.
For0 <n < g,let

(2‘4) anp(an_Xn’Y— }fn)a

where p(g, X, Y) is the function defined in the statement of Theorem 1. It
follows easily from (2.3) and (2.4) that

2.5 PE<p, P14, 0<n<gqg-—-1.
n n+1

From (2.5) we conclude there exists n,, p < n,< g, such that
Pn, = No- Weselectsuchan ng andset p” = p, , C’ = {1,2,..., M} = C
X' =X-X,D={M+1,M+2,...,L}-D,,and Y=Y - 7Y,.
We establish the following lemma.

LEMMA B. The equation
(2.6) Y oaye P — Y aye?h =0
jec’ jeD’
has no solutions satisfying
(2.7) (1) a,; >0, jeEC' UD,

and

(i1) > a,=1

jec’'uD’

Proof of Lemma B. Since p’ > p > 1, the definition of p’ implies that
p’ is the largest integer m, < g for which the system

(2.8) Y age - Y a, e =0, my<k<gq,
jec’ jeD’
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has no solutions satisfying

(2.9) (1) a,; =0, jeC'UD' , my<k<gq;
(ii) )> a,=1, my<k<gq;
jecC'up’
and

(iii) forje C’u D’ ifa, ;=0
then a,,, = Ofor k <k’ < gq.

If p’ = g, the truth of Lemma B is immediate from the definition of p’. If
p’' < g, welet
(2.10) {akj: p’+1sk$q,jeC’UD’}
be a solution of (2.8) with m, = p” + 1 satisfying (2.9). If solutions {a, :
J € C'U D’} of (2.6) exist satisfying (2.7), the combination of {a, :
J € C"U D’} with {a,;} given by (2.10) yields a solution of (2.8) with
m, = p’ satisfying conditions (2.9), including (2.9iii). This contradicts the
definition of p’ and proves Lemma B.

Returning to the proof of Theorem 1, we conclude from Lemma B
that

S~p, = {e“l’lof: jE C'} U{—e_ip’@; VAS D'}

lies in a closed halfplane H with boundary line / passing through the
origin and that there exists j, € C’ U D’ with e 7% & [ If e'* € [ for
some real a we have

(2.11) sin(p’Bj0 + a) #0
and, since §p, CH,

—1p'8 -ip'
2 Ay (r)e?h — 3 A, (r)e "
jec’ jeD’ .

> Ap,ﬂ)(r)lsin(p’ﬂj0 + a)l

(2.12)

We represent f in form (1.12) and note from (1.13iii) and (2.1) that
M L
(2.13) cy(r.g) =2 A, (r)e s — 3 A4, (r)e 7"
J=1 j=M+1
From (2.1), (2.2) with n = n, and the fact that p’ = n,, we conclude

(2.14) (i) A, =0(r?), je&C uD,

and
A, (r
(i1) lim —’”(, )
r— 00 r

= o0, jec’uD.
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From (2.11), (2.12), (2.13), and (2.14) we have

ey (7, 8)l . Ap,jo(r)lsin(p’ﬂjo + a)]

’

r? r?

(2.15) + 0(1) -

as r — oo. From (1.13iii), (1.14), and (2.15) we conclude
T(r.f) L T(rf) | lcpf(r,f)l N AGT U T

p - 7
r r? 2rP 2r? 4

as r — oo, finishing the proof of (1.5).

We now turn to the proof of (1.6). The case p = ¢ is comparatively
simple and we set it aside for later. We take the case p < ¢ and consider
system (1.3) with m, = p + 1 and with solutions a, , satisfying conditions
(1.4). Such solutions exist by the definition of p. Let

I=A{(k,j):p+1<k<g,1<j<L,andq, >0}

and define
max a, ;

(2.16) 0= m >1

where (k, j) varies throughout 1. Let ¢ > 0 be such that

(2.17) 40(q — p)le/* < 1.
We select j, 1 <j < L, such that
(2.18) a,.1,;>0

and define ¢’ = ¢q’(j) by
(2.19) g’ =max{k: p+1<k<gqanda,, > 0}.
Thus ¢ > q" > p.

We consider the system of ¢’ — p linear equations in ¢’ — p un-
knowns given in matrix form by

(2.20) AU, = B,
where the (i, k) entry of the (¢’ — p) X (¢’ — p) matrix A4 is

(221) gl d+k-D@-*D 0 1 <i<q -p,1<k<q —p,

the entry in the ith row, 1 <i < g’ — p, of the column matrix U, is
denoted by ug,_,. +1(J), and the entry in the ith row of the column matrix
B, is

8—(q—q'+i—1)2/2_

(2.22) a

q—i+1,j
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Our first objective is to show that the (unique) solution U; of (2.20)
has all positive entries. Since the only entry of U, is clearly positive if
q' = p + 1, we temporarily (through equation (2.35)) suppose ¢’ > p + 1.

Certainly the determinant of A4 is positive. Lemma A and (2.21) imply
that among the (¢’ — p)! terms comprising det 4, the dominant one is the
product of the entries on the principal diagonal and that in fact

det 4

8h

(2.23) 0<1-((¢ —p)—1e<

<1+((¢ = p) -~ Ve,

where

q9-pr
h = Z (q-—q’+i~1)(q’—i+1).
i=1

We shall use Cramer’s Rule to solve for the kth entry ug_ c+1(J) of
U,1<k<gq —p For1<k<gq —p, let A, be A with the kth
column replaced by B,. Thus, by (2.22),

q—pP ) ,
(2'24) det'Ak = Z (—1)I+kaq'—1+1,/8_(q_q +1_1)2/2H1k’
i=1

where H,, is the (i, k) minor of 4.
Let "« be the largest of the moduli of the (¢’ — p — 1)! terms of H,,.
Lemma A implies that if i > k, then

k—1
(2.25) hp=2(g—q +n-1)(¢ —n+1)

n=1

1—1
+ Y (g—q +n)(g —n+1)
n=k

q-p
+ Y (g—qg+n-1)(q¢ —n+1),

n=i+1
where of course a given sum is omitted if its lower limit of summation
exceeds its upper limit (for instance the second sum if i = k or the third
sum if i = g’ — p). Elementary algebra leads from (2.25) to
2
i

, . ,
(2.26) hzk=D(q,q,k,P)+5“§+l(4—(1)

for some function D(4q, q’, k, p) independent of i.
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Similarly, for i < k, we have by Lemma A
i—1
(2.27) hy=2(g—q +n-1)(q —n+1)
n=1

+ i (¢g—¢ +n-2)(¢g —n+1)

n=i+1
q-p

+ 2 (g=q¢+n-1)(¢ —n+1)
n=k+1

23

= D(g,q" k) +h+ 5 =S +ilg - q).

Direct calculation from (2.26) and (2.27) shows for i > k that
(2.28) ho—3g—q +i—1) =Di(q.q" .k, p) +i/2
for some function D,(q, q’, k, p) independent of i and for i < k that

(229)  h,—i(g—q +i-1)=D(q.q" k p)+k—i/2.

From (2.28) and (2.29) we conclude for 1 < k < ¢’ — p that

(2.30) Fthu—3lg—q + k- 1)2
= min (h,-3(qg-q +i-1))

Certainly for1 <i<gq’—pand1 < k < g’ — p we have
|Hyl< (g —p —1)te"
and thus by (2.30)forl <i<q’ — p, i # k,
(2.31) e @ V2 H | < (g — p — 1)1/ 2@ d +h-122)
From (2.16), (2.17), and (2.31) we conclude for 1 < k < q’ — p that

q9-p ) )
(2.32) Y (1) ay g @ Y2

=1
i+ k

~—

1/2+h—(g—q +k=1)% /2
< (¢’ "P)!Qaq’—kﬂ,;e /2 (ad "

h—(q—q' +k=1)?/2
< Ay, B /4.
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The reasoning leading to (2.23), applied to H,, rather than det 4,
yields

(2.33) 1<1-((¢—p-1)1—1)e

Hkk

shkk

<1+((¢ —p—-1)"-1)e.

Upon combining (2.24), (2.32), and (2.33), we conclude

<

(2.34) det A, > a, ;. @ D2/4 5 0,

Cramer’s Rule in conjunction with (2.23) and (2.34) thus yields
. detA, ,

(2.35) uy_(J) = dotd 0, l<k<q -p.

Certainly this conclusion also holds in the trivial case ¢’ =p + 1,
when (2.20) is a 1 X 1 system. We remark that an examination of (2.23),
(2.24), (2.32), and (2.33) shows that for small ¢ > 0 the solution of (2.20)
is approximately the solution of the system (2.20) with A4 modified so that
its entries off the principal diagonal are 0.

We next modify the linear system (2.20) in such a way that the
solutions are in fact positive integers. For p + 1 < m < q” we consider
the system of equations

(2.36) Fo(by,byyosby iy iy s ytt, y)

q-p )
= m — —(g—-m)*/2
= kzlbk Uy g1~ Gy jE = 0.

We do not indicate the dependence of F,, upon j in the notation.
We let Py(j) be the point in 2(¢” — p) dimensional Euclidean space
given by

PO(.]) = (eq—q’7 8q—q'+1, LR eqﬁp‘—la ug’(j)a ug’—l(j)a ) u2+1(j))'
From (2.20) we have

Fm(PO(.])):O) P+ISMSq'

We also have

(2.37) 8(1';;+1>1”;+2’~--’F’) =q_"!
A(by, byy... by ) p!

Po(J)
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where A is the determinant of the (¢’ — p) X (¢’ — p) matrix whose (i, k)
entry is b+~ with

= o4—q +k-1
b,=¢ .

Evidently we have

q-p
(2.38) A= ( l—[b,{’ V+0,
k=1

where V' is the van der Monde determinant associated with the distinct
numbers b;,1 < k < g’ — p.

In view of (2.37) and (2.38), we may apply the Implicit Function
Theorem to assert the existence of § > 0 independent of j, a cube E; of
side § in ¢’ — p dimensional Euclidean space centered at

(g () uya(D)s- s g a (),

and positive C' functions ¢,, ¢,,...,9,_, defined on E; such that if
p+1<mc<q,then

(2.39) Fm(tpl(uq,, s tipi1), @ty ),

Qg p(Ugsnsthy1), Uty s, uPH) =0

for(ugp,uy_q,...,u,,1) €E;.
For a positive integer », let R, > 0 independent of j be such that

(2.40) SRZ* > 1.
Select B € (0,1) and then let (u,, u,_y,...,u,,,) € E; be such that
(2.41) Ry—k+1 = R‘i'+”uq'_k+1, l<k<gq -p,

is a positive integer. This choice is possible by (2.40).
Let

(2'42) oy = (Pk(uq’i uq’—l""’“p-!-—l)’ 1<k = q’ - P-

Let g; be the Weierstrass product of genus ¢’ having a zero of multiplic-
ity n_,; at t,e'%, where

(2.43) t, =R, 1<k<gq —p.

(We suppress the dependence of g; on » in the notation as well as the
dependence of n,_, ., and ¢, on both j and ».)
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For p + 1 < m < q’, we calculate the quantity
9-prp, q9-p
_ q—k+1 ’ _
(2.44) ey = L~ = RUTPTM Y afug i
k=1 k k=1
_ 4+ B— — — 2 2
= R1Y B mamJE (g=m)7/2

where in the first step we use (2.41) and (2.43) and in the second step we
use (2.36), (2.39), and (2.42).

From (1.13ii1) and (2.44) for all r > ¢, = t,(j), 1 <k < q’ — p, we
havefor p + 1 <m < ¢/,

(2.45) c,(r.g)= %n—cmje""”af + O(n(r,O, gj))

R‘i'*’ﬁ r m 2
) w4 01,0, 5,)

14

From (1.13iv), (2.19), and (2.45) we see that in fact

R7+E N 4
v (_r_) am’jev(q——m)2/2e—1m9j

(2.46) cm(r,gj) = R

2m

+ O(n(r,O, gj))
for r>t,(j),1<k<q —p,forall m, p+1<m<x<gq, and for all j
satisfying (2.18).
For j not satisfying (2.18), we let g, = 1. Thus (2.46) holds for all j,
l1<j<L,allm, p+1<mc<gq,and all large r.
Recalling that g, in general depends on », we define

M L
f= jI;Ilgj/j=lA_/II+1gj-

Letting n(r, f,) = n(r,0, f,) + n(r, o, f,), we then have by (2.46) for all
largerand p+1<m<gq,

RIE [y
en(r 1) = |

m
_) g~ (a—m?/2

2m \ R,

M L
{ E amje—im% - Z amje-—im@} + O(n(r,f,,)).
j=1

j=M+1

From (1.3) we conclude for large r that

rr(y(r)"”

47) e,(r. )= 0(n(r. 1) s =EEN—,

pt+tl<mx<aqg.
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We now suppose p > 1 and let

o= 3 (6 (2

r

(Compare to (2.1).) From (1.13iii) we have for 1 < m < p and sufficiently
large r

(2.48) lem(r £ < 4,(r, 1) < rP(4(r)) " /8/p 2.

From (1.13iv) we have

n(r.f) _ r(w(r)”

(2.49) ea(r.f) < T < 2
for m > g + 1 and sufficiently large r. Certainly
(2.50) N(r, f,) < r?(y(r))"" /89

for large r. From Parseval’s formula, (1.14), (2.47), (2.48), (2.49), and
(2.50) we have

» , 1/2
(2.51) T(r,f,) < N(r.f,) + my(r, f,) < -r*(%z))—

for sufficiently large r.
The proof in the case 0 < p < q is completed by taking

f= Ulf”’

where f, is a function of the sort just constructed and the sequence R,
tends to infinity very rapidly. (The product converges by (2.41) and
(2.43).) We consider a sequence r, — oo such that

Rv<5n'<'Rv+P

If the R,’s are sufficiently widely spaced, we easily calculate from (1.13iv)
that

(2.52) T(r,, ﬁ fk)sz(r,, ﬁ fk)sl.

k=v+1 k=v+1

From (2.51) we have (since 7, > R,) that
@53 T TLA) < X 7000 + logr < 2 (4(2)
k=1 k=1

The combination of (2.52) with (2.53) completes the proof of (1.61) in the
case p < q.
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In the case 0 = p < ¢, the discussion following (2.47) applies with
only the trivial modifications that (2.48) is omitted, »” is replaced by log r
in (2.50) and (2.51), and r/ is replaced by logr, in (2.53). This proves
(1.6i1) in the case p < g.

The construction is much simpler if p = g. We assume without loss of
generality that X # &. In this case f can in fact be taken to be entire with
zeros only on the ray argz = 6, € X. We choose a sequence R, increasing
rapidly to infinity. We select 8 € (0,1) and let f, be the [R?*#] power of
the Weierstrass factor of genus g with zero at R,e'®. If p > 0, the
discussion from (2.48) through (2.53) applies to yield (1.6i). Note this case
is far simpler than the p < g case since no reference need be made to
(2.47). Finally, if 0 = p = ¢, we again omit (2.48), replace r? by logr in
(2.50) and (2.51), and replace r? by logr, in (2.53). This completes the
proof of Theorem 1.

An examination of the proof of (1.6) shows the function we have
constructed has order ¢ + B where 0 < 8 < 1. By letting B8 vary with », a
function of any order in [¢, g + 1] can be produced satisfying (1.6).

3. Proof of Theorem 2. Without loss of generality we may presume
a = 2 and f(0) = 1. It follows from a theorem of Weyl [13, Satz 16] that
there exists p > A > ¢ such that

(3.1) cospd, > 1/2, 1<j<M.

Details of the argument establishing the existence of such a p appear in
[3] or [7]. As before we let {z,} denote the zeros of f and write
n(r) = n(r,0). We represent f in the form

1(2) = (exph(:)TTE( Z.q).
where the polynomial # is given by
h(z) = Zk: d,z".
m=1
If Kk > g+ 1and d, # 0, it is elementary that
T(r,f) ~ I—é’-‘—'r" = ltjr—klr",

implying
(32) T2r,f) <22'T(r,f),  r>r(f).
Thus we suppose k < g.



GROWTH OF MEROMORPHIC FUNCTIONS 163

From (1.13iii) and (1.13iv) we have

63 0 ef5s)-3(E)

(i) cu2r.f)="2@r)"

@ el L p )

and

) 1 zZ,\" 2r\"
@ aenn--gm T (2] 5 (2],
lz,|<2r |z,|>2r
m>=q+1.
Critical to our argument is the following inequality (3.4), which
bounds the number of zeros near |z| = r in terms of T(r, ). We have, by
(1.14), (3.1), and (3.3ii1),

(e =n(5)) =3, y (m)

We conclude that

(3.4) n(2r) — n(r/2) < p2*?™4T(r, f).
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Since n(r/2) < 2T(r, f), we see that in fact
(3.5) n(2r) < p2*?*37(r, f).
Using (3.31)) we havefor1 <m <gand r > 0

(3.6) 4-m(52ﬂ(2r)'"+-21; ) (Ei)m)

|z,|<r/2 Z

d (r)'" 1 r\”
Sk 5 1)
212 2m 2 i=r/2 2z,
r 1 2z \"
ce(ng) ek T ()
2 2m|z,,|sr/2 r

We conclude from (1.14), (3.3i1), (3.5), and (3.6) that for 1 < m < g and
r>0

(D) leu@r)l<|%@n" + 5= ¥ (2)'”|+n(2r)

2m iz=2r\ 2 m
eyt
- m\2’ 2m \2 ’

< (2272 + p22P ) T(r, f) < p2277+ST(r, f).

We next consider m > g + 1 and let

We distinguish two cases. First suppose p + 1 < m. From (1.14), (3.1),
and (3.31ii) we conclude

(38) 2m|Bl< ¥ (”)p

z,|>2r ]Z”'
< 22p+l Z r p<22p+1 Z r\?
- 2z - 2z
lz,>2r \ % l2,1>r/2 \ <%
27 \ 7
=2 pe (2 f)+ X (=2
P12 iz<r2\ T

<2277 4pT(r, f) + n(r/2)) < p227**T(r, f).
Next suppose ¢ + 1 < m < p. We have
) s (2) o hn,

2m r/2<|z,|<2r

14
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Certainly
69 amiml=la(3f) 5y £ ()
: =167+ 3m r
lz,|<r/2
<2T(r,f) +n(r/2)/2m < 3T(r, f).
By (3.4) we have
r
(310)  |Byl= 5 (n(2r) - n(3)) < B2 7(r, 1),
Combining (3.9) and (3.10) we conclude for ¢ + 1 < m < p that
(3.11) |B| < %W“T(r,f).
From (3.8) and (3.11) we have for all m > g + 1 that
(3.12) |B| < %24P+4T(r,f).
From (3.3iv), (3.5), and (3.12) we conclude
(3.13) len2r, )] 1Bl + 2 < 2ywoesyy, )

form=>gqg+ 1land r> 0.
Certainly for r > 0 by (3.5)

(3.14) N(2r) = N(r) +(N(2r) — N(r))
T(r,f) + n(2r) < p222*%T(r, f).
From (3.7), (3.13), and (3.14) we conclude
(315 myrfY= X leCrnnl

< (p224p+12 + qu224p+12 + 4p228p+10)T(r,f)2.
Since T(2r, f) < m,(2r, f) for the entire function f, (1.10) follows from
(3.2) and (3.15) with
(3.16) K = K(X,2, X) = max(22*1, p247+5(5 + 21)'%).

We observe that p depends on A and X, as in turn does the entire right
side of (3.16). This completes the proof of Theorem 2.

4. Concluding remarks. The conclusion of Theorem 2 holds for the
class A (X,Y) provided the numbers 0,, 6,,..., 0, are linearly indepen-
dent over the integers. It follows in this case from Weyl’s theorem [13,
Satz 16] that there exists p > A such that

cos pb, > y1/2, 1<j<M,
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and

cospb, < —y1/2, M+1<j<L.
The proof given in §3 may be adapted in this situation to f € # (X, Y)
with only trivial modifications.

If XU Y is linearly dependent over the integers, the conclusion of
Theorem 2 may fail for the class # (X, Y). For example, let X = {#6,}
where 6, = 0 and let Y = {#6,,60,,0,,0;} where 6, =2x(j —1)/5,2<
< 5. Trivially there exist a;, > 0 for 1 <j < 5 and all positive integers k
such that

5
(4.1) a e — Y a, e =0.
j=2
Suppose g and J, are arbitrary integers subject only to the condition
1 < g <J, By a construction based on our proof of (1.6), we may
produce R, = o, B, = o0, and

(42) =) =TIE( £.a)/TIE( L)

having the following properties:
(4.3) (1) argz, € X,

(i) argw, € Y,

(i) R, <lz| < B,R,,

(iv)  R,<|w|<B,R,,

(v) cn(R,,f)=0, g+1l<m<lJ,
and

() len(R, gy < 2ERe L) sy
where n(r, f,) = n(r,0, f,) + n(r, 0, f,).

Only minor adaptations of the construction of the f,’s used in the
proof of (1.6) are needed to produce f,’s satisfying (4.3). In the present
context, J, plays the role of g in the proof of (1.6) and g + 1 plays the
role of p + 1. The careful placement (using (4.1) for ¢ + 1 < k < J,) of
the z,’s and w,’s as in the proof of (1.6) yields (4.3v); rough estimates on
the resulting function n(¢, f,) combined with (1.13iv) yield (4.3vi).

From (1.13iii), (4.3iii), and (4.31v) it is immediate that

(4.4) c,(R,,f)=0, 0<m<aq.
From (4.3) and (4.4) we have

n(an’fn)

(4.5) T(R,.f,) < my(R,, f,) < J12
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Trivially we have

(4'6) n(an’fn) < 4T(4Rn’fn)
Finally we produce f € # (X, Y) by setting
f= I:[lf,,,

where the f,’s are associated with a widely spaced sequence R, and J,
tends to infinity. Using (4.5) and (4.6) we are able to conclude

lim sup % = 00

We omit the rather lengthy details of this argument.
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