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THE FEYNMAN INTEGRAL OF QUADRATIC
POTENTIALS DEPENDING ON

TWO TIME VARIABLES

KUN Soo CHANG, G. W. JOHNSON AND D. L. SKOUG

We show that the double integral of certain quadratic potentials
depending on two time variables is in a Banach algebra Sf of functions
on Wiener space all of whose members have an analytic Feynman
integral. Corollaries are given insuring (a) that S? contains a rather broad
class of functions involving double integrals of potentials depending on
two time parameters, and (b) the existence of the Fresnel integral for
such functions.

1. Introduction. Let CΊ[O, T] denote Wiener space; that is, the space

of continuous functions x on [0, T] such that x(0) = 0. In Feynman's

original paper [13, §13] and again in the book of Feynman and Hibbs [14,

§§3-10] on path integrals, attention is drawn to functions on Wiener

space of the form

(1.1) G(x)^&φ{ffw(sl9s2;x(s1)9x(s2))ds1ds2).

Feynman obtained such functions by formally integrating out the oscilla-

tor coordinates in a system involving a harmonic oscillator interacting

with a particle moving in a potential. The double dependence on time

occurs because, as Feynman and Hibbs explain [14, p. 71], "The separa-

tion of past and future can no longer be made. This happens because the

variable x at some previous time affects the oscillator which, at some later

time reacts back to affect x."

By combining the results of this paper and another paper now in

preparation, we are able to show that a rather broad class of functions of

the form (1.1) above can be included within the transform approach to the

Feynman integral; see Corollary 4.5 below.

Quadratic potentials appear frequently in the quantum theory and

certain quadratic potentials involving double integrals will be our primary

concern in this paper. Specifically we treat functions on Wiener space of

the form

(1.2) F(x)

= expj- f f (A(slts2)(x(s1),x(s2)),(x(s1),x(s2)))ds1 ds:
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where {A(sly s2): (slys2) Ξ [0, T] 2 } is a commutative family of 2 by 2
real, symmetric, nonnegative definite matrices such that the eigenvalues
Pι(sv si) a i χ d P2(sv si) have square roots which are of bounded variation
on the rectangle Q = [0, τ] 2 . We show that such functions F are in the
Banach algebra £? of functions on Wiener space which was introduced by
Cameron and Storvick in [6]. It follows immediately from a theorem of
Cameron and Storvick [6, Theorem 5.1] that F has an analytic Feynman
integral.

We will precisely define the space Sf further on, but roughly speak-
ing, Sf consists of functions on Wiener space which are stochastic
transforms of finite Borel measures on L2[0,τ]. Let H be the space of
absolutely continuous functions γ on [0, r] which vanish at r and whose
derivatives Dy are square integrable on [0, T]. H is a Hubert space under
the inner product

(1.3) (γ1?γ2) = f{Dyi)(s){Dy2){s)ds.

Albeverio and Hoegh-Krohn's space 3^{H) of Fresnel (or Feynman)
integrable functions consists of Fourier transforms of finite Borel mea-
sures on H. The spaces Sf and ^{H) are isometrically isomorphic as
Banach algebras as was discovered by Johnson [17]. Using the connection
between the spaces Sf and ̂ (H) we are able to use our result about £f
and show that functions of the form (1.2), with an appropriate slight
modification, are in ^(H) and so are Fresnel integrable. We mention
that as an immediate consequence of this and a theorem of Truman [29,
Theorem 2], Truman's Feynman map exists for this class of functions. As
a further consequence, the sequential Feynman integral discussed in
Cameron and Storvick's recent memoir [9] exists for such functions.

The techniques of the present paper are most closely related to those
of the earlier paper [21] of Johnson and Skoug, but most of the arguments
here are considerably more complicated. It is interesting to note that while
the statement of our results involves only the one-parameter Wiener
process, the proof involves the two-parameter Wiener process (or Yeh-
Wiener process) in a natural way. The most crucial technical step in the
paper is the establishment of a stochastic integration by parts formula,
Theorem 3.1, involving a mix of Wiener space and Yeh-Wiener space.
This result may well be of some independent interest.

The only previous work of which we are aware in the rigorous theory
of the Feynman integral which involves functions of the form (1.1) is the
paper of Cameron and Storvick [4]. In that paper, the integral is interpre-
ted as a bounded linear operator from Lλ to L^ rather than as a number.
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The techniques of [4] and the conditions on W are very different than in
the present paper.

We should mention that our interest in functions of the form (1.1)
was stimulated by remarks in a recent expository essay of Nelson [24].

2. Definitions and preliminaries. Let β Ξ [0, τ ] 2 and let C2(Q)
denote Yeh-Wiener space; that is, the space of continuous functions / on
Q such that /(0, t) = f(s,0) = 0 for all t e [0, r] and s e [0, T]. Let mι

denote Wiener measure and let m2 denote Yeh-Wiener measure.
A subset A of Cx[0, τ] is said to be scale-invariant measurable

provided pA is Wiener measurable for every p > 0. A scale-invariant
measurable set N is said to be scale-invariant null provided mλ(pN) = 0
for every p > 0. A property that holds except on a scale-invariant null set
is said to hold scale-invariant almost everywhere (s-a.e.). For a detailed
discussion of this topic see [19]. The concept of s-a.e. in Yeh-Wiener space
C2(Q) is defined similarly [10].

Let F be a complex-valued function on CJ0, T] which is s-a.e.
defined and scale-invariant measurable and such that the Wiener integral

= f F(λ-^2x) dm^x)
yQ[θ,τ]

exists as a finite number for all λ > 0. If there exists a function /*(λ)
analytic in C + = (λ|λ is complex and Reλ > 0} such that /*(λ) = J{\)
for all λ > 0, then /*(λ) is defined to be the analytic Wiener integral of
F over CJ0, T] with parameter λ, and for λ in C+, we write

Let q be a real parameter (q Φ 0) and let F be a function whose
analytic Wiener integral exists for all λ in C+. If the following limit exists,
we call it the analytic Feynman integral of F over CJ0, τ] with parameter
q and we write

/•an f /% a n H ;λ

/ q F(x)dmι(x) = lim / F(x) dm^x)

where λ approaches -iq through C+.
The definition of the Banach algebra S? with which we are concerned

involves the Paley-Wiener-Zygmund (P.W.Z.) integral [25], a simple type
of stochastic integral which we now define.

Let {φj} be a complete orthonormal (CON) set of functions of
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bounded variation on [0, T]. For g in L2[0, T], let

The P.W.Z. integral is defined by the formula

/ g(s)dx(s) = Urn gn(s)dx(s)

for all x in CJO, T] for which the limit exists. Since, in §3 below we
discuss various properties of the P.W.Z. integral for functions of two
variables, we won't list the corresponding properties for functions of one
variable.

Now let M = M(L2[0, r]) be the collection of complex-valued coun-
tably additive measures on SS = &(L2[0, T]), the Borel class of L2[0, r].
M is a Banach algebra under the total variation norm where convolution
is taken as the multiplication. The Banach algebra Sf consists of functions
F on CJO, T] expressible in the form

F(x)=f exp{ifg(s)dx(s))dσ(g)
•/L2[0,τ] V ^0 /

for s-a.e. x in CJO, T], where σ is an element of M. Cameron and Storvick
show that the correspondence σ -> F is one-to-one [6; Theorem 2.1] and
carries convolution into pointwise multiplication. Letting \\F\\ = ||σ|| we
have that S? is a Banach algebra of functions on Wiener space. Further-
more the analytic Feynman integral exists for every F in SP [6, Theorem
5.1].

Finally, for the convenience of the reader, we state the following two
results that are used in §3. The first well-known result, stated in [21, p.
283], is a stochastic integration by parts formula for P.W.Z. integrals of
functions of one variable.

LEMMA 2.1. Let 0 < a < b < r. Then for mι X mλ-a.e.(x,w) e
CJO, T] X CJO, r] we have that

(2.1) fbχ(s) dw{s) = x(b)w{b) - x{a)w{a) - fbw(s) dx(s).
Ja Ja

The second result is due to Skoug [27, p. 306].

LEMMA 2.2. Let 0 < β < r. Let A be any subset of CJO, T] and let
BA = {/e C2(Q): f( ,β) ^A). Then BA is Yeh-Wiener measurable if
and only if [2/β]1/2A is Wiener measurable. Furthermore, if either set is
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measurable, we have that

(2.2) m2(BA)'m1([2/β]ι/2A).

3. Bounded variation on Q: A stochastic integration by parts formula
for Wiener X Yeh-Wiener space. The concept of bounded variation for a

function of two variables that we use in this paper was used by Hardy and

by Krause [16, p. 345]. For the convenience of the reader we briefly review

this definition.

Let Δ denote the partition of Q determined by 0 = s0 < sλ < <

sn = T and 0 = t0 < tγ < < tm = τ. A function h(s, t) is said to be

of bounded variation on Q provided the following three conditions hold:

(i) there exists a constant K such that for any partition Δ

n m

(3.1) Σ ΣHsi^tj)-h(sιJj_1)-h{si_ιJJ)Λ-h{sι^tJ_1)\<K,
i=l7=l

(ii) h(s, t) is a function of bounded variation in s for each / e [0, T],

and

(iii) h(s, t) is a function of bounded variation in t for each s e [0, T].

Hobson then points out that conditions (ii) and (iii) can be relaxed to the

requirements that h(s, t) is of bounded variation in s for one fixed value

of / and is of bounded variation in / for one fixed value of s.

The Riemann-Stieltjes integral JQh(s, t) df(s, t) is then defined in the

usual way [16]. Also see [30] for a nice discussion of the ^-dimensional

Riemann-Stieltjes integral and some of its properties.

The following proposition will be used to establish Corollary 4.2 in

§4.

PROPOSITION 3.1. Let 8 > 0 be given. Let h: Q -> [<5, oo) be such that

the partial derivatives hλ(s, t) and h2(s, t) are absolutely continuous in s for

each t and in t for each s and that the function hl2(s, t) is integrable over Q.

Then the function g(s, t) = [h(s, t)]ι/2 is of bounded variation on Q.

Proof. Let Δ denote the partition of the rectangle Q given 0 = s0 < sλ

< < sn = T and 0 = t0 < tx < < tm = T. Then

n m

Σ Σ - g(Sί, tj.j + gis,.^,tj_t)I

- Σ Σ

= Σ Σ 1 gu(s,t)dt ds
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But g(s, t) = [h(s, t))ι/1 and so we have that

Σ
/ = 1

Σ A
7 = 1

<

Next we note

and

n m s

i-iy-iίi

Λ 1 2 ( i

2 ^

that for all ($

MM)

(s,t)

{ 3 ' - l t t j ) -

f'j h12(s,

2{hϊJ
t) h

s,t)h2(

70 4[h(s,ή]

= fh21(u,

v) dv +

t)du +

1(s,t)h2(s,t)

4[h(s,t)}3/2

s,t)

3/2

dtds

*χ(5,0)

Mo

Hence for all (s, t) e β we obtain that

and

Using the above expressions it easily follows that
n m

Σ Σ

+ (16δ3)"1/2 ΓM(S) ds fN{t) dt<oo.

Thus, using equation (3.1), we see that the function g(s, t) = ]/h(s, t) is
of bounded variation on Q.

Next we give the definition of the Paley-Wiener-Zygmund integral
(generalized Riemann-Stieltjes integral) for functions of two variables. Let
{ φj} be a complete orthonormal set of functions of bounded variation on
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Q (for example the Haar functions on Q). For h in L2(Q) let

(3.2) hn(s,t)= t(h,Φj)φj(s,t).
y"=i

Then the P.W.Z. integral of h with respect to / is defined by

(3.3) [h(s,t)d2f(s,t)= lim ίhn(s,t)df(s,ή

for all / in C2(Q) for which the limit exists. Following are some useful

facts about the P.W.Z. integral.

(i) For each h in L2(Q), the P.W.Z. integral fQhd2f exists for s-a.e.

/inC 2(<2).

(ii) The P.W.Z. integral JQhd2f is essentially independent of the

CON set {Φ7}; and thus it is often convenient to let {φy} be the Haar

functions on Q.

(iϋ) If h is of bounded variation on Q, the P.W.Z. integral jQhd2f is

5-a.e. equal to the Riemann-Stieltjes integral fQhdf.

(iv) The P.W.Z. integral has the usual linearity properties,

(v) The sequence {fQhndf} converges in L2(C2(Q)) mean to jQh d2f.

For convenience we also state the following well known Yeh-Wiener

integration formula.

LEMMA 3.2. Assume that h is an element of L2(Q) and that g(u) is a

complex-valued Lebesgue measurable function on R. Then

f g([h(s,t)d2f(s,t))dm2(f)
JC2(Q) \JQ I

where the existence of either integral implies the existence of the other and

their equality.
Our next lemma gives a relationship between certain P.W.Z. integrals.

LEMMA 3.3. For each x in CJO, T] ands-a.e. fin C2(Q)

(3.4) ίx(s)d2f(s,t)= fx(s)df(s,τ).
JQ J0

Proof. We know that for each x in CJO, τ]? JQx(s) d2f(s, t) exists for

s-a.e. / in C2(Q). We also know that jζx(s)dy(s) exists for s-a.e. y in

CJOjT]. Let A = {y ^ Cι\fox(s)dy(s) doesn't exist} and let BA =

{/(-, •) e C2(<2)|/( ,τ) e A}. A is a scale-invariant null set and so, by

equation (2.2), BA is also a scale-invariant null set. Thus for each x e C1?

both sides of (3.4) exist for s-a.e. / e C2{Q).
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Let #!(*) = τ" 1 / 2 , Θ2(s\ Θ3(s),... be a CON set of functions of
bounded variation on [0, T]. Then {6^)6){t): z, j = 1,2,...} is a CON
set of functions of bounded variation on Q. Hence for s-a.e. / in C2(Q)
we have that

N N

ίx(s)d2f(s,ή = lim / \Σ E df{s,t)

N N

= Urn Σ Σ(f'fx(s)θi(s)θj(t)dtds

Q

= Urn Σ(fx(s)θi(S)ds)ίβt(s)df(s,t)

= Urn Σ(xA)[\(s)d[f(s,r)-f{stO)]
N->oo / = 1

 JO

= Urn ί[Σ(xJMs))df(s,τ)

= fx{s)df{s,τ).

The following result, Theorem 3.1, is a stochastic integration by parts
formula that plays the key role in the proof of our main result, Theorem
4.1. This formula involves a mix of Wiener space and Yeh-Wiener space
and thus is a hybrid between the stochastic integration by parts formula
(2.1) and a stochastic integration by parts formula recently discovered by
the last two authors while working on this paper. This formula involves
Yeh-Wiener space in both the integrator and the integrand. This formula
seems quite likely to be of interest, but it turned out not to be needed in
this paper and so it will not be included here.

THEOREM 3.1. Assume that h is of bounded variation on Q. Then for
mx X m ra.e.(x,/) in Cx[0,τ] X C2(β)

(3.5) [h(sl9s2)x(sι)d2f(sl9s2)

h(tl9t2)df{tl9t2))dx{*i)
[sltr]X[0,r] )
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and

(3.6) (h(s1,s2)x(s2)d2f(s1,s2)

[0,τ]X[.s2,τ]

Proof. We will establish equation (3.5) by considering three cases.

Equation (3.6) follows similarly since it is really the same formula with the

variables interchanged.

Case 1. h(sv s2) = K on Q. In this case we will first note that for

each / in C2(Q) and s-a.e. x in CJO, T]

(3.7) fίf h(tl,t2)df(tι,t2))dx(s)
J0 \Jls,τ]X[O,τ] I

0 W[5,T]X[0,T]

= κf[f(τ,τ)-f(s,τ)]dx(s)Jo

Next using Lemmas 2.1 and 2.2 it follows that for m1 X /n2-a.e.

(3.8) fx(s) df(s, T) = / ( T , T)X(T) - / / ( ί , T) dx(s).

Equation (3.5), for Case 1, now easily follows using equations (3.7), (3.8)

and (3.4).

Case 2. h(svs2) is a step-function of bounded variation on Q. (For

example, h is a Haar function or a finite linear combination of Haar

functions.).

Let 0 = α0 < aλ < < an = r and 0 = β0 < βλ < < βm = T

be a partition of Q and assume that λ ^ , 52) is equal to JK̂  on the

rectangle ζ) y = (ai-i> ad x (i^-i? βj) ^ s w e proceed it is helpful to note

that for each s e [0, T], the integral

(3.9) / h(sl9s2)df(sl9s2)
Jls,r]X[0,τ]

doesn't depend upon the values of h on the edges of the rectangles Qtj

since in forming any Riemann-Stieltjes sum for the integral we can always
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select points (sv s2) that aren't on the edges of the rectangles QijΛ On the
other hand, if we integrate the integral in (3.9) by parts we obtain the
formula

(3.10) ί Hsl9s2)(tf(sl9s2)
J[syτ]X[Q,τ]

= f(r9τ)h(τ9r)-f(s9r)h(s9τ)

- ίf(sl9 r) dh(Sι, τ) - /7(τ, s2) dh(r, s2)

+ ί f(s,s2)dh(s,s2) + ί f(sl9s2)dh(sl9s2).
J0 J[s,τ]X[0,τ]

While each of the terms on the right hand side of (3.10) may depend upon
the values of h on the edges of the rectangles Qij9 the right hand side as a
whole doe not.

The rest of the proof of Case 2 is essentially combinatorial. We
substitute for h(tv t2) on the right hand side of (3.5), use ideas from the
proofs of Lemma 3.3 and Case 1 above, simplify and obtain the left hand
side of (3.5). Recall that for each x e CJO, T], the left hand side of (3.5)
exists for s-a.e. / e C2(Q) while for each / e C2(Q) the right hand side
of (3.5) exists for s-a.e. x e Cx[09 T]. Thus for mx X m2-a.e.(.x,/) e
Q 0 , τ ] X C 2 ( δ )

f(ί h(tl9t2)df(tl9t2))jχ(si)

- Σ Γ ί f / h(ti,t2)df(tltt2))ax(sι)

n m a /

= Σ Σ / ' *v[/(α<fj8,) -f{Sι,βj) -f{aitβj_x)

= Σ E M / [

l , . , ^ ) -/{a^βj) -f(aitβj_x)
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m n

Σ Σ Σ K
n m n

Σ ΣK
i-ij-i

n m

- Σ Σ *,7*(«,-i)[/(«,^) -/(«i-i,/8,) -/(α,,^-!

n m n
+ Σ Σ Σ ΛΓy[/(α/,i8r)-/(α/_1,i8,)-/(α/,i8,_1)

i = l7 = 1 /-i + l

•[x(α,) - jcί

= (h{sι,s2)x{sι)d2f{sx,s2)
JQJQ

m n

- Σ Σ K.jxia^lfia^βj) -/(«,_!,j8y) -/(α,,
y - l 1 = 2

m « /—1

+ Σ Σ Σ

= ίh(s1,s2)x(sι)d2f(sl9s2)
JQJQ

since Σllitxίa,) - *(a,_i)] = x(a/_!). Thus equation (3.5) is established
for step-functions h of bounded variation on Q.

Case 3. General case: h is a function of bounded variation on Q. In this

case, h is certainly in L2(Q) and so we can find a sequence of stepfunc-

tions {hn} each of bounded variation on Q such that \\hn — /z | | 2 ->0as

n -> oo (For example let {fy} be the Haar functions on β and let hn be
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given by (3.2)). Next let

]\J0 \J[s}

dmι(x)dm2(f).

To establish equation (3.5) we need only show that 7 = 0 . First note,
using case 2 above, that for any integer n

C2(Q)JC1[0,τ]J0\J[s1,τ]X[0,τ]

- f [h(slts2) - hH(sι,s2)]x(s1)el2f(s1,s2) dm^x) dm2(f)

ί V l
0 \Jlsι,τ]X[0,τ]

f
C2(Q)JC1[0,r]

df(tl,t2))dx(h)

x(si)

dm2(f)

dm1(x)dm2(f).

Next we obtain bounds for the two terms on the right hand side of the
above inequality. First we will work with the second term. Using the
Fubini Theorem and Lemma 3.2 we see that

β'Ci(β) 'c1[O,τ]

/,.C1lO,τ]JC2(Q)

dmi(x)dm2(f)

dm2(f)dm1(x)

f°° ί u2\ \
I |«|exp<--χ-> du\ dm^x)

J-<x> \ l I I
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since and

1/2

Again, using the Fubini Theorem, a Wiener integration formula
corresponding to Lemma 3.2, and Lemma 3.2 we see that

/
C1{Q)JCι{O,r\

/(/ [
0 \J[sλ,τ] K[Q,τ\

/ [
C2(β)H /[ ,τ]XfO)τ]

dm^x) dm2(f)

[h(tltt2)-hM(tltt2)](ff(tltt2)l

C2(Q)\J0 \J[s,τ]X[0,τ]

\u\e-"2^2dudm2(f)

\h{h,t2)-hn{h,t2)]
]

[
[S,T]X[09T]

^tjj dsdm2(f)\

- (l)ι/2{ί^yι/2Γuiίf\h^h)-hn{h,t2)]2dt2dt,

1/2

1/2
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Combining the two estimates above we see that for all n

and so letting n -» oo we obtain 7 = 0 and hence equation (3.5) is
established.

4. The main result. In this section we first develop the main result,
Theorem 4.1, and then we proceed to establish several corollaries.

THEOREM 4.1. Assume that for s-a.e. x in CJO, T]

(4.1) F(x)

= exp(-( [ (A(sl9s2)(x(sι)9x(s2))9(x(s1)9x(s2))) ds1d52)

where {A(svs2) = (aiJ(svs2))\i, j = 1,2, (svs2) e Q) is a commutative
family of 2 by 2 real, symmetric, nonnegative definite matrices such that the
(nonnegative) eigenvaluesp1(svs2) and p2(svs2) have square roots which
are of bounded variation on Q. Then F is in the Banach algebra Sf {and so
possesses an analytic Feynman integral for all values of the parameter q).

Proof. Let

= bλl b12

[b21 b2b21 b22

be an orthogonal matrix such that

throughout Q. Let p > 0 be given. Then for a.e. x in C,[0, T] we have that

(4.2) F(px) = cxp{-p2f f(A(Sl,s2){x(Sl),x(s2)),
\ Jo Jo

{x(s1),x(s2)))ds1ds2

o Jo

(x{s1),x(s2)))dsιds2

= cxp{-p2ff(P(Sι, s2)B(x(Sl), x(s2)),

B(x(s1),x(s2)))ds1ds2
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= exp - P 2 ί ί Σ.Pj{s1,s2)\ Σ bjkx(sk)\ dsxds2

25

2 I 1 T T

= Π exp -y ί / 2p2

y-i I 2 Ό Ό
L/t=i

bjk]/pj(s1,s2)x(sk) dsλ ds:

y - i

• ί ί Σ Vfe-
\ Ό ΌU=i

l/2\

where in the last equality above we used the Fourier transform formula

\-l/2 f°° ί U2 ) I

(2τr) / exp< iuυ — — ) du = exp{

with .r fr Γ 2

Next using Lemma 3.2, Theorem 3.1, linearity, and the equation (4.2) we
see that for a.e. x in Cj[0, T],

(4.3) F(px)

2 / Γ 2

= Π ί ί
J=iJC2
J=iJC2(Q)

= ( f

2

Σ bjkjp(s1,s2)x(sk)

dm2(f)

exp { φVΪ / \b2i]lp2(sι,s2)x(s1)
\ JQ

(continues)
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(continued)

= [ f Qxplipy/ϊίΊf [bnMtl9t2) df1(tι,t2)
JC2(Q)JC2(Q) I J0 \J[sltτ]X[09τ]

+ b21{p2[tl9t2)

•expf ipyίl [Ί f \bU]ίpΛh7h) 4fiUi> h)

9t2) df2(tl9t2)]jjχ(s2)

dm2(f1)dm2(f2).

Now let T: C2(Q) X C2(Q) -* L2[0, T] be defined by the formula

T(AJ2)(s) -

+ b2φ2(tl9t2) df2(tl9t2)\

fi ί {b12JPι(h>t2) dfx(tl912)

tx,t2) df2(tl9t2)].

Applying the integration by parts formula [30, Theorem 4] to each
term in the definition of ^(/^/j) and looking at each term in the
resulting expression separately, one sees without too much difficulty that
Γ(/1,/2)( ) is in L2[0, r] and that T is a continuous linear operator from
C2(Q) X C2(Q) to L2[0,τ]. Furthermore, substituting T(fl9f2) into the
last expression in equation (4.3) above, we obtain that for a.e. x in CJO, T]

(4.4) F(px)

πp{iPfτ(fl9f2)(s) dx(s)} Λ*2(/i) dm2(f2).

Finally, by the change of variables theorem [15, p. 163], we see that for
a.e. x e CJO, T]

F(px)= [ &φίipfg(s)dx(s))dσ(g)
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where σ = (m2 X m2) ° T~ι is an element of M = M(L 2[0, r]). Thus

(4.5) F(x) = / expfί Γg(s) dx(s)\ dσ(g)

for s-a.e. Λ: e CJO, T] and so F is an element of the Banach algebra 5*\

Our first corollary establishes a slight generalization of the relatively

simple single Wiener variable case of our earlier paper [21, p. 281].

COROLLARY 4.1. Let F(x) = exρ{-fQa(s)x2(s)ds} for s-a.e. x in

CJO, T] where a(s) is a nonnegatiυe function on [0, T] such that ]/a(s) is of

bounded variation. Then F is in if {and so possesses an analytic Feynman

integral for all values of the parameter q).

Proof. Let

0 0

The family {A(sly s2)} satisfies the hypotheses of Theorem 4.1. Hence G

is in Sf where

G(x) = exp{- ί [ (A(s1,s2)(x(s1),x(s2)),(x(sι),x(s2)))dsιds

= exp|-J j -a(sι)x2(sι)ds1dsή = expj-J a(s1)x2(s1) ds^.

In our next corollary, we put the hypotheses on the functions atj

rather than on the eigenvalues pλ and p2. This allows one to see that

certain F ' s of the form (4.1) are in S? without computing the eigenvalues.

COROLLARY 4.2. Let the matrices [A(sl9s2) = ( ^ ( ^ I ? ^ ) ) I z> j =

1,2} be a commutative family of 2 by 2 real, symmetric, positive definite

matrices. Suppose that the functions atj are continuous on Q and have first

partial derivatives which are absolutely continuous in sλ for each s2 and are

absolutely continuous in s2 for each sλ and that the functions d2aiJ/ds2ds1

are integrable on Q. Then the eigenvalues pι(sl9s2) and p2(sl9s2) have

square roots which are of bounded variation on Q and so the conclusions of

Theorem 4.1 hold.

Proof. Since

Λ9s2)B ι =
l 2 P2(s1,s2)
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we see that

Pj(sl9s2) = bf1an(s1,s2)

+ 2bjlbJ2al2(s1,s2) + bj2a21{sι,s2) for j = 1,2.

Now the /?y's are continuous and positive on Q and so there exists δ > 0

such that Pj(sv s2) > 8 > 0 on Q for j = 1,2. Also the functions

Λand
3^ ' ds2 ds2dsλ

satisfy the appropriate conditions in Proposition 3.1 and so [pj(sl9 s2 ] 1 / 2

is of bounded variation on Q for j = 1,2.

COROLLARY 4.3. Let

be a real constant, symmetric, and nonnegative definite matrix. Then

Pι(sv s2) = pλ andp2(sv s2) = p2 are simply nonnegative constants and so

the conclusions of Theorem 4.1 hold.

EXAMPLE. Let F(x) be given by (4.1) where A is a real, constant,

symmetric, and positive definite matrix. In this case, although the calcu-

lation is rather lengthy, we can explicitly compute the analytic Feynman

integral of F(x). It turns out that for all real q Φ 0

11/2

(4.6)

where a = [2r3i(an + a22)/q]ι/2. We will simply outline the calcu-

lations.

First using (4.1) and the fact that BAB'1 = P (and so px + p2 = au

4- a22 and al2 = Pιbubl2 + p1b1Λb22) it follows that for all λ > 0

i ds

2a,

ί F(λ-^x) dmM = ί exp(- T ( ^\ + α 2 2 ) fx2(s)
JC1[0,r) JC1[O,τ] { Λ ^0

Next letting g(λ) ^ [2τ(αn 4- fl22)/λ]1/2 and applying an integra-
tion theorem of Cameron and Martin [5, Theorem la, p. 34] to the last
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expression above, simplifying, and finally using a well-known Wiener
integration formula we obtain

ί F(λ-^2x) dmx(x)

= (cos[τ/g(λ)])-1/2

Jc1[o,τ]

•( jΓsec[/g(λ)(τ - t)} dy(t)

= (sech[τg(λ)])1/2

exp(- . Qχl J/Ttanh[g(λ)(? -
o,τ] \ τ(an + a22) [Jo

sech[τg(λ)]\1/2

2 π J

for all λ > 0.
Next we will show that the last expression above is an analytic

function of λ for λ in C+= {λ|Reλ > 0}. First we note that for λ <Ξ C+,
|arg(τg(λ))| < τr/4 where we choose the branch of g(λ) that is positive
for positive λ. Next we note that the function sech z is analytic (and of
course doesn't vanish) in the open domain C \ D where

D = iz = x + yi\x = 0 and y eί-oo, -yΊ Ul^,ooj|.

Hence by [26, Theorem 3.1 on page 180], (sechz)1/2 has an analytic
branch in C \ D; we select the branch that is positive for real z. Thus
(sech[τg(λ)])1/2 is certainly analytic in λ for λ e C+.

For z = x + yi with x > 0 and -x < y < x one can show that

Λ „ / tanh 2 \ _
0 < Re < 2.
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Also 2\an\ < an + a22 since the matrix A is positive definite. Hence for

all λ ε C +

o < i + 2 α i 2

an + a22

\ -

and so

d +

 2^i2 I _ tanh[τg(λ)]

is an analytic function of λ in C+ .

Now by analytically continuing to C + and then taking the limit as

λ -> -iq9 we obtain equation (4.6).

COROLLARY 4.4. Let A(sv s2)
 Ξ g(s^ s2)A where the matrix A is as in

Corollary 4.3 and g(sv s2) is a nonnegative function whose square root is of

bounded variation on Q. Then the conclusions of Theorem 4.1 hold.

Proof. Clearly A(svs2) has the required matrix properties. Further-

more

Pi(si>si) = g(si9s2)[blιan + 2bnb12al2 + bl2a22\

and

Piisl9s2) = g(*i, J 2)[*2i*n + 2b2lb22al2 + ft2

2

2α22]

have square roots which are of bounded variation on Q.

Our next corollary depends upon a result from [12] as well as

Theorem 4.1 above. It shows that a broad class of functions G belongs to

the Banach algebra Sf.

COROLLARY 4.5. Let {A(svs2)} be as in Theorem 4.1. Let η be a

Borel measure on Q. Let θ: Q X R2 -> C be such that for all (sl9 s2) e Q,

= f expίiM^i + iu2υ2) dσ (υl9υ2)

where

(i) σ S i Λ e M(R2),

(ii) /or α// 5 e ^ ( R 2 ) ? oSi9S2(B) is a Borel measurable function of

(sl9s2)9 and

(iii) KJleL^β



QUADRATIC POTENTIALS IN TWO TIME VARIABLES 31

Then the function

G{x) = expf- ί [ (A(s1,s2)(x(sι),x(s2)),(x(s1),x(s2)))ds1ds2

+ / / Θ(sl9s2;x(s1)9x(s2))dη(sl9s2)

belongs to Sf.

Proof. Let

Gτ(x) = exp I / θ(sλ, s2; xis^, x(s2)) dη(sλ, s2)\.

Then G(x) = Gι(x)F(x) where F(x) is given by equation (4.1). By a
result in [12], Gλ belongs to Sf and by Theorem 4.1 above, F belongs to
Sf. Since Sf is a Banach algebra we have that G is an element of if.

REMARK 4.1. The most general functions shown to be in S? in [21] are
discussed in Corollary 4 of that paper. It can be shown without too much
difficulty that the single Wiener variable case of that earlier result can be
obtained as a corollary to Corollary 4.5 above.

Next we wish to establish the Fresnel integrability of certain func-
tions. Recall that we briefly described Albeverio and Hoegh-Krohn's
space ^{H) of Fresnel integrable functions in §1 above. Using Theorem
4.1 and ideas from [17], especially page 2093, we obtain Corollary 4.6
below. The essential idea is that equation(4.5) holds for each x G CJO, T]
which is absolutely continuous and whose derivative is in L2[0, τ] since
for each such x9 equation (3.5) holds for j'-a.e. / in C2(Q).

COROLLARY 4.6. For each γ in H let

(4.7) G(y) = exp{-ί ί < A(sl9s2)(y(Sl) - γ(0),γ(*2) -

>2

where {A(sly s2)} is as in Theorem 4.1. Then G is in ^{H)\ that is to say,
G is Fresnel integrable.

Using Corollary 4.6, a theorem from [12], and the fact that έF(H) is a
Banach algebra we obtain our final corollary.

COROLLARY 4.7. Let {A(svs2)}9 η and θ be as in Corollary 4.5. For
γ in H let

Gx{y) = cxpl[ffθ{s1,s2; y(Sl) - γ(0),γ(*2) - γ(0)) d η(Sl, s
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Then the functions Gx(y) and G 1 (γ)G(γ), where G(y) is given by equation

(4.7), belong to the Banach algebra

REMARK 4.2. Using extensions of the techniques developed in this

paper we conjecture that ^-dimensional versions of Theorem 4.1 and its

various corollaries could be established. That is to say, for appropriate

hypotheses on the matrix A(sl9 s 2 , . . . , Ό> the function F: Cx[0, T] -> R

defined by the formula

/?(*) = e x p f - Γ ••(«)••• Γ ( ^ ( 5 1 , . . . , J J ( X ( J 1 ) , . . . , X ( J J ) ,

(x(sι),...,x(sn)))ds1 -" dsn

belongs to Sf. We would expect to require that the eigenvalues

Pj(sl9..., sn) have square roots that are of bounded variation on the

^-dimensional rectangle [0, τ]n.
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