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A RELATIVE NIELSEN NUMBER

HELGA SCHIRMER

A relative Nielsen number N(f; X,A) for a self map /: (X,A) ->
(X, A) of a pair of spaces is introduced which shares such properties with
the Nielsen number N(f) as homotopy invariance and homotopy type
invariance. As N(f; X,A) > N(f) = N(f; X, 0 ) , the relative Nielsen
number is in the case A Φ 0 a better lower bound than N(f) for the
minimum number MF[f; X,A] of fixed points of all maps in the
homotopy class of /. Conditions for a compact polyhedral pair (X, A) are
given which ensure that the relative Nielsen number is in fact the best
possible lower bound, i.e. that N(f; X, A) = MF[f; X, A].

1. Introduction. Nielsen fixed point theory is concerned with the
determination of the minimum number MF[f] of fixed points in the
homotopy class of a given map /: X -> X. For this purpose the so-called
Nielsen number N(f) is introduced, which is always a lower bound for
MF[f] and in many cases the best possible lower bound. (See e.g. [1] and
[5] for background.) N(f) can, however, be a very poor lower bound for
MF[f] if /: {X, A) -> (X,A) is a selfmap of a pair of spaces and a
homotopy a map of the form H: (XXI,A X /) -> (X, A). To see this,
consider the case where X = B2 is a 2-disk and A = Sι the circle
bounding it. If /: (i?2, Sι) -» (J82, Sι) is a map which is of degree d on
S1, then / must have at least \d — 1| fixed points as even the restriction of
/ to S1 cannot have fewer fixed points ([1], Ch. VII C, p. 107, [5], p. 33,
Example 1). But N(f) = 1. Hence we need a "relative" Nielsen number
for maps of pairs of spaces which is a better, and ideally sharp, lower
bound for the minimum number MF[f; X,A] of fixed points in the
homotopy class of the map /: (X, A) -> (X, A).

It is the purpose of this paper to introduce such a relative Nielsen
number N(f; X,A). The definition of N(f; X,A) in §2 uses the existing
definition of the fixed point classes of a selfmap of a single space. More
precisely, N(f\ X, A) is obtained by adding the number N(f) of essential
fixed point classes of /: X -> X (i.e. of the map / considered as a selfmap
of X only) and the number N(f) of essential fixed point classes of the
restriction /: A -> A of / to A, and then subtracting the number N(f9 f)
of "common" essential fixed point classes of / and /, where a common
fixed point class of / and / is defined as a fixed point class of / which
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intersects an essential fixed point class of / . (See Definition 2.1.) This
definition of N(f; X,A) yields a positive integer which has the usual basic
properties of the Nielsen number N(f). It is homotopy invariant (Theo-
rem 3.3) and homotopy type invariant (Theorem 3.5), and it is a lower
bound for MF[f; X, A] which is always at least as good as N(f) (Theo-
rems 3.1 and 3.2). The computation of relative Nielsen numbers need not
be harder than the computation of ordinary Nielsen numbers, and we
show in some examples in §2 that it can be easy to find N(f; X, A) once
N(f) and N(f) are known.

In the final three sections we consider the question whether N(f; X9A)
is in fact the best possible lower bound for MF[f; X, A], i.e. whether
there exists a map g: (X9A) -> (X9A) homotopic to a given map / :
(X9A)-* (X9A) which has precisely N(f;X9A) fixed points. The
Minimum Theorem 6.2 shows that this is the case under fairly general
assumptions on (X9A). The construction of a map with a minimal fixed
point set proceeds, as usual, in two steps. In the first one we homotope /
to a fix-finite map, but we take care to ensure that this map has only N(f)
fixed points on A (Theorem 4.1). In the second one, which is carried out
in §6, we unite fixed points in X — A whenever possible.

The assumptions of the Minimum Theorem 6.2 must by necessity
include those which are needed if A = 0 or A = X, but this is not
sufficient. The new asumption which arises in our situation is that A can
be "by-passed" in X (Definition 5.1), which means that every path in X
which joins two points in X— A can be homotoped away from A.
Fortunately this condition is satisfied in interesting cases including the
one where A is the boundary of a manifold M, but it shows that the
relative Nielsen number N(f; X, A) introduced here may not be the final
solution of the problem of finding the least number of fixed points
MF[f; X, A] for maps of pairs of spaces.

The material in this paper is not presented in a self-contained form, as
two expositions of Nielsen theory are easily accessible in the books by R.
F. Brown [1] and Boju Jiang [5]. We assume that the reader is familiar
with the corresponding results from these books concerning the Nielsen
number N(f) of a map / : X -> X, but refer to them frequently. As the
Minimum Theorem 6.2 is a main goal of this paper, it is more convenient
to emphasise the definition of N(f) by F. Wecken [11] which uses paths
between fixed points rather than the original one by J. Nielsen [7] which
uses covering spaces. In the final section we also assume that the reader is
familar with the proof of the minimum theorem for maps of Boju Jiang
[2].
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2. The relative Nielsen number N(f;X,A). In this section we
introduce the relative Nielsen number N(f; X,A) for maps of pairs of
spaces /: (X,A)-+(X,A)9 obtain some immediate consequences of the
definition and illustrate it by some examples. The definition of N(f; X,A)
uses the concepts of an essential fixed point class and of the Nielsen
number for a compact (metric) ANR. They can e.g. be found in [1, Ch.
VI, p. 85 ff.] and [5, Ch. I, p. 4 ff.].

If (X, A) is a pair of spaces and /: (X, A) -» (X, A) is a map, we
shall write /: A -> A for the restriction of / to A, and f: X -* X for the
map /: (X, A) -» (X,A) if the condition that f(A) c A is immaterial.
Hence homotopies of /: (X9A)-*(X,A) are maps of the form H:
(XxI,A X /) -> (X, A) (where / is the unit interval), and homotopies
of /: X -> X are maps of the form H: X X / -> X This abuse of the
symbol / is deliberate, and not likely to cause confusion. We write Fix /
for the fixed point set {x e X | f(x) = x} and F for a fixed point class of
/: X -* X. The essential fixed point set Fix ef of /: X -» X will be defined
as

Fix e / = U{x e X\ x lies in an essential fixed point class of /}.

Similarly we write F for a fixed point class of /: A -» A, and Fix^/ for its
essential fixed point set.

DEFINITION 2.1. Let /: (X, A) -> (X, A) be a map of a pair of spaces.
A fixed point class F of /: X -> X is a common fixed point class offandf
if ¥ Π FixefΦ 0 . It is an essential common fixed point class offandf if
it is an essential fixed point class of /: X -> X and a common fixed point
class of / and /.

An equivalent definition, which is useful in some later proofs, is
contained in the corollary of the next lemma.

LEMMA 2.2. Let f: (X9A) -* (X,A) be a map, let ¥ be a fixed point
class of f: X -> X and let ¥ be a fixed point class of f: A -» A. If
¥ Π F Φ 0, then F c F .

Proof. According to the definition of a fixed point class x0, xx e Fix/
belong to the same fixed point class F of /: X -> X if there exists a path
p = {xt}t<=ι i n X from x0 to xλ so that the paths p and / ° p =
{f(xt)}t<=r a r e homotopic. (By a homotopy of paths we always mean one
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which keeps end points fixed.) Hence if fl0 E F Π F and aλ e F, then
there exists a path {at}t(Ξl in A from a0 to aλ so that {f{at)}t€Ξl is
homotopic to {at}t(Ξ f in A. As A c X this implies αx ̂  F.

COROLLARY 2.3. Le//: (X,A)^> (X, A) be a map. A fixed point class
F of f: X —> X is a common fixed point class of f and f if and only if it
contains an essential fixed point class off: A -> A.

We write N(f,f) for the number of essential common fixed point
classes of / and /. If X is a compact ANR, then N(f,f) is finite as
0 < N(fJ-) < N(f).

DEFINITION 2.4. Let (X9A) be a pair of compact ANR's. If /:
(X9A) -> (X9A) is a map, then its relative Nielsen number N(f; X9A) is
defined as

N(f; X, A) = N(f) + N(f) - N(fj).

Hence N(f; X, A) is a finite integer > 0, and equals N(f) if X = A
or A = 0 . The next two theorems list some other cases in which the
relative Nielsen number equals an ordinary one.

THEOREM 2.5. Let (X9A) be a pair of compact ANR's and let f:
(X9A) -> (X9A) be a map.

(i) IfN(f) = 0, then N(f; X, A) = N(f),
(ii) ifN(f) = 0, then N(f; X, A) = N(f).

Proof. This is obvious from the definition, as in both cases N(f, f) =
0.

THEOREM 2.6. Let (X9A) be a pair of compact ANR's and let /:
(X, A) -> (X, A) be a map. If either X is simply connected or if X is
connected and f homotopic to the identity map id: (X, A) —> (X,A)9 then

Proof. We only have to consider the case where N(f)Φ0 and
Φ 0. If X is simply connected, then /: X -> X has one essential

fixed point class F, and /: A -» A has at least one essential fixed point
classs F. But if x G F and a e F, then α is also a fixed point of /: X -> X
and is in the same fixed point class as c, so N(f9f) = l. If X is
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connected and / homotopic to id: (X9A) -* (X9A)9 then the same
argument applies.

We finish this section with three examples which show that the
computation of N(f; X,A) can be easy once N(f) and JV(/) are known.

EXAMPLE 2.7. Let X = Bn

9 where n > 2, be an ^-dimensional ball
and let A consist of the boundary (n — l)-sphere of Bn together with k
points in the interior of Bn. If id: (Bn, A) -> (Bn, A) is the identity map,
then

N(ϊd) = (k if « is even,
{ a ) U + l if n is odd,

and hence it follows from Theorem 2.6 that

(1 if k = 0,
iV(id; B\ A) = Ik iίk>l and n is even,

I k + 1 if k > 1 and n is odd.

EXAMPLE 2.8. Let X be the solid torus in Euclidean 3-space R3 which
is obtained by rotating the 2-disk in the x1x3-plane of radius 1 and
centered at (2,0,0) about the x3-axis, and let A be the 2-dimensional
torus which bounds X. We consider R3 as C X R}9 where C is the complex
plane, and label the points of X as (reiθ, t), where reiθ e C and t e Rι

9

with 1 < r < 3, 0 < θ < 2π and -1 < / < 1. Let /: (X, A) -> (X, A) be
the map given by f(reiθ

91) = (reidθ

9 -t)9 where d Φ 1 is an integer. As any
circle of latitude is a deformation retract of X we have N(f) = \d—1\
([1], Ch. VIII, p. 107; [5], p. 21; Theorem 5.4 and p. 33, Example 1), and it
follows from [5], p. 33, Example 2 that N(f) = 2\d - 1|. The fixed point
set of / lies in ί = 0 and consists of |̂ / — 1| line segments. Each line
segment forms an essential fixed point class of / and contains two
essential fixed point classes of / o n its boundary. Hence N(f9f) = N(f)
= \d- 1|, and N(f; X, A) = N(f) = 2\d - 1|.

EXAMPLE 2.9. Let X be a disk with two holes, let T be the boundary
of X and / the reflection on the axis / (see Figure 1). Then N(f) = 1,
N(f) = 2 and N(fJ) = 1 imply N(f; X9A) = 2. As any homeomor-
phism of X which is isotopic to / maps A onto A9 it has at least 2 fixed
points. (This is the example used by Boju Jiang [3, p. 169] to explain why
in his realization theorem for the Nielsen number N(h) of a surface
homeomorphism h (see [4], Main Theorem) it is necessary to allow
isotopies through embeddings rather than through homeomoφhisms if a
boundary component of the surface is mapped onto itself in an orienta-
tion-reversing manner.)
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FIGURE 1

3. Basic properties of N(f; X9A). In this section we shall prove
that N(f; X, A) is as lower bound for the number of fixed points of the
map /: (X9A)->(X9 A) (Theorem 3.1) and is usually sharper than N(f)
(Theorem 3.2). Then we show that N(f;X9A) is homotopy invariant
(Theorem 3.3) and homotopy type invariant (Theorem 3.5).

THEOREM 3.1. (Lower bound property). If (X, A) is a pair of compact
ANR's, then every map f: (X9A)-+ (X9 A) has at least N(f; X, A) fixed
points.

Proof. Let the restriction /: A -> A of / to A have the essential fixed
point classes F1? F 2 , . . . ,F W , and let /: X -> X have the essential fixed
point classes F1? F 2 , . . . , Fπ, F π + 1 , . . . , Fr which are indexed so that the
essential common fixed point classes of / and / are F n + 1 , F n + 2 , . . . , F r .
Then

N(f; X9A) = - ( r - n) = m n.

Each fixed point class F, contains at least one fixed point at of /, and
each fixed point class F, contains at least one fixed point x} of /. If
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y = l,2, . . . , π , then Vj Π A is distinct from Fixe/, and so the set
{al9 a2,..., am, xv x2<y..., xn} consists of m + n distinct points which
are all fixed points of /: (X, A) -» (X, A).

THEOREM 3.2. // (X, A) is a pair of compact ANR 's and f: (X, A) -*
(X9 A) is a map, then N(f;% A) > N(f) andN(f; X, A) > N(f).

Proof. As it follows from Corollary 2.3 that each essential common
fixed point class of / and / contains at least one essential fixed point class
of /, we have N(fJ) < N(f) and hence N(f; X, A) = N(f) + [N(f) -
N(f9 /)] > N(f). From N(f9 f) < N(f) follows N(f; X, A) > N(f).

THEOREM 3.3. (Homotopy inυariance) If (X9A) is a pair of compact
ANR's and if the maps f0, fλ\ (X9A)-*(X9A) are homotopic, then

Proof. As it is well known that N(f0) = JV(/X) and N(fQ) = N(fx)
(see e.g. [1], Ch. VI E, Theorem 4, p. 95; [5], p. 19 Theorem 4.6), it suffices
to show that N(f9f) is invariant under homotopies H: (X X /, A X /)
-> (X, A). So let Fo be an essential common fixed point class of /0 and /0.
Then Fo contains an essential fixed point class Fo of /0 which is related
under the restriction H of H to A X / to an essential fixed point class Fx

of fv This means that, for every a0 e Fo and ax e F1? there exists a path
{at)t<=r m A from aQ to aγ so that the paths {ht(at)}t€Ξl and {at}t€Ξί

are homotopic in A (see [1], Ch. VI D and E, p. 87 ff., [5], Ch. I Theorem
2.9, p. 9).

Now let Fx be the fixed point class of fλ which contains av As
{at}t€Ξ j is a path in X from a0 e Fo to ax G FX and as Tιt(at) = h(at), the
fixed point classes Fo of /0 and Fx of fx are related under H. Hence Fx is
an essential fixed point class of fl9 and as Fx Π Fλ Φ 0, it is a common
fixed point class of fλ and fv Thus H relates essential common fixed
point classes of /0 and /0 to essential common fixed point classes of fx

and fl9 and we have N(fθ9 f0) = N(fl9 fλ).
The proofs of the next two theorems are quite analogous to those of

the corresponding theorems for N(f) which can be found in [5, Ch. I,
Theorem 5.2, p. 20 and Theorem 5.4, p. 21]. Hence we leave the proofs to
the reader. Two maps of pairs of spaces /: (X9 A) -> (X, A) and g:
(Y, B) -> (Y, B) are said to be maps of the same homotopy type if there
exists a homotopy equivalence h: (X, A) -> (Y, B) so that the maps of
pairs of spaces h © /, go h: (X9A) -> (Y, B) are homotopic.
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THEOREM 3.4. (Commutativity.) Let (X, A) and (Y, B) be two pairs of
compact ANR's. Iff: (X,A)-> (Y, B) and g: (Y,B)-*(X, A) are maps,
then N(g <> /, g ° /) = N(f ° g,f ° g) and hence

THEOREM 3.5. (Homotopy type inυariance.) Let (X, A) and (Y, B) be
two pairs of compact ANR's. Iff: (X,A)->(X, A) and g: (Y, B) -> (Y, B)
are maps of the same homotopy type, then N(f; X, A) = N(g; Y, B).

4. Fix-finite maps with minimal fixed point sets on a subspace. We
have seen, in Theorems 3.1 and 3.3, that N(f; X, A) is a lower bound for
MF[f; X, A], In the rest of this paper we want to show that, under
suitable assumptions on X and A, the relative Nielsen number N(f; X, A)
is in fact a sharp lower bound for MF[f; X, A], i.e. that there exists a map
g: (X, A) -> (X, A) which is homotopic to /: (X, A) -> (X, A) and has
precisely N(f; X, A) fixed points. In the case where A = 0 the construc-
tion of g proceeds in two stages. In the first, /: X -> X is homotoped to a
fix-finite map (i.e. to a map with a finite fixed point set), and in the
second fixed points in the same fixed point class are united (see [1], Ch.
VIII, p. 115 ff., [2]). We now carry out similar constructions for a map of
a pair of spaces /: (X, A) -> (X, A). In this section we shall homotope /
to a fix-finite map g: (X, A) -> (X, A), but already make sure that g has
only N(f) fixed points on A (Theorem 4.1).

As in the case A = 0 we now have to restrict our attention to
selfmaps of compact polyhedra, and we further have to assume that A is a
space for which N(f) can be realized. We call a compact polyhedron X a
Nielsen space if every map /: X -» X is homotopic to a map g: X -> X
which has N(f) fixed points, and if these fixed points can lie anywhere in
X. It is known that every compact connected polyhedron without a local
cut point is a Nielsen space if it is not a surface of negative Euler
characteristic [2, p. 760], and [8, Lemma 2, p. 525]. We write Cl Y, Int Y
and Bd Y for the closure, interior and boundary in X of a space Y c X.

THEOREM 4.1. Let (X9A) be a pair of compact polyhedra, X Φ A, let
X be connected and let each component of A be a Nielsen space. Then every
map f: (X, A) -> (X, A) is homotopic to a map g: (X, A) -> (X, A) so that

(i) g has N(f) fixed points which all lie on Bd A,
(ii) g is fix-finite,

(iii) all fixed points of g on X — A lie in maximal simp lexes.

Proof. We shall proceed in two steps.
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Step 1. We show that /: (X, A) -» (X, A) is homotopic to a map h:
(X9A) -» (X, A) which has the following properties:

(a) & has N(f) fixed points which all lie on Bd A9

(b) there exists a compact polyhedron B in X so that
A c X - B and h is fixed point free on Cl(X - B) - A.

To construct h, we first use the fact that each component of A is a
Nielsen space in order to homotope /: A -> A to a selfmap of A which
has iV(/) fixed points which lie on Bd^4. Let h: A -> A be the resulting
map and F: A X / -» 4̂ be a homotopy from / to A. The subpolyhedron
v4 is a strong deformation retract of some neighbourhood V of A in X
(See e.g. [10] Ch. 3.3, Cor. 11, p. 124.) Using a star covering of A with
respect to a subdivision of the triangulation of X we can find a compact
polyhedron 4̂X with A c Int Λ̂  c Aλ c F so that 5 = X — Int Aλ is a
polyhedron in X. Let i?: AXX I -* V be the restriction to Λx of the
strong deformation retraction of V onto A and let r: Ax -* A be the
retraction given by r(x) = R(x, 1). Then we can define a homotopy Fp
i4x X / -> X by

' j ( F ( ( ) 2 1 ) if I < r < 19

and use the homotopy extension property of a polyhedral pair to extend
Fx to a homotopy i7: (X X I, A X /) -> (X,A) of /. If we define
h: (X9A)-> (X,A) by h(x) = F(JC,1), then Λ is fixed point free on
C1(X- B)-AcAι-A.

Step 2. We now show that h: (X, A) -> (X, 4̂) is homotopic to a map
g: (X, .4) -> (X, Λ) which satisfies Theorem 4.1.

To do so, we write J for the barycentric metric of B and put
U = X — B. As h is fixed point free on (Cll/) — ̂ 4, there exists a δ > 0
so that d(x,h(x)) > 8 for all xGBdί/. With the help of the Hopf
construction [1], Ch. VIII A, pp. 117-119 we change the restriction hB:
B -> X of h to B to a map gβ: J? -> X which is fix-finite, has all fixed
points contained in maximal simplexes and is δ-homotopic ([1], Ch. Ill A,
p. 40) to hB. Let GB: B X / -> X be such a δ-homotopy from /*# to gB.
Then G#(;c, /) * x for all x e B d ί / .

If GΊ {((Clt/)XO)U((Bd£/)x/)U(>4 x / ) M X ^} ^ ( ^ ^ 4 ) is
given by

= |A(x) if (x,t) e ((Clί/) X 0) U(Λ X / ) ,

^ ^ ' ^ \GB(x,t) i f ( x , / ) e ( B d l / ) x J ,
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then the restriction of G' to ((Bd U) U A) X / is a special homotopy [2, p.
751], and hence extends to a special homotopy Gv: ((Clί/) XI,A XI)
-» (X,A) [2, Lemma 2.1, p. 751]. We define a homotopy G: (XX /,
A X /)-> (Jr,4)by

/ (?„(*, ί) i f ( x , 0

and a map g: (ΛΓ,Λ)-* (*,Λ) by g(x) = G(JC,1). Then g satisfies
Theorem 4.1.

5. By-passing of subspaces. The Minimum Theorem 6.2 will be
proved by uniting fixed points of the map g constructed in Theorem 4.1
whenever possible. It will clearly be necessary to assume that X and A are
triangulable Nielsen spaces, but we shall need one additional property of
(X9A) in order to realize N(f; X,A). This property is introduced in the
next definition.

DEFINITION 5.1. A subspace A of a space X can be by-passed if every
path in X with end points in X — A is homotopic to a path in X — A.

Definition 5.1 states the property in the form in which it will be used
in the proof of Theorem 6.2, but the next theorem states it in a form
which is usually easier to verify. We write /*: πλ(X — A) -> πλ(X) for the
homomorphism of the fundamental groups induced by the inclusion map.
The easy proof of Theorem 5.2 is left to the reader.

THEOREM 5.2. Let (X,A) be a pair of spaces and let X be path-con-
nected. Then A can be by-passed in X if and only if X — A is path-connected
and /*: ^(X — A) —> π^X) is onto.

Examples of spaces which can be by-passed include the boundary
Bd M or a subpolyhedron A of dimension dim A < dim M — 2 of a
triangulable manifold M. In particular, the subspaces A in Examples
2.7-2.9 can be by-passed.

The next lemma will be used in the proof of Theorem 6.2. It contains
the concept of a normal PL arc in a polyhedron X= \K\. An arc Q = #(/),
where q: I -> \K\9 is called in [2, p. 752], a normal PL arc if q maps, for
some subdivision Γ of 7, each simplex of Γ linearly into a simplex of \K\9

if it does not pass through any vertex of |JKΓ| and if q(s) lies in a maximal
simplex of |AΓ| for all but a finite number of values s ^ I and goes from
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one maximal simplex into another when s passes across any of these

exceptional values. In our setting we have enlarged this definition. If A is

a subpolyhedron of X = \K\, we say that Q is a normal PL arc in (\K\, A)

if either Q is a normal PL arc in \K\ - A or if Q Π A = {q(l)} and Q is

a normal PL arc in \K\ apart from the fact that q(l) c a n t>e a n arbitrary

point of Bd A.

LEMMA 5.3. Let X = \K\ be a compact connected polyhedron, let A be a

subpolyhedron so that X — A has no local cut point and that A can be

by-passed, and let p be a path in \K\ from a point x0 in a maximal simplex

of \K\ — A to a point xv

(i) If xχφ x0 lies in a maximal simplex of \K\ — A, then p is

homotopic to q so that q(I) is a normal PL arc in (\K\, A) and q(I) Π A =

0 ;

(ii) if xγ e Bd.4, then p is homotopic to q such that q(I) is a normal

PL arc in {\K\,A) andq(I)ΠA = {xx}.

Proof, (i) follows immediately from Definition 5.1 and [2], Lemma

3.3. If, as in (ii), xλ e Bd^4, then we pick y e \K\ — A near xτ so that

there exists a path v: I -> \K\ from xx to y with v(I) Π A = {xx} (see

Figure 2). Then the composite path p * v from JC0 to y is homotopic to a

path pf in |jfiΓ| - A, and the desired path q can be obtained from p'* v~ι

along the lines of the proof of [2, Lemma 3.3], where only one "loose end"

is used.

FIGURE 2
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6. The Minimum Theorem. The proof of the Minimum Theorem
6.2 is based on the proof of the corresponding theorem for the case
A = 0 by Boju Jiang [2, Theorem 5.2]. The assumptions on (X,A) in
Theorem 6.2 cannot be relaxed, as it is known that the Minimum Theorem
is false if A = 0 and X is a surface [6] or a polyhedron with a local cut
point [9].

We extract a part of the proof of Theorem 6.2 as Lemma 6.1, which is
the form needed here of the fact that two fixed points x0 and xλ of a map
/: X -> X can be united if the restriction of / to an arc Q from x0 to xλ

is homotopic to a proximity map [2, Lemma 2.2]. Due to Theorem 4.1 and
Lemma 5.3 we shall only have to unite fixed points which satisfy the
assumptions of the next lemma.

LEMMA 6.1. Let (X, A) = (\K\, \L\) be a pair of compact polyhedra,
where X is connected and X — A has no local cut point and is not a
2-manifold. Let x0 and xλ be two isolated fixed points of a map f:
(X, A) -> (X, A), and let Q be a normal PL arc in (\K\, A) from x0 to xl9

with Fix f Π Q = {x0, xλ). Suppose that x0 lies in a maximal simplex of
\K\ — A, and that xλ lies either in a maximal simplex of \K\ — A or on
Bd A. Then there exists an ε > 0 so that iff | Q is specially homotopic to a
map g: Q -> X with d(x, g(x)) < ε for all x e Q, then f is homotopic to a
mapf: (X,A) -> (X,A) with Fix/' = F i x / - {x0}.

Proof. Let Q = q(I), where q: I -> K, and let K' be the first
barycentric subdivision of K. Shifting the new vertices if necessary, we
can assume that Q, JC0, xλ still satisfy the assumptions of Lemma 6.1 with
respect to K'. We select ε > 0 so that d(x, g(x)) < ε for all x e Q
implies that g: Q -> X is a proximity map with respect to Kf [1, Ch. VIII
C, p. 124], [2, p. 751].

By assumption there exists a special homotopy GQ: Q X / -> X from
f\Q to g: Q -> X. We extend it to a special homotopy g: {(Q U A) X I,
A X /} -> (X, A) by putting

(GQ(x,t) iϊ(x,t)eQXl,
G(x,t) = { _

\f(x) if(x,t)eA XI,

and then use [2, Lemma 2.1] (with A U Q instead of A) to extend G to a
special homotopy H:(XXl,A X /) -> (X, A) which starts at H(x,0) =
f(x). If / " : (X9A)^(X9 A) is given by f"(x) = H(x, 1), then /"(*) =
g(x) for* G Q.
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As g: Q -> X is a proximity map with respect to K\ we can move the
fixed point x0 of / " along Q to a point JC2 which lies in a maximal
simplex |σ'| of \K'\ with xx e |σ'| in such a way that the restriction of the
map to Q remains a proximity map with respect to K'[l, Ch. VIII C,
Lemma 3, p. 128]. If Q c X - A, we can then unite x2 with xx as usual
[1, Ch. VIII C, Lemma 2, p. 126] to obtain a map /': (X,A)^>(X, A)
with Fix/' = F i x / - {JC0}.

But we still have to unite the fixed points x2 and xx in the case
Q Π Λί == {xγ). So let /x: (X, v4) -> (X, A) be a map which is homotopic
to /: (X9A) -> (AT, >4) and has x2 e |σ'| and xx G |σ'| Π ̂ 4 as isolated
fixed points, where |σ'| is a maximal simplex in \K'\ — A, and let the
restriction of fx to the half-open segment [x2, xx) in |σ'| be a proximity
map with respect to K\ Let U be an open neighbourhood of [x2, xλ) in
|σ| with (Bdί/)Πi4 = {^} and /1(Clf/)c JΓ, and so that CW is
convex with respect to the simplicial structure of \K\ (see Figure 3). The
points of (Clt/) - {xx} can be labelled as x = (6X, rx), where bx G Bdt/,
0 < ^ < 1 and

FIGURE 3
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with respect to the simplicial structure of |̂ Γ|. Let /': (X9A) -» (X, A) be
defined by

ίxγ iίx = xι,

f'(x) = {tJι(bx) +(1 - tx)Xι if x = (bχ9tx) e (Clt/) -{x,},

(Λ(JC) i f x G l - ClU.

Then / ' is a map homotopic to /: (X9A) -> (AT, ̂ 4) and Fix/' = Fix/ —

We now prove a minimum theorem for maps of pairs of spaces. Note
that its assumptions are satisfied in the Examples 2.7 (with n > 3) and
2.8, hence the relative Nielsen numbers N(f;X9A) calculated in these
examples can be realized.

THEOREM 6.2. (Minimum Theorem). Let (X9A) be a pair of compact
polyhedra so that

(i) X is connected,
(ii) X — A has no local cut point and is not a 2-manifold,

(iii) every component of A is a Nielsen space,
(iv) A can be by-passed.

Then any map /: (X9A) -> (X9A) is homotopic to a map g: (X, A) ->
(X9A) with N(f; X, A) fixed points.

Proof. We can assume that X Φ A9 as otherwise Theorem 6.2 is
known. Let (K,L) be a triangulation of (X, A). Due to Theorem 4.1 we
can assume that / has N(f) fixed points which all lie on BdA, that / is
fix-finite on X — A and that all fixed points of / on X — A lie in maximal
simplexes of \K\. We now unite fixed points belonging to the same fixed
point class F of /: X -> X. It suffices to show:

(6.3) Assume that either F is a common fixed point class of / and /
and x0 ^ F Π (X — A) or that F is not a common fixed point class of /
and / (and hence F Π A = 0 ) and JC0, xλ e F. Then / is homotopic to a
map /': (X,A)^>(X, A) with Fix/' = Fix/ - {x0}.

Repetition of (6.3) and deletion of non-common fixed point classes
which consist of a single fixed point of index zero by the usual method [1,
Ch. VIII B, Theorem 4, p. 123] will lead to a map g: (X9A)-» (X9A)
with N(f; X, A) fixed points.

So let F be a fixed point class of /: X -* X and x o e F n ( ί - 4
If F is a common fixed point class of / and /, we can select ^ E F π B d i ,
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if F is not a common fixed point class of / and /, we let xλ be any point
in F — {x0). According to Lemma 5.3 there exists a path q: I -» X from
x0 to xλ which is homotopic to / ° q and has the property that Q = q(I)
is a normal PL arc in (|jRΓ|, 4̂) with Q Π A = 0 if xλ& X — A and
Q Π A = {xx} if ^ G Bd^4. As all modifications from p to # in the
proof of [2, Lemma 3.4] take place away from the end points, we can also
ensure that q satisfies the conditions (a) and (β) of [2, Lemma 3.4], where
r and ox are chosen in X — A. With the help of this arc# the proof of
(6.3) can now be completed along the lines of the proof of [2, Theorem
5.2]. We choose ε > 0 so that Lemma 6.1 applies and define a path pε:
I -+ X which is homotopic to q by

pε(s) = q(s -f δsinsTr),

where δ = δ(ε) > 0 is determined so that d(pε(s), q(s)) < e for all s e /.
Then pε and / ° q are special paths with respect to Q [2, p. 755], and are
homotopic. As in the proof of [2, Lemma 5.1] it follows that pz and / ° q
are specially homotopic. Hence the maps f\Q: Q-> X and pε°q~ι:
Q -» X are specially homotopic [2, p. 755], and therefore Lemma 6.1 (with
pε° q~ι instead of g) shows that (6.3) is true.
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