A RELATIVE NIELSEN NUMBER

Helga Schirmer

Abstract

A relative Nielsen number $N(f ; X, A)$ for a selfmap $f:(X, A) \rightarrow$ (X, A) of a pair of spaces is introduced which shares such properties with the Nielsen number $N(f)$ as homotopy invariance and homotopy type invariance. As $N(f ; X, A) \geq N(f)=N(f ; X, \varnothing)$, the relative Nielsen number is in the case $A \neq \varnothing$ a better lower bound than $N(f)$ for the minimum number $M F[f ; X, A]$ of fixed points of all maps in the homotopy class of f. Conditions for a compact polyhedral pair (X, A) are given which ensure that the relative Nielsen number is in fact the best possible lower bound, i.e. that $N(f ; X, A)=M F[f ; X, A]$.

1. Introduction. Nielsen fixed point theory is concerned with the determination of the minimum number $M F[f]$ of fixed points in the homotopy class of a given map $f: X \rightarrow X$. For this purpose the so-called Nielsen number $N(f)$ is introduced, which is always a lower bound for $M F[f]$ and in many cases the best possible lower bound. (See e.g. [1] and [5] for background.) $N(f)$ can, however, be a very poor lower bound for $M F[f]$ if $f:(X, A) \rightarrow(X, A)$ is a selfmap of a pair of spaces and a homotopy a map of the form $H:(X \times I, A \times I) \rightarrow(X, A)$. To see this, consider the case where $X=B^{2}$ is a 2-disk and $A=S^{1}$ the circle bounding it. If $f:\left(B^{2}, S^{1}\right) \rightarrow\left(B^{2}, S^{1}\right)$ is a map which is of degree d on S^{1}, then f must have at least $|d-1|$ fixed points as even the restriction of f to S^{1} cannot have fewer fixed points ([1], Ch. VII C, p. 107, [5], p. 33, Example 1). But $N(f)=1$. Hence we need a "relative" Nielsen number for maps of pairs of spaces which is a better, and ideally sharp, lower bound for the minimum number $M F[f ; X, A]$ of fixed points in the homotopy class of the map $f:(X, A) \rightarrow(X, A)$.

It is the purpose of this paper to introduce such a relative Nielsen number $N(f ; X, A)$. The definition of $N(f ; X, A)$ in $\S 2$ uses the existing definition of the fixed point classes of a selfmap of a single space. More precisely, $N(f ; X, A)$ is obtained by adding the number $N(f)$ of essential fixed point classes of $f: X \rightarrow X$ (i.e. of the map f considered as a selfmap of X only) and the number $N(\bar{f})$ of essential fixed point classes of the restriction $\bar{f}: A \rightarrow A$ of f to A, and then subtracting the number $N(f, \bar{f})$ of "common" essential fixed point classes of f and \bar{f}, where a common fixed point class of f and \bar{f} is defined as a fixed point class of f which
intersects an essential fixed point class of \bar{f}. (See Definition 2.1.) This definition of $N(f ; X, A)$ yields a positive integer which has the usual basic properties of the Nielsen number $N(f)$. It is homotopy invariant (Theorem 3.3) and homotopy type invariant (Theorem 3.5), and it is a lower bound for $M F[f ; X, A]$ which is always at least as good as $N(f)$ (Theorems 3.1 and 3.2). The computation of relative Nielsen numbers need not be harder than the computation of ordinary Nielsen numbers, and we show in some examples in $\S 2$ that it can be easy to find $N(f ; X, A)$ once $N(f)$ and $N(\bar{f})$ are known.

In the final three sections we consider the question whether $N(f ; X, A)$ is in fact the best possible lower bound for $M F[f ; X, A]$, i.e. whether there exists a map $g:(X, A) \rightarrow(X, A)$ homotopic to a given map f : $(X, A) \rightarrow(X, A)$ which has precisely $N(f ; X, A)$ fixed points. The Minimum Theorem 6.2 shows that this is the case under fairly general assumptions on (X, A). The construction of a map with a minimal fixed point set proceeds, as usual, in two steps. In the first one we homotope f to a fix-finite map, but we take care to ensure that this map has only $N(\bar{f})$ fixed points on A (Theorem 4.1). In the second one, which is carried out in $\S 6$, we unite fixed points in $X-A$ whenever possible.

The assumptions of the Minimum Theorem 6.2 must by necessity include those which are needed if $A=\varnothing$ or $A=X$, but this is not sufficient. The new asumption which arises in our situation is that A can be "by-passed" in X (Definition 5.1), which means that every path in X which joins two points in $X-A$ can be homotoped away from A. Fortunately this condition is satisfied in interesting cases including the one where A is the boundary of a manifold M, but it shows that the relative Nielsen number $N(f ; X, A)$ introduced here may not be the final solution of the problem of finding the least number of fixed points $M F[f ; X, A]$ for maps of pairs of spaces.

The material in this paper is not presented in a self-contained form, as two expositions of Nielsen theory are easily accessible in the books by R. F. Brown [1] and Boju Jiang [5]. We assume that the reader is familiar with the corresponding results from these books concerning the Nielsen number $N(f)$ of a map $f: X \rightarrow X$, but refer to them frequently. As the Minimum Theorem 6.2 is a main goal of this paper, it is more convenient to emphasise the definition of $N(f)$ by F . Wecken [11] which uses paths between fixed points rather than the original one by J. Nielsen [7] which uses covering spaces. In the final section we also assume that the reader is familar with the proof of the minimum theorem for maps of Boju Jiang [2].

I want to thank the referee for his helpful suggestions.
2. The relative Nielsen number $N(f ; X, A)$. In this section we introduce the relative Nielsen number $N(f ; X, A)$ for maps of pairs of spaces $f:(X, A) \rightarrow(X, A)$, obtain some immediate consequences of the definition and illustrate it by some examples. The definition of $N(f ; X, A)$ uses the concepts of an essential fixed point class and of the Nielsen number for a compact (metric) ANR. They can e.g. be found in [1, Ch. VI, p. 85 ff.] and [5, Ch. I, p. 4 ff.].

If (X, A) is a pair of spaces and $f:(X, A) \rightarrow(X, A)$ is a map, we shall write $\bar{f}: A \rightarrow A$ for the restriction of f to A, and $f: X \rightarrow X$ for the map $f:(X, A) \rightarrow(X, A)$ if the condition that $f(A) \subset A$ is immaterial. Hence homotopies of $f:(X, A) \rightarrow(X, A)$ are maps of the form H : $(X \times I, A \times I) \rightarrow(X, A)$ (where I is the unit interval), and homotopies of $f: X \rightarrow X$ are maps of the form $H: X \times I \rightarrow X$. This abuse of the symbol f is deliberate, and not likely to cause confusion. We write Fix f for the fixed point set $\{x \in X \mid f(x)=x\}$ and \mathbf{F} for a fixed point class of $f: X \rightarrow X$. The essential fixed point set Fix ${ }_{e} f$ of $f: X \rightarrow X$ will be defined as

Fix $_{e} f=U\{x \in X \mid x$ lies in an essential fixed point class of $f\}$.
Similarly we write $\overline{\mathbf{F}}$ for a fixed point class of $\bar{f}: A \rightarrow A$, and $\mathrm{Fix}_{e} \bar{f}$ for its essential fixed point set.

Definition 2.1. Let $f:(X, A) \rightarrow(X, A)$ be a map of a pair of spaces. A fixed point class \mathbf{F} of $f: X \rightarrow X$ is a common fixed point class of f and \bar{f} if $\mathbf{F} \cap \operatorname{Fix}_{e} \bar{f} \neq \varnothing$. It is an essential common fixed point class of f and \bar{f} if it is an essential fixed point class of $f: X \rightarrow X$ and a common fixed point class of f and \bar{f}.

An equivalent definition, which is useful in some later proofs, is contained in the corollary of the next lemma.

Lemma 2.2. Let $f:(X, A) \rightarrow(X, A)$ be a map, let \mathbf{F} be a fixed point class of $f: X \rightarrow X$ and let $\overline{\mathbf{F}}$ be a fixed point class of $\bar{f}: A \rightarrow A$. If $\mathbf{F} \cap \overline{\mathbf{F}} \neq \varnothing$, then $\overline{\mathbf{F}} \subset \mathbf{F}$.

Proof. According to the definition of a fixed point class $x_{0}, x_{1} \in \operatorname{Fix} f$ belong to the same fixed point class \mathbf{F} of $f: X \rightarrow X$ if there exists a path $p=\left\{x_{t}\right\}_{t \in I}$ in X from x_{0} to x_{1} so that the paths p and $f \circ p=$ $\left\{f\left(x_{t}\right)\right\}_{t \in I}$ are homotopic. (By a homotopy of paths we always mean one
which keeps end points fixed.) Hence if $a_{0} \in \mathbf{F} \cap \overline{\mathbf{F}}$ and $a_{1} \in \overline{\mathbf{F}}$, then there exists a path $\left\{a_{t}\right\}_{t \in I}$ in A from a_{0} to a_{1} so that $\left\{\bar{f}\left(a_{t}\right)\right\}_{t \in I}$ is homotopic to $\left\{a_{t}\right\}_{t \in I}$ in A. As $A \subset X$ this implies $a_{1} \in \mathbf{F}$.

Corollary 2.3. Let $f:(X, A) \rightarrow(X, A)$ be a map. A fixed point class \mathbf{F} of $f: X \rightarrow X$ is a common fixed point class of f and \bar{f} if and only if it contains an essential fixed point class of $\bar{f}: A \rightarrow A$.

We write $N(f, \bar{f})$ for the number of essential common fixed point classes of f and \bar{f}. If X is a compact ANR, then $N(f, \bar{f})$ is finite as $0 \leq N(f, \bar{f}) \leq N(f)$.

Definition 2.4. Let (X, A) be a pair of compact ANR's. If f : $(X, A) \rightarrow(X, A)$ is a map, then its relative Nielsen number $N(f ; X, A)$ is defined as

$$
N(f ; X, A)=N(\bar{f})+N(f)-N(f, \bar{f}) .
$$

Hence $N(f ; X, A)$ is a finite integer ≥ 0, and equals $N(f)$ if $X=A$ or $A=\varnothing$. The next two theorems list some other cases in which the relative Nielsen number equals an ordinary one.

Theorem 2.5. Let (X, A) be a pair of compact ANR's and let f : $(X, A) \rightarrow(X, A)$ be a map.
(i) If $N(f)=0$, then $N(f ; X, A)=N(\bar{f})$,
(ii) if $N(\bar{f})=0$, then $N(f ; X, A)=N(f)$.

Proof. This is obvious from the definition, as in both cases $N(f, \bar{f})=$ 0.

Theorem 2.6. Let (X, A) be a pair of compact ANR's and let f : $(X, A) \rightarrow(X, A)$ be a map. If either X is simply connected or if X is connected and f homotopic to the identity map id: $(X, A) \rightarrow(X, A)$, then

$$
N(f ; X, A)= \begin{cases}N(f) & \text { if } N(\bar{f})=0, \\ N(\bar{f}) & \text { if } N(\bar{f}) \neq 0 .\end{cases}
$$

Proof. We only have to consider the case where $N(f) \neq 0$ and $N(\bar{f}) \neq 0$. If X is simply connected, then $f: X \rightarrow X$ has one essential fixed point class \mathbf{F}, and $\bar{f}: A \rightarrow A$ has at least one essential fixed point classs $\overline{\mathbf{F}}$. But if $x \in \mathbf{F}$ and $a \in \overline{\mathbf{F}}$, then a is also a fixed point of $f: X \rightarrow X$ and is in the same fixed point class as x, so $N(f, \bar{f})=1$. If X is
connected and f homotopic to id: $(X, A) \rightarrow(X, A)$, then the same argument applies.

We finish this section with three examples which show that the computation of $N(f ; X, A)$ can be easy once $N(f)$ and $N(\bar{f})$ are known.

Example 2.7. Let $X=B^{n}$, where $n \geq 2$, be an n-dimensional ball and let A consist of the boundary $(n-1)$-sphere of B^{n} together with k points in the interior of B^{n}. If id: $\left(B^{n}, A\right) \rightarrow\left(B^{n}, A\right)$ is the identity map, then

$$
N(\overline{\mathrm{id}})= \begin{cases}k & \text { if } n \text { is even } \\ k+1 & \text { if } n \text { is odd }\end{cases}
$$

and hence it follows from Theorem 2.6 that

$$
N\left(\mathrm{id} ; B^{n}, A\right)= \begin{cases}1 & \text { if } k=0 \\ k & \text { if } k \geq 1 \text { and } n \text { is even } \\ k+1 & \text { if } k \geq 1 \text { and } n \text { is odd. }\end{cases}
$$

Example 2.8. Let X be the solid torus in Euclidean 3-space R^{3} which is obtained by rotating the 2 -disk in the $x_{1} x_{3}$-plane of radius 1 and centered at $(2,0,0)$ about the x_{3}-axis, and let A be the 2 -dimensional torus which bounds X. We consider R^{3} as $\mathbf{C} \times R^{1}$, where \mathbf{C} is the complex plane, and label the points of X as $\left(r e^{i \theta}, t\right)$, where $r e^{i \theta} \in \mathbf{C}$ and $t \in R^{1}$, with $1 \leq r \leq 3,0 \leq \theta<2 \pi$ and $-1 \leq t \leq 1$. Let $f:(X, A) \rightarrow(X, A)$ be the map given by $f\left(r e^{i \theta}, t\right)=\left(r e^{i d \theta},-t\right)$, where $d \neq 1$ is an integer. As any circle of latitude is a deformation retract of X we have $N(f)=|d-1|$ ([1], Ch. VIII, p. 107; [5], p. 21; Theorem 5.4 and p. 33, Example 1), and it follows from [5], p. 33, Example 2 that $N(\bar{f})=2|d-1|$. The fixed point set of f lies in $t=0$ and consists of $|d-1|$ line segments. Each line segment forms an essential fixed point class of f and contains two essential fixed point classes of \bar{f} on its boundary. Hence $N(f, \bar{f})=N(f)$ $=|d-1|$, and $N(f ; X, A)=N(\bar{f})=2|d-1|$.

Example 2.9. Let X be a disk with two holes, let T be the boundary of X and f the reflection on the axis l (see Figure 1). Then $N(f)=1$, $N(\bar{f})=2$ and $N(f, \bar{f})=1$ imply $N(f ; X, A)=2$. As any homeomorphism of X which is isotopic to f maps A onto A, it has at least 2 fixed points. (This is the example used by Boju Jiang [3, p. 169] to explain why in his realization theorem for the Nielsen number $N(h)$ of a surface homeomorphism h (see [4], Main Theorem) it is necessary to allow isotopies through embeddings rather than through homeomorphisms if a boundary component of the surface is mapped onto itself in an orienta-tion-reversing manner.)

Figure 1
3. Basic properties of $N(f ; X, A)$. In this section we shall prove that $N(f ; X, A)$ is as lower bound for the number of fixed points of the $\operatorname{map} f:(X, A) \rightarrow(X, A)$ (Theorem 3.1) and is usually sharper than $N(f)$ (Theorem 3.2). Then we show that $N(f ; X, A)$ is homotopy invariant (Theorem 3.3) and homotopy type invariant (Theorem 3.5).

Theorem 3.1. (Lower bound property). If (X, A) is a pair of compact ANR's, then every map $f:(X, A) \rightarrow(X, A)$ has at least $N(f ; X, A)$ fixed points.

Proof. Let the restriction $\bar{f}: A \rightarrow A$ of f to A have the essential fixed point classes $\overline{\mathbf{F}}_{1}, \overline{\mathbf{F}}_{2}, \ldots, \overline{\mathbf{F}}_{m}$, and let $f: X \rightarrow X$ have the essential fixed point classes $\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \mathbf{F}_{n}, \mathbf{F}_{n+1}, \ldots, \mathbf{F}_{r}$ which are indexed so that the essential common fixed point classes of f and \bar{f} are $\mathbf{F}_{n+1}, \mathbf{F}_{n+2}, \ldots, \mathbf{F}_{r}$. Then

$$
N(f ; X, A)=m+r-(r-n)=m+n
$$

Each fixed point class $\overline{\mathbf{F}}_{i}$ contains at least one fixed point a_{i} of \bar{f}, and each fixed point class \mathbf{F}_{J} contains at least one fixed point x_{J} of f. If
$j=1,2, \ldots, n$, then $\overline{\mathbf{F}}_{j} \cap A$ is distinct from $\mathrm{Fix}_{e} \bar{f}$, and so the set $\left\{a_{1}, a_{2}, \ldots, a_{m}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ consists of $m+n$ distinct points which are all fixed points of $f:(X, A) \rightarrow(X, A)$.

Theorem 3.2. If (X, A) is a pair of compact ANR's and $f:(X, A) \rightarrow$ (X, A) is a map, then $N(f ; X, A) \geq N(f)$ and $N(f ; X, A) \geq N(\bar{f})$.

Proof. As it follows from Corollary 2.3 that each essential common fixed point class of f and \bar{f} contains at least one essential fixed point class of \bar{f}, we have $N(f, \bar{f}) \leq N(\bar{f})$ and hence $N(f ; X, A)=N(f)+[N(\bar{f})-$ $N(f, \bar{f})] \geq N(f)$. From $N(f, \bar{f}) \leq N(f)$ follows $N(f ; X, A) \geq N(\bar{f})$.

Theorem 3.3. (Homotopy invariance.) If (X, A) is a pair of compact ANR's and if the maps $f_{0}, f_{1}:(X, A) \rightarrow(X, A)$ are homotopic, then $N\left(f_{0} ; X, A\right)=N\left(f_{1} ; X, A\right)$.

Proof. As it is well known that $N\left(f_{0}\right)=N\left(f_{1}\right)$ and $N\left(\bar{f}_{0}\right)=N\left(\bar{f}_{1}\right)$ (see e.g. [1], Ch. VI E, Theorem 4, p. 95; [5], p. 19 Theorem 4.6), it suffices to show that $N(f, \bar{f})$ is invariant under homotopies $H:(X \times I, A \times I)$ $\rightarrow(X, A)$. So let \mathbf{F}_{0} be an essential common fixed point class of f_{0} and \bar{f}_{0}. Then \mathbf{F}_{0} contains an essential fixed point class $\overline{\mathbf{F}}_{0}$ of \bar{f}_{0} which is related under the restriction \bar{H} of H to $A \times I$ to an essential fixed point class $\overline{\mathbf{F}}_{1}$ of \bar{f}_{1}. This means that, for every $a_{0} \in \overline{\mathbf{F}}_{0}$ and $a_{1} \in \overline{\mathbf{F}}_{1}$, there exists a path $\left\{a_{t}\right\}_{t \in I}$ in A from a_{0} to a_{1} so that the paths $\left\{\bar{h}_{t}\left(a_{t}\right)\right\}_{t \in I}$ and $\left\{a_{t}\right\}_{t \in I}$ are homotopic in A (see [1], Ch. VI D and E, p. 87 ff ., [5], Ch. I Theorem 2.9, p. 9).

Now let \mathbf{F}_{1} be the fixed point class of f_{1} which contains a_{1}. As $\left\{a_{t}\right\}_{t \in I}$ is a path in X from $a_{0} \in \mathbf{F}_{0}$ to $a_{1} \in \mathbf{F}_{1}$ and as $\bar{h}_{t}\left(a_{t}\right)=h\left(a_{t}\right)$, the fixed point classes \mathbf{F}_{0} of f_{0} and \mathbf{F}_{1} of f_{1} are related under H. Hence \mathbf{F}_{1} is an essential fixed point class of f_{1}, and as $F_{1} \cap \bar{F}_{1} \neq \varnothing$, it is a common fixed point class of f_{1} and \bar{f}_{1}. Thus H relates essential common fixed point classes of f_{0} and \bar{f}_{0} to essential common fixed point classes of f_{1} and \bar{f}_{1}, and we have $N\left(f_{0}, \bar{f}_{0}\right)=N\left(f_{1}, \bar{f}_{1}\right)$.

The proofs of the next two theorems are quite analogous to those of the corresponding theorems for $N(f)$ which can be found in $[5, \mathrm{Ch} . \mathrm{I}$, Theorem 5.2, p. 20 and Theorem 5.4, p. 21]. Hence we leave the proofs to the reader. Two maps of pairs of spaces $f:(X, A) \rightarrow(X, A)$ and g : $(Y, B) \rightarrow(Y, B)$ are said to be maps of the same homotopy type if there exists a homotopy equivalence $h:(X, A) \rightarrow(Y, B)$ so that the maps of pairs of spaces $h \circ f, g \circ h:(X, A) \rightarrow(Y, B)$ are homotopic.

Theorem 3.4. (Commutativity.) Let (X, A) and (Y, B) be two pairs of compact ANR's. If $f:(X, A) \rightarrow(Y, B)$ and $g:(Y, B) \rightarrow(X, A)$ are maps, then $N(g \circ f, \bar{g} \circ \bar{f})=N(f \circ g, \bar{f} \circ \bar{g})$ and hence

$$
N(g \circ f ; X, A)=N(f \circ g ; Y, B)
$$

Theorem 3.5. (Homotopy type invariance.) Let (X, A) and (Y, B) be two pairs of compact ANR's. If $f:(X, A) \rightarrow(X, A)$ and $g:(Y, B) \rightarrow(Y, B)$ are maps of the same homotopy type, then $N(f ; X, A)=N(g ; Y, B)$.
4. Fix-finite maps with minimal fixed point sets on a subspace. We have seen, in Theorems 3.1 and 3.3, that $N(f ; X, A)$ is a lower bound for $M F[f ; X, A]$. In the rest of this paper we want to show that, under suitable assumptions on X and A, the relative Nielsen number $N(f ; X, A)$ is in fact a sharp lower bound for $M F[f ; X, A]$, i.e. that there exists a map $g:(X, A) \rightarrow(X, A)$ which is homotopic to $f:(X, A) \rightarrow(X, A)$ and has precisely $N(f ; X, A)$ fixed points. In the case where $A=\varnothing$ the construction of g proceeds in two stages. In the first, $f: X \rightarrow X$ is homotoped to a fix-finite map (i.e. to a map with a finite fixed point set), and in the second fixed points in the same fixed point class are united (see [1], Ch. VIII, p. 115 ff., [2]). We now carry out similar constructions for a map of a pair of spaces $f:(X, A) \rightarrow(X, A)$. In this section we shall homotope f to a fix-finite map $g:(X, A) \rightarrow(X, A)$, but already make sure that g has only $N(\bar{f})$ fixed points on A (Theorem 4.1).

As in the case $A=\varnothing$ we now have to restrict our attention to selfmaps of compact polyhedra, and we further have to assume that A is a space for which $N(\bar{f})$ can be realized. We call a compact polyhedron X a Nielsen space if every map $f: X \rightarrow X$ is homotopic to a map $g: X \rightarrow X$ which has $N(f)$ fixed points, and if these fixed points can lie anywhere in X. It is known that every compact connected polyhedron without a local cut point is a Nielsen space if it is not a surface of negative Euler characteristic [2, p. 760], and [8, Lemma 2, p. 525]. We write $\mathrm{Cl} Y$, Int Y and Bd Y for the closure, interior and boundary in X of a space $Y \subset X$.

Theorem 4.1. Let (X, A) be a pair of compact polyhedra, $X \neq A$, let X be connected and let each component of A be a Nielsen space. Then every map $f:(X, A) \rightarrow(X, A)$ is homotopic to a map $g:(X, A) \rightarrow(X, A)$ so that
(i) \bar{g} has $N(\bar{f})$ fixed points which all lie on $\mathrm{Bd} A$,
(ii) g is fix-finite,
(iii) all fixed points of g on $X-A$ lie in maximal simplexes.

Proof. We shall proceed in two steps.

Step 1. We show that $f:(X, A) \rightarrow(X, A)$ is homotopic to a map h : $(X, A) \rightarrow(X, A)$ which has the following properties:
(a) \bar{h} has $N(\bar{f})$ fixed points which all lie on $\operatorname{Bd} A$,
(b) there exists a compact polyhedron B in X so that $A \subset X-B$ and h is fixed point free on $\mathrm{Cl}(X-B)-A$.

To construct h, we first use the fact that each component of A is a Nielsen space in order to homotope $\bar{f}: A \rightarrow A$ to a selfmap of A which has $N(\bar{f})$ fixed points which lie on $\operatorname{Bd} A$. Let $\bar{h}: A \rightarrow A$ be the resulting map and $\bar{F}: A \times I \rightarrow A$ be a homotopy from \bar{f} to \bar{h}. The subpolyhedron A is a strong deformation retract of some neighbourhood V of A in X. (See e.g. [10] Ch. 3.3, Cor. 11, p. 124.) Using a star covering of A with respect to a subdivision of the triangulation of X we can find a compact polyhedron A_{1} with $A \subset \operatorname{Int} A_{1} \subset A_{1} \subset V$ so that $B=X-\operatorname{Int} A_{1}$ is a polyhedron in X. Let $R: A_{1} \times I \rightarrow V$ be the restriction to A_{1} of the strong deformation retraction of V onto A and let $r: A_{1} \rightarrow A$ be the retraction given by $r(x)=R(x, 1)$. Then we can define a homotopy F_{1} : $A_{1} \times I \rightarrow X$ by

$$
F_{1}(x, t)= \begin{cases}f \circ R(x, 2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \bar{F}(r(x), 2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

and use the homotopy extension property of a polyhedral pair to extend F_{1} to a homotopy $F:(X \times I, A \times I) \rightarrow(X, A)$ of f. If we define $h:(X, A) \rightarrow(X, A)$ by $h(x)=F(x, 1)$, then h is fixed point free on $\mathrm{Cl}(X-B)-A \subset A_{1}-A$.

Step 2. We now show that $h:(X, A) \rightarrow(X, A)$ is homotopic to a map $g:(X, A) \rightarrow(X, A)$ which satisfies Theorem 4.1.

To do so, we write d for the barycentric metric of B and put $U=X-B$. As h is fixed point free on $(\mathrm{Cl} U)-A$, there exists a $\delta>0$ so that $d(x, h(x))>\delta$ for all $x \in \operatorname{Bd} U$. With the help of the Hopf construction [1], Ch. VIII A, pp. 117-119 we change the restriction h_{B} : $B \rightarrow X$ of h to B to a map $g_{B}: B \rightarrow X$ which is fix-finite, has all fixed points contained in maximal simplexes and is δ-homotopic ([1], Ch. III A, p. 40) to h_{B}. Let $G_{B}: B \times I \rightarrow X$ be such a δ-homotopy from h_{B} to g_{B}. Then $G_{B}(x, t) \neq x$ for all $x \in \operatorname{Bd} U$.

If $G^{\prime}:\{((\mathrm{Cl} U) \times 0) \cup((\operatorname{Bd} U) \times I) \cup(A \times I), A \times I\} \rightarrow(X, A)$ is given by

$$
G^{\prime}(x, t)= \begin{cases}h(x) & \text { if }(x, t) \in((\mathrm{Cl} U) \times 0) \cup(A \times I) \\ G_{B}(x, t) & \text { if }(x, t) \in(\operatorname{Bd} U) \times I\end{cases}
$$

then the restriction of G^{\prime} to $((\mathrm{Bd} U) \cup A) \times I$ is a special homotopy [2, p. 751], and hence extends to a special homotopy $G_{U}:((\mathrm{Cl} U) \times I, A \times I)$ $\rightarrow(X, A)$ [2, Lemma 2.1, p. 751]. We define a homotopy $G:(X \times I$, $A \times I) \rightarrow(X, A)$ by

$$
G(x, t)= \begin{cases}G_{U}(x, t) & \text { if }(x, t) \in(\mathrm{Cl} U) \times I \\ G_{B}(x, t) & \text { if }(x, t) \in B \times I\end{cases}
$$

and a map $g:(X, A) \rightarrow(X, A)$ by $g(x)=G(x, 1)$. Then g satisfies Theorem 4.1.
5. By-passing of subspaces. The Minimum Theorem 6.2 will be proved by uniting fixed points of the map g constructed in Theorem 4.1 whenever possible. It will clearly be necessary to assume that X and A are triangulable Nielsen spaces, but we shall need one additional property of (X, A) in order to realize $N(f ; X, A)$. This property is introduced in the next definition.

Definition 5.1. A subspace A of a space X can be by-passed if every path in X with end points in $X-A$ is homotopic to a path in $X-A$.

Definition 5.1 states the property in the form in which it will be used in the proof of Theorem 6.2, but the next theorem states it in a form which is usually easier to verify. We write $i_{*}: \pi_{1}(X-A) \rightarrow \pi_{1}(X)$ for the homomorphism of the fundamental groups induced by the inclusion map. The easy proof of Theorem 5.2 is left to the reader.

Theorem 5.2. Let (X, A) be a pair of spaces and let X be path-connected. Then A can be by-passed in X if and only if $X-A$ is path-connected and $i_{*}: \pi_{1}(X-A) \rightarrow \pi_{1}(X)$ is onto.

Examples of spaces which can be by-passed include the boundary $\mathrm{Bd} M$ or a subpolyhedron A of dimension $\operatorname{dim} A \leq \operatorname{dim} M-2$ of a triangulable manifold M. In particular, the subspaces A in Examples 2.7-2.9 can be by-passed.

The next lemma will be used in the proof of Theorem 6.2. It contains the concept of a normal PL arc in a polyhedron $X=|K|$. An $\operatorname{arc} Q=q(I)$, where $q: I \rightarrow|K|$, is called in [2, p. 752], a normal PL arc if q maps, for some subdivision I^{\prime} of I, each simplex of I^{\prime} linearly into a simplex of $|K|$, if it does not pass through any vertex of $|K|$ and if $q(s)$ lies in a maximal simplex of $|K|$ for all but a finite number of values $s \in I$ and goes from
one maximal simplex into another when s passes across any of these exceptional values. In our setting we have enlarged this definition. If A is a subpolyhedron of $X=|K|$, we say that Q is a normal $P L \operatorname{arc}$ in $(|K|, A)$ if either Q is a normal PL arc in $|K|-A$ or if $Q \cap A=\{q(1)\}$ and Q is a normal PL arc in $|K|$ apart from the fact that $q(1)$ can be an arbitrary point of $\mathrm{Bd} A$.

Lemma 5.3. Let $X=|K|$ be a compact connected polyhedron, let A be a subpolyhedron so that $X-A$ has no local cut point and that A can be by-passed, and let p be a path in $|K|$ from a point x_{0} in a maximal simplex of $|K|-A$ to a point x_{1}.
(i) If $x_{1} \neq x_{0}$ lies in a maximal simplex of $|K|-A$, then p is homotopic to q so that $q(I)$ is a normal $P L$ arc in $(|K|, A)$ and $q(I) \cap A=$ \varnothing;
(ii) if $x_{1} \in \operatorname{Bd} A$, then p is homotopic to q such that $q(I)$ is a normal $P L \operatorname{arc}$ in $(|K|, A)$ and $q(I) \cap A=\left\{x_{1}\right\}$.

Proof. (i) follows immediately from Definition 5.1 and [2], Lemma 3.3. If, as in (ii), $x_{1} \in \operatorname{Bd} A$, then we pick $y \in|K|-A$ near x_{1} so that there exists a path $v: I \rightarrow|K|$ from x_{1} to y with $v(I) \cap A=\left\{x_{1}\right\}$ (see Figure 2). Then the composite path $p * v$ from x_{0} to y is homotopic to a path p^{\prime} in $|K|-A$, and the desired path q can be obtained from $p^{\prime} * v^{-1}$ along the lines of the proof of [2, Lemma 3.3], where only one "loose end" is used.

Figure 2
6. The Minimum Theorem. The proof of the Minimum Theorem 6.2 is based on the proof of the corresponding theorem for the case $A=\varnothing$ by Boju Jiang [2, Theorem 5.2]. The assumptions on (X, A) in Theorem 6.2 cannot be relaxed, as it is known that the Minimum Theorem is false if $A=\varnothing$ and X is a surface [6] or a polyhedron with a local cut point [9].

We extract a part of the proof of Theorem 6.2 as Lemma 6.1, which is the form needed here of the fact that two fixed points x_{0} and x_{1} of a map $f: X \rightarrow X$ can be united if the restriction of f to an $\operatorname{arc} Q$ from x_{0} to x_{1} is homotopic to a proximity map [2, Lemma 2.2]. Due to Theorem 4.1 and Lemma 5.3 we shall only have to unite fixed points which satisfy the assumptions of the next lemma.

Lemma 6.1. Let $(X, A)=(|K|,|L|)$ be a pair of compact polyhedra, where X is connected and $X-A$ has no local cut point and is not a 2-manifold. Let x_{0} and x_{1} be two isolated fixed points of a map f : $(X, A) \rightarrow(X, A)$, and let Q be a normal $P L$ arc in $(|K|, A)$ from x_{0} to x_{1}, with Fix $f \cap Q=\left\{x_{0}, x_{1}\right\}$. Suppose that x_{0} lies in a maximal simplex of $|K|-A$, and that x_{1} lies either in a maximal simplex of $|K|-A$ or on $\mathrm{Bd} A$. Then there exists an $\varepsilon>0$ so that if $f \mid Q$ is specially homotopic to a map $g: Q \rightarrow X$ with $d(x, g(x))<\varepsilon$ for all $x \in Q$, then f is homotopic to a map $f^{\prime}:(X, A) \rightarrow(X, A)$ with Fix $f^{\prime}=\operatorname{Fix} f-\left\{x_{0}\right\}$.

Proof. Let $Q=q(I)$, where $q: I \rightarrow K$, and let K^{\prime} be the first barycentric subdivision of K. Shifting the new vertices if necessary, we can assume that Q, x_{0}, x_{1} still satisfy the assumptions of Lemma 6.1 with respect to K^{\prime}. We select $\varepsilon>0$ so that $d(x, g(x))<\varepsilon$ for all $x \in Q$ implies that $g: Q \rightarrow X$ is a proximity map with respect to $K^{\prime}[\mathbf{1}, \mathrm{Ch}$. VIII C, p. 124], [2, p. 751].

By assumption there exists a special homotopy $G_{Q}: Q \times I \rightarrow X$ from $f \mid Q$ to $g: Q \rightarrow X$. We extend it to a special homotopy $g:\{(Q \cup A) \times I$, $A \times I\} \rightarrow(X, A)$ by putting

$$
G(x, t)= \begin{cases}G_{Q}(x, t) & \text { if }(x, t) \in Q \times I \\ \bar{f}(x) & \text { if }(x, t) \in A \times I\end{cases}
$$

and then use [2, Lemma 2.1] (with $A \cup Q$ instead of A) to extend G to a special homotopy $H:(X \times I, A \times I) \rightarrow(X, A)$ which starts at $H(x, 0)=$ $f(x)$. If $f^{\prime \prime}:(X, A) \rightarrow(X, A)$ is given by $f^{\prime \prime}(x)=H(x, 1)$, then $f^{\prime \prime}(x)=$ $g(x)$ for $x \in Q$.

As $g: Q \rightarrow X$ is a proximity map with respect to K^{\prime}, we can move the fixed point x_{0} of $f^{\prime \prime}$ along Q to a point x_{2} which lies in a maximal simplex $\left|\sigma^{\prime}\right|$ of $\left|K^{\prime}\right|$ with $x_{1} \in\left|\bar{\sigma}^{\prime}\right|$ in such a way that the restriction of the map to Q remains a proximity map with respect to $K^{\prime}[1, \mathrm{Ch}$. VIII C, Lemma 3, p. 128]. If $Q \subset X-A$, we can then unite x_{2} with x_{1} as usual [1, Ch. VIII C, Lemma 2, p. 126] to obtain a map $f^{\prime}:(X, A) \rightarrow(X, A)$ with Fix $f^{\prime}=$ Fix $f-\left\{x_{0}\right\}$.

But we still have to unite the fixed points x_{2} and x_{1} in the case $Q \cap A=\left\{x_{1}\right\}$. So let $f_{1}:(X, A) \rightarrow(X, A)$ be a map which is homotopic to $f:(X, A) \rightarrow(X, A)$ and has $x_{2} \in\left|\sigma^{\prime}\right|$ and $x_{1} \in\left|\bar{\sigma}^{\prime}\right| \cap A$ as isolated fixed points, where $\left|\sigma^{\prime}\right|$ is a maximal simplex in $\left|K^{\prime}\right|-A$, and let the restriction of f_{1} to the half-open segment $\left[x_{2}, x_{1}\right)$ in $\left|\sigma^{\prime}\right|$ be a proximity map with respect to K^{\prime}. Let U be an open neighbourhood of $\left[x_{2}, x_{1}\right.$) in $|\sigma|$ with $(\operatorname{Bd} U) \cap A=\left\{x_{1}\right\}$ and $f_{1}(\mathrm{Cl} U) \subset W$, and so that $\mathrm{Cl} U$ is convex with respect to the simplicial structure of $|K|$ (see Figure 3). The points of $(\mathrm{Cl} U)-\left\{x_{1}\right\}$ can be labelled as $x=\left(b_{x}, t_{x}\right)$, where $b_{x} \in \operatorname{Bd} U$, $0<t_{x} \leq 1$ and

$$
x=t_{x} b_{x}+\left(1-t_{x}\right) x_{1}
$$

Figure 3
with respect to the simplicial structure of $|K|$. Let $f^{\prime}:(X, A) \rightarrow(X, A)$ be defined by

$$
f^{\prime}(x)= \begin{cases}x_{1} & \text { if } x=x_{1} \\ t_{x} f_{1}\left(b_{x}\right)+\left(1-t_{x}\right) x_{1} & \text { if } x=\left(b_{x}, t_{x}\right) \in(\mathrm{Cl} U)-\left\{x_{1}\right\} \\ f_{1}(x) & \text { if } x \in X-\mathrm{Cl} U\end{cases}
$$

Then f^{\prime} is a map homotopic to $f:(X, A) \rightarrow(X, A)$ and Fix $f^{\prime}=\operatorname{Fix} f-$ $\left\{x_{0}\right\}$.

We now prove a minimum theorem for maps of pairs of spaces. Note that its assumptions are satisfied in the Examples 2.7 (with $n \geq 3$) and 2.8, hence the relative Nielsen numbers $N(f ; X, A)$ calculated in these examples can be realized.

Theorem 6.2. (Minimum Theorem). Let (X, A) be a pair of compact polyhedra so that
(i) X is connected,
(ii) $X-A$ has no local cut point and is not a 2-manifold,
(iii) every component of A is a Nielsen space,
(iv) A can be by-passed.

Then any map $f:(X, A) \rightarrow(X, A)$ is homotopic to a map $g:(X, A) \rightarrow$ (X, A) with $N(f ; X, A)$ fixed points.

Proof. We can assume that $X \neq A$, as otherwise Theorem 6.2 is known. Let (K, L) be a triangulation of (X, A). Due to Theorem 4.1 we can assume that \bar{f} has $N(\bar{f})$ fixed points which all lie on $\operatorname{Bd} A$, that f is fix-finite on $X-A$ and that all fixed points of f on $X-A$ lie in maximal simplexes of $|K|$. We now unite fixed points belonging to the same fixed point class \mathbf{F} of $f: X \rightarrow X$. It suffices to show:
(6.3) Assume that either \mathbf{F} is a common fixed point class of f and \bar{f} and $x_{0} \in \mathbf{F} \cap(X-A)$ or that \mathbf{F} is not a common fixed point class of f and \bar{f} (and hence $\mathbf{F} \cap A=\varnothing$) and $x_{0}, x_{1} \in \mathbf{F}$. Then f is homotopic to a $\operatorname{map} f^{\prime}:(X, A) \rightarrow(X, A)$ with Fix $f^{\prime}=\operatorname{Fix} f-\left\{x_{0}\right\}$.

Repetition of (6.3) and deletion of non-common fixed point classes which consist of a single fixed point of index zero by the usual method [1, Ch. VIII B, Theorem 4, p. 123] will lead to a map $g:(X, A) \rightarrow(X, A)$ with $N(f ; X, A)$ fixed points.

So let \mathbf{F} be a fixed point class of $f: X \rightarrow X$ and $x_{0} \in \mathbf{F} \cap(X-A)$. If \mathbf{F} is a common fixed point class of f and \bar{f}, we can select $x_{1} \in \mathbf{F} \cap \mathrm{Bd} A$,
if \mathbf{F} is not a common fixed point class of f and \bar{f}, we let x_{1} be any point in $\mathbf{F}-\left\{x_{0}\right\}$. According to Lemma 5.3 there exists a path $q: I \rightarrow X$ from x_{0} to x_{1} which is homotopic to $f \circ q$ and has the property that $Q=q(I)$ is a normal PL arc in $(|K|, A)$ with $Q \cap A=\varnothing$ if $x_{1} \in X-A$ and $Q \cap A=\left\{x_{1}\right\}$ if $x_{1} \in \operatorname{Bd} A$. As all modifications from p to q in the proof of [2, Lemma 3.4] take place away from the end points, we can also ensure that q satisfies the conditions (α) and (β) of [2, Lemma 3.4], where τ and σ_{1} are chosen in $X-A$. With the help of this $\operatorname{arc} q$ the proof of (6.3) can now be completed along the lines of the proof of [2 , Theorem 5.2]. We choose $\varepsilon>0$ so that Lemma 6.1 applies and define a path p_{ε} : $I \rightarrow X$ which is homotopic to q by

$$
p_{\varepsilon}(s)=q(s+\delta \sin s \pi)
$$

where $\delta=\delta(\varepsilon)>0$ is determined so that $d\left(p_{\varepsilon}(s), q(s)\right)<\varepsilon$ for all $s \in I$. Then p_{ε} and $f \circ q$ are special paths with respect to $Q[2, \mathrm{p} .755]$, and are homotopic. As in the proof of [2, Lemma 5.1] it follows that p_{ε} and $f \circ q$ are specially homotopic. Hence the maps $f \mid Q: Q \rightarrow X$ and $p_{\varepsilon}^{\circ} q^{-1}$: $Q \rightarrow X$ are specially homotopic [2, p. 755], and therefore Lemma 6.1 (with $p_{\varepsilon} \circ q^{-1}$ instead of g) shows that (6.3) is true.

References

[1] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Ill., 1971.
[2] Boju Jiang, On the least number of fixed points, Amer. J. Math., 102 (1980), 749-763.
[3] \qquad , Fixed point classes from a differentiable viewpoint, Fixed Point Theory (Proceedings, Sherbrooke, Quebec, 1980), Springer-Verlag, Berlin, 1981. (Lecture Notes in Mathematics v. 886.)
[4] , Fixed points of surface homeomorphisms, Bull. Amer. Math. Soc., 5 (1981), 176-178.
[5] , Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics v. 14, Amer. Math. Society, Providence, Rhode Island, 1983.
[6] , Fixed points and braids, Invent. Math., 75 (1984), 69-74.
[7] J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen I, Acta Math., 50 (1927), 189-358.
[8] H. Schirmer, Mappings of polyhedra with prescribed fixed points and fixed point indices, Pacific J. Math., 63 (1976), 521-530.
[9] G.-H. Shi, Least number of fixed points of the identity class, Acta Math. Sinica, 18 (1975), 192-202.
[10] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[11] F. Wecken, Fixpunktklassen III, Math. Ann., 118 (1942), 544-577.
Received December 3, 1984 and in revised form April 25, 1985. This research was partially supported by NSERC Grant A 7579.

Carleton University

Ottawa, Canada

