CROSSED PRODUCT AND HEREDITARY ORDERS

Gerald H. Cliff and Alfred R. Weiss

Abstract

Let Λ be the crossed product order $\left(O_{L} / O_{K}, G, \rho\right)$ where L / K is a finite Galois extension of local fields with Galois group G, and ρ is a factor set with values in O_{L}^{*}. Let $\Lambda_{0}=\Lambda$, and let Λ_{i+1} be the left order $O_{l}\left(\operatorname{rad} \Lambda_{i}\right)$ of $\operatorname{rad} \Lambda_{l}$. The chain of orders $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{s}$ ends with a hereditary order Λ_{s}. We prove that Λ_{s} is the unique minimal hereditary order in $A=K \Lambda$ containing Λ, that Λ_{s} has e / m simple modules, each of dimension f over the residue class field \bar{K} of O_{K}, and that $s=d-$ ($e-1$). Here d, e, f are the different exponent, ramification index, and inertial degree of L / K, and m is the Schur index of A.

1. Introduction. Let O_{K} be a complete discrete valuation ring having field of fractions K and finite residue class field \bar{K}. Let L be a finite Galois extension of K, with Galois group G, and let O_{L} be the valuation ring in L. Let ρ be a factor set on $G \times G$ with values in the units of O_{L}. We are interested in the crossed product order $\Lambda=\left(O_{L} / O_{K}, G, \rho\right)$ contained in the simple algebra $A=(L / K, G, \rho)$. If ρ is trivial, AuslanderGoldman [1] showed that Λ is a maximal order in A if and only if L / K is unramified, and Auslander-Rim [2] showed that Λ is hereditary if and only if L / K is tamely ramified. Williamson [8] extended the AuslanderRim result to the case that ρ is any factor set. We are interested in the wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique minimal hereditary order in A.

We set $\Lambda_{0}=\Lambda$, and define inductively

$$
\Lambda_{j+1}=\left\{x \in A: x \operatorname{rad} \Lambda_{j} \subseteq \operatorname{rad} \Lambda_{j}\right\}=O_{l}\left(\operatorname{rad} \Lambda_{j}\right) .
$$

Then we have the sequence of orders

$$
\Lambda_{0} \varsubsetneqq \Lambda_{1} \varsubsetneqq \Lambda_{2} \varsubsetneqq \cdots \varsubsetneqq \Lambda_{s}=\Lambda_{s+1}
$$

for some integer s. Since $\Lambda_{s}=O_{l}\left(\operatorname{rad} \Lambda_{s}\right)$, it follows that Λ_{s} is hereditary ($[6,39.11,39.14]$). From the theory of hereditary orders (see [6, 39.14]) Λ_{s} may be described as follows: if $A \cong M_{n}(D)$, the ring of $n \times n$ matrices over a division ring D, and if Δ is the unique maximal order in D, then Λ_{s} is the set of block matrices, with entries in Δ, where there are r diagonal blocks of size $n_{i} \times n_{i}$, and blocks above the diagonal have
entries in rad Δ. The positive integer r is called the type number of Λ_{s}, and is also equal to the number of simple Λ_{s}-modules. Our main result is the following.

Theorem. (1) Λ_{s} is the unique minimal hereditary $O_{K^{-}}$order in A containing Λ.
(2) $\operatorname{rad} \Lambda_{s}=P_{L} \Lambda_{s}$, where P_{L} denotes the maximal ideal of O_{L}.
(3) $r=e / m$, where e is the ramification index of L / K and m is the Schur index of A.
(4) $n_{1}=n_{2}=\cdots=n_{r}=f$, the inertial degree of L / K.
(5) $s=d-(e-1)$, where d is the exponent $P_{L}^{d}=\mathscr{D}$ of the different of L / K.

We prove this by first considering the split case (when $\rho=1$), and then taking an unramified extension K^{\prime} of K which splits A, and considering $A \otimes_{K} K^{\prime}$ which is a crossed product ($L^{\prime} / K^{\prime}, G, 1$), where $L^{\prime}=L \otimes_{K} K^{\prime}$. Then L^{\prime} is not in general a field, but a Galois algebra over K^{\prime}, and we find it convenient to prove the Theorem when L is a Galois algebra over K to begin with; we take O_{L} to be the integral closure of O_{K} in L, we replace P_{L} by $\operatorname{rad} O_{L}$, and we give suitable definitions of d, e, and f in $\S 2$. We deal with the split case in §3, and the general case in §4. We find generators for the hereditary order Λ_{s} in $\S 5$, in the totally ramified split case. In §6 we show how our results yield those of Aus-lander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.
2. Galois algebras. Let L be a commutative Galois algebra over K, with finite Galois group G, by which we mean that L is a commutative separable K-algebra with G a group of automorphisms of L fixing K such that the fixed subalgebra $L^{G}=K$ and $|G|=\operatorname{dim}_{K} L$. Let O_{L} be the integral closure of O_{K} in L. Let E denote the set of primitive idempotents of L. Then for $\varepsilon \in E$, the integral closure $O_{L_{\varepsilon}}$ of O_{K} in the field $L \varepsilon$ is a complete discrete valuation ring, and $O_{L \varepsilon}=O_{L} \varepsilon$. Since $L^{G}=K, G$ acts transitively on E.

Lemma 2.1. Let I be a non-zero O_{L}-submodule of L which is G-invariant. Then $I=\left(\operatorname{rad} O_{L}\right)^{l}$ for some integer i.

Proof. For any primitive idempotent ε of $L, I \varepsilon$ is a non-zero $O_{L_{\varepsilon}}$-submodule of $L \varepsilon$, and therefore $I \varepsilon=\left(\operatorname{rad} O_{L_{\varepsilon}}\right)^{i_{\varepsilon}}$ for some $i_{\varepsilon} \in \mathbf{Z}$, since $O_{L_{\varepsilon}}$ is a discrete valuation ring. Because G acts transitively on E
and I is G-invariant, it follows that $i_{\varepsilon}=i$ is independent of ε. Then

$$
I=\sum_{\varepsilon \in E} I \varepsilon=\sum_{\varepsilon \in E}\left(\operatorname{rad} O_{L \varepsilon}\right)^{i}=\sum_{\varepsilon \in E}\left(\operatorname{rad} O_{L}\right)^{i} \varepsilon=\left(\operatorname{rad} O_{L}\right)^{i}
$$

as desired.
First, let $I=P_{K} O_{L}$. Then $P_{K} O_{L}=\left(\operatorname{rad} O_{L}\right)^{e}$ for some integer e, and we call e the ramification index of L / K.

Next, let $\operatorname{tr}_{L / K}: L \rightarrow K$ be the trace map, and let

$$
\tilde{O}_{L}=\left\{x \in L: \operatorname{tr}_{L / K}\left(x O_{L}\right) \subseteq O_{K}\right\}
$$

be the complementary module to O_{L} under the trace. Since

$$
\operatorname{tr}_{L / K}(x)=\sum_{g \in G} g(x), \quad x \in L
$$

it follows that \tilde{O}_{L} is a G-invariant O_{L}-submodule of L, so $\tilde{O}_{L}=\left(\operatorname{rad} O_{L}\right)^{-d}$ for some integer d. We call d the different exponent of L / K (and $\left(\operatorname{rad} O_{L}\right)^{d}$ the different $\mathscr{D}_{L / K}$ of $\left.L / K\right)$.

Define the inertial degree f of L / K to be $\operatorname{dim}_{\bar{K}}\left(O_{L} / \operatorname{rad} O_{L}\right)$.
Let $\rho: G \times G \rightarrow O_{L}^{*}$ be a factor set on G with values in the units of O_{L}. The crossed product algebra $A=(L / K, G, \rho)$ is the free left L-module with basis $u_{g}, g \in G$, with multiplication given by

$$
x u_{g} \cdot y u_{h}=x g(y) \rho(g, h) u_{g h}, \quad x, y \in L, g, h \in G
$$

The order $\Lambda=\left(O_{L} / O_{K}, G, \rho\right)$ is the O_{L}-submodule of A spanned by u_{g}, $g \in G$. We assume that $\rho(g, 1)=\rho(1, g)=1$, so that O_{L} may be identified inside Λ as $\left\{x u_{1}: x \in O_{L}\right\}$.

Lemma 2.2. (1) L has a normal K-basis with respect to G.
(2) A is a central simple K-algebra, and A is isomorphic to a full matrix ring over K if and only if the class of ρ in $H^{2}\left(G, L^{*}\right)$ is 1 .
(3) The reduced trace $\operatorname{trd}: A \rightarrow K$ is given by

$$
\operatorname{trd}\left(\sum_{g \in G} a_{g} u_{g}\right)=\operatorname{tr}_{L / K}\left(a_{1}\right)
$$

Proof. These results are well known if L is a field, and the proofs are essentially the same if L is a Galois algebra. We omit the details.
3. The split case. In this section we assume that L / K is a Galois algebra, and we prove the theorem in the case that $\rho=1$, with P_{L} replaced by $\operatorname{rad} O_{L}$, and with d, e, f defined as in $\S 2$. Since $\rho=1$, then
$A \cong M_{n}(K), n=|G|$. Let V be a simple A-module. The structure theory for hereditary orders ($[6,39.18]$) provides a Λ_{s}-submodule M contained in V with the following properties:
(a) r is the unique positive integer such that $\left(\operatorname{rad} \Lambda_{s}\right)^{r} M=P_{K} M$, (since $\operatorname{End}_{A}(V)=K$).
(b) $\Lambda_{s}=\left\{x \in A: x\left(\operatorname{rad} \Lambda_{s}\right)^{i} M \subseteq\left(\operatorname{rad} \Lambda_{s}\right)^{l} M, 0 \leq i<r\right\}$.
(c) $\operatorname{rad} \Lambda_{\mathrm{s}}=\left\{\mathrm{x} \in \mathrm{A}: \mathrm{x}\left(\operatorname{rad} \Lambda_{\mathrm{s}}\right)^{\mathrm{i}} \mathrm{M} \subseteq\left(\operatorname{rad} \Lambda_{\mathrm{s}}\right)^{i+1} M, 0 \leq i<r\right\}$.
(d) $\left(\operatorname{rad} \Lambda_{s}\right)^{t-1} M /\left(\operatorname{rad} \Lambda_{s}\right)^{i} M, 1 \leq i \leq r$, are a full set of simple $\Lambda_{s}-$ modules.
(e) $\quad n_{t}=\operatorname{dim}_{\bar{K}}\left(\operatorname{rad} \Lambda_{s}\right)^{i-1} M /\left(\operatorname{rad} \Lambda_{s}\right)^{i} M, 1 \leq i \leq r$.

The algebra A acts on L, via

$$
\left(\sum x_{g} u_{g}\right) \cdot y=\sum x_{g} g(y), \quad \sum x_{g} u_{g} \in A, y \in L
$$

and acts irreducibly on L, so we may take L to be V. The non-zero Λ-submodules of L are O_{L}-submodules of L which are G-stable, so they are precisely $\left(\operatorname{rad} O_{L}\right)^{i}, i \in \mathbf{Z}$, by Lemma 2.1. We denote the Λ-module $\left(\operatorname{rad} O_{L}\right)^{i}$ by M_{i}.

Lemma 3.1. For each integer $j \geq 0$,
(1) M_{i} is a Λ_{j}-module, $i \in \mathbf{Z}$, and every non-zero Λ_{j}-submodule of V is M_{i} for some i.
(2) $\left(\operatorname{rad} \Lambda_{j}\right) M_{\imath}=M_{\imath+1}$.

Proof. If (1) holds for some j, then $\left(\operatorname{rad} \Lambda_{J}\right) M_{\imath} \varsubsetneqq M_{i}$, by Nakayama's Lemma, so $\left(\operatorname{rad} \Lambda_{j}\right) M_{i} \subseteq M_{i+1}$, since M_{i+1} is the unique maximal Λ_{j}-submodule of M_{t}. But $\operatorname{rad} O_{L} \subseteq \operatorname{rad} \Lambda_{J}$, since $\left(\operatorname{rad} O_{L}\right) M_{t} \varsubsetneqq M_{t}$ for each i, and $\left(\operatorname{rad} O_{L}\right) M_{\imath}=M_{\imath+1}$, so $\left(\operatorname{rad} \Lambda_{\jmath}\right) M_{\imath}=M_{\imath+1}$, proving (2). For (1), we use induction on j, having noted that it holds for Λ_{0}. Then for $j+1$,

$$
\begin{aligned}
\Lambda_{J+1} M_{\imath} & =\Lambda_{J+1}\left(\operatorname{rad} \Lambda_{j}\right) M_{\imath-1} \quad(\operatorname{by}(2) \text { for } j) \\
& \subseteq\left(\operatorname{rad} \Lambda_{j}\right) M_{\imath-1} \quad\left(\text { by definition of } \Lambda_{i+1}\right) \\
& =M_{\imath}
\end{aligned}
$$

so M_{t} is a Λ_{j+1}-module, $i \in \mathbf{Z}$. Since any $\Lambda_{j+1}-$ module is also a Λ-module, the proof is complete.

Lemma 3.2. (1) $\Lambda_{s}=\left\{x \in A: x M_{t} \subseteq M_{t}, i \in \mathbf{Z}\right\}$.
(2) $\operatorname{rad} \Lambda_{s}=\left\{x \in A: x M_{i} \subseteq M_{i+1}, i \in \mathbf{Z}\right\}$.
(3) $\operatorname{rad} \Lambda_{s}=\left(\operatorname{rad} O_{L}\right) \Lambda_{s}=\Lambda_{s}\left(\operatorname{rad} O_{L}\right)$.

Proof. The structure of Λ_{s} is given in terms of a Λ_{s}-submodule M contained in V. From Lemma 3.1, any Λ_{s}-submodule of V must be M_{k} for some integer k. We have, from (b) and Lemma 3.1,

$$
\Lambda_{s}=\left\{x \in A: x M_{k+t} \subseteq M_{k+i}, 0 \leq i<r\right\}
$$

From (a), $M_{k+r}=\left(\operatorname{rad} \Lambda_{s}\right)^{r} M_{k}=P_{K} M_{k}$, and since P_{K} is a principal ideal of O_{K}, then $M_{k+r} \cong M_{k}$ as Λ_{s}-modules. Then for $i \in \mathbf{Z}$,

$$
\left(\operatorname{rad} \Lambda_{s}\right)^{\imath} M_{k+r}=M_{i+k+r} \cong\left(\operatorname{rad} \Lambda_{s}\right)^{\imath} M_{k}=M_{l+k}
$$

so $M_{l+r} \cong M_{i}$ as Λ_{s}-modules, $i \in \mathbf{Z}$. Thus

$$
\Lambda_{s}=\left\{x \in A: x M_{i} \subseteq M_{t}, i \in \mathbf{Z}\right\}
$$

proving (1), and (2) follows from (1). Since $\operatorname{rad} O_{L} \subseteq \operatorname{rad} \Lambda_{s}$ and $\left(\operatorname{rad} O_{L}\right) M_{i}=M_{i+1}=\left(\operatorname{rad} \Lambda_{s}\right) M_{i}, i \in \mathbf{Z}$, (3) follows from (2).

Parts (1)-(4) of the Theorem are now straightforward in this case. If Γ is a hereditary order in A containing Λ, then applying the structure theory to Γ, there is a Γ-submodule M of V such that

$$
\Gamma=\left\{x \in A: x(\operatorname{rad} \Gamma)^{t} M \subseteq(\operatorname{rad} \Gamma)^{t} M, 1 \leq i \leq \text { type number of } \Gamma\right\}
$$

Since $\Lambda \subseteq \Gamma, M$ is a Λ-module, so $M=M_{j}$ for some integer j. Also, since $\left(\operatorname{rad} O_{L}\right) M_{i} \varsubsetneqq M_{i}, i \in \mathbf{Z}$, then $\operatorname{rad} O_{L} \subseteq \operatorname{rad} \Gamma$, and then $(\operatorname{rad} \Gamma)^{l} M^{\prime}$, $=M_{J+l}, i \in \mathbf{Z}$. It follows from Lemma 3.2 that $\Lambda_{s} \subseteq \Gamma$, proving (1) of the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from (a) that r is the integer such that $\left(\operatorname{rad} \Lambda_{s}\right)^{r} M_{k}=P_{K} M_{k}$. But

$$
P_{K} M_{k}=P_{K} O_{L} M_{k}=\left(\operatorname{rad} O_{L}\right)^{e} M_{k}=M_{k+e}
$$

so $r=e$. (Note that $m=1$ here.) For (4),

$$
\begin{aligned}
& \left(\operatorname{rad} \Lambda_{s}\right)^{t-1} M_{k} /\left(\operatorname{rad} \Lambda_{s}\right)^{t} M_{k} \\
& \quad=M_{k+i-1} / M_{k+\imath}=\left(\operatorname{rad} O_{L}\right)^{k+i-1} /\left(\operatorname{rad} O_{L}\right)^{k+i}
\end{aligned}
$$

and as \bar{K}-modules $\left(\operatorname{rad} O_{L}\right)^{k+t-1} /\left(\operatorname{rad} O_{L}\right)^{k+i} \cong O_{L} / \operatorname{rad} O_{L}$ so

$$
n_{t}=\operatorname{dim}_{\bar{K}} O_{L} / \operatorname{rad} O_{L}=f, 1 \leq i \leq r .
$$

In order to prove (5), we use the following result.
Lemma 3.3. Suppose that a is an integer ≥ 0 such that $\left(\operatorname{rad} \Lambda_{s}\right)^{a}$ is the largest left Λ_{s}-ideal contained in Λ. Then $s=a$.

Proof. If $a=0$, then $\Lambda_{s} \subseteq \Lambda$, so $\Lambda_{s}=\Lambda$, and $s=0$. Assuming that $a>0$, we show that $\left(\operatorname{rad} \Lambda_{s}\right)^{a-1}$ is the largest left Λ_{s}-ideal contained in Λ_{1}. First,

$$
\left(\operatorname{rad} \Lambda_{s}\right)^{a-1} \operatorname{rad} \Lambda \subseteq\left(\operatorname{rad} \Lambda_{s}\right)^{a-1} \operatorname{rad} \Lambda_{s}=\left(\operatorname{rad} \Lambda_{s}\right)^{a}
$$

Now $\left(\operatorname{rad} \Lambda_{s}\right)^{a} \subseteq \Lambda$ by hypothesis, and $\operatorname{rad} \Lambda_{s} \cap \Lambda \subseteq \operatorname{rad} \Lambda$, by Lemma 3.2. Thus $\left(\operatorname{rad} \Lambda_{s}\right)^{a} \subseteq \operatorname{rad} \Lambda$. Then $\left(\operatorname{rad} \Lambda_{s}\right)^{a-1}(\operatorname{rad} \Lambda) \subseteq \operatorname{rad} \Lambda$, so $\left(\operatorname{rad} \Lambda_{s}\right)^{a-1} \subseteq \Lambda_{1}$.

Next, if L is a left Λ_{s}-ideal contained in Λ_{1}, then $L \operatorname{rad} \Lambda \subseteq \operatorname{rad} \Lambda$, so $L \operatorname{rad} \Lambda \subseteq\left(\operatorname{rad} \Lambda_{s}\right)^{a}$. Then

$$
L \operatorname{rad} \Lambda_{s}=L(\operatorname{rad} \Lambda) \Lambda_{s} \subseteq\left(\operatorname{rad} \Lambda_{s}\right)^{a} .
$$

Since $\operatorname{rad} \Lambda_{s}$ is invertible, $L \subseteq\left(\operatorname{rad} \Lambda_{s}\right)^{a-1}$ as desired.
Now by induction, the length of the chain $\Lambda_{1} \subseteq \Lambda_{2} \subseteq \cdots \subseteq \Lambda_{s}$ is $a-1$, so $s=a$, and the proof is complete.

Let $\operatorname{trd}: A \rightarrow K$ be the reduced trace, and for an O_{K}-submodule L of A with $K L=A$, let

$$
\tilde{L}=\left\{x \in A: \operatorname{trd}(x L) \subseteq O_{K}\right\}
$$

be the complementary module.
Lemma 3.4. Let Γ be any hereditary O_{K}-order contained in the split simple algebra $A=M_{n}(K)$. Then

$$
\tilde{\Gamma}=P_{K}^{-1} \operatorname{rad} \Gamma
$$

Proof. Suppose that Γ has type number r, invariants n_{1}, \ldots, n_{r}, and Γ consists of block matrices as mentioned in section 1 . Let π_{K} be a prime element of O_{K}. For integers $i, j, 1 \leq i, j \leq n$, let $Y_{i j}$ denote the matrix whose i, j-entry is π_{K} if the i, j-position is above the diagonal of blocks of Γ, or 1 otherwise, and all of whose other entries are 0 (so $Y_{i j} \in \Gamma$.) Let $y_{i j}$ denote the non-zero entry of $Y_{i j}$. Let $X=\left(x_{i j}\right)$ be any element of A. Then $X Y_{i j}$ has at most one non-zero entry on the main diagonal, namely $x_{i j} y_{j i}$. We have $\operatorname{trd}\left(X Y_{i j}\right)=\operatorname{trace}$ of matrix $X Y_{i j}=x_{i j} y_{j i}$. Then $X \in \tilde{\Gamma}$ $\Leftrightarrow x_{i j} y_{j i} \in O_{K}$, all $i, j \Leftrightarrow$ when X is partitioned according to the block partition induced by Γ, the entries below the diagonal of blocks are in P_{K}^{-1}, and the other entries are in O_{K}. But such matrices are precisely those in $P_{K}^{-1} \mathrm{rad} \Gamma$. Since the $Y_{i j}$ give a free basis for Γ over O_{K}, the result follows.

Lemma 3.5. Let $w=d-(e-1)$. Then $\left(\operatorname{rad} \Lambda_{s}\right)^{w}$ is the largest left Λ_{s}-ideal contained in Λ.

Proof. From Lemma 3.2, we have $\operatorname{rad} \Lambda_{s}=\left(\operatorname{rad} O_{L}\right) \Lambda_{s}$, so $\left(\operatorname{rad} \Lambda_{s}\right)^{w}$ $=\left(\operatorname{rad} O_{L}\right)^{d-(e-1)} \Lambda_{s}$. From Lemma 3.4

$$
\tilde{\Lambda}_{s}=P_{K}^{-1} \operatorname{rad} \Lambda_{s}=\left(\operatorname{rad} O_{L}\right)^{-e}\left(\operatorname{rad} O_{L}\right) \Lambda_{s}=\left(\operatorname{rad} O_{L}\right)^{-e+1} \Lambda_{s},
$$

so

$$
\left(\operatorname{rad} \Lambda_{s}\right)^{w}=\left(\operatorname{rad} O_{L}\right)^{d} \tilde{\Lambda}_{s}=\left(\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda_{s}\right)^{\sim}
$$

From Lemma 2.2, $\operatorname{trd}\left(\sum x_{g} u_{g}\right)=\operatorname{tr}_{L / K}\left(x_{1}\right)$, so

$$
\begin{gathered}
\tilde{\Lambda}=\mathscr{D}^{-1} \Lambda=\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda \subseteq\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda_{s} \\
\left(\operatorname{rad} \Lambda_{s}\right)^{w}=\left(\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda_{s}\right)^{\sim} \subseteq \tilde{\tilde{\Lambda}}=\Lambda
\end{gathered}
$$

so $\left(\operatorname{rad} \Lambda_{s}\right)^{w}$ is contained in Λ. If L is any other left Λ_{s}-ideal contained in Λ, then \tilde{L} is a right Λ_{s}-module containing $\tilde{\Lambda}$, so

$$
\begin{gathered}
\tilde{L} \supseteq \tilde{\Lambda} \Lambda_{s}=\mathscr{D}^{-1} \Lambda_{s}=\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda_{s} \\
L=\tilde{\tilde{L}} \subseteq\left(\left(\operatorname{rad} O_{L}\right)^{-d} \Lambda_{s}\right)^{\sim}=\left(\operatorname{rad} \Lambda_{s}\right)^{w}
\end{gathered}
$$

completing the proof.
Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.
4. The general case. In this section we continue with the assumption that L / K is a Galois algebra, and we prove the Theorem in the case that ρ is any factor set with values in O_{L}^{*}. Since \bar{K} is finite, there is an unramified field extension K^{\prime} of K such that the algebra $A^{\prime}=A \otimes_{K} K^{\prime}$ splits ([7, Prop. 2, p. 191].) Let O^{\prime} be the integral closure of O_{K} in K^{\prime}, and let $\Lambda^{\prime}=\Lambda \otimes_{O_{K}} O^{\prime}$.

Lemma 4.1. If Γ is an $O_{K^{-}}$order, then

$$
\operatorname{rad}\left(\Gamma \otimes_{O_{K}} O^{\prime}\right)=(\operatorname{rad} \Gamma) \otimes_{O_{K}} O^{\prime}
$$

Proof. Denote O_{K} by O, and P_{K} by P. Clearly

$$
(\operatorname{rad} \Gamma) \otimes_{o} O^{\prime} \subseteq \operatorname{rad}\left(\Gamma \otimes_{o} O^{\prime}\right)
$$

For the reverse inclusion, we have

$$
\left(\Gamma \otimes_{O} O^{\prime}\right) /(\operatorname{rad} \Gamma) \otimes_{O} O^{\prime} \cong(\Gamma / \operatorname{rad} \Gamma) \otimes_{O} O^{\prime}
$$

Since $P \subseteq \operatorname{rad} \Gamma$, then $\Gamma / \mathrm{rad} \Gamma$ is an O / P-module, and

$$
(\Gamma / \operatorname{rad} \Gamma) \otimes_{o} O^{\prime} \cong(\Gamma / \operatorname{rad} \Gamma) \otimes_{O / P}\left(O^{\prime} / P O^{\prime}\right)
$$

Since K^{\prime} / K is unramified, then $O^{\prime} / P O^{\prime}$ is field, which is separable over \bar{K} since \bar{K} is finite. Then the semi-simple O / P-algebra $\Gamma / \mathrm{rad} \Gamma$ remains semi-simple after tensoring with $O^{\prime} / P O^{\prime}$, so $\Gamma \otimes_{O} O^{\prime} /(\operatorname{rad} \Gamma) \otimes_{O} O^{\prime}$ is semi-simple, and the result follows.

We let G act on $L^{\prime}=L \otimes_{K} K^{\prime}$ by

$$
g(x \otimes y)=g(x) \otimes y, \quad x \in L, y \in K^{\prime}, g \in G
$$

Then L^{\prime} is a Galois algebra over K^{\prime} with Galois group G. We have $O_{L^{\prime}}=O_{L} \otimes_{O_{K}} O^{\prime}$, and

$$
\Lambda^{\prime}=\Lambda \otimes_{O_{K}} O^{\prime}=\left(O_{L^{\prime}} / O^{\prime}, G, \rho\right)
$$

Let us show that in going from L / K to L^{\prime} / K^{\prime}, the numbers d, e, f are unchanged.

Applying Lemma 4.1 to the O_{K}-order O_{L}, we have $\operatorname{rad} O_{L^{\prime}}=$ $\left(\operatorname{rad} O_{L}\right) \otimes_{O_{K}} O^{\prime}$. Since the maximal ideal P^{\prime} of O^{\prime} is $P_{K} O^{\prime}$, then

$$
P^{\prime} O_{L^{\prime}}=\left(P_{K} O_{L}\right) \otimes_{O_{K}} O^{\prime}=\left(\operatorname{rad} O_{L}\right)^{e} \otimes_{O_{K}} O^{\prime}=\left(\operatorname{rad} O_{L^{\prime}}\right)^{e}
$$

so the ramification index of L^{\prime} / K^{\prime} is still e. Similarly,

$$
\operatorname{dim}_{\bar{K}^{\prime}}\left(O_{L^{\prime}} / \operatorname{rad} O_{L^{\prime}}\right)=\operatorname{dim}_{\bar{K}}\left(O_{L} / \operatorname{rad} O_{L}\right)=f
$$

For the different exponent of L^{\prime} / K^{\prime}, since

$$
\operatorname{tr}_{L^{\prime} / K^{\prime}}(x \otimes y)=\operatorname{tr}_{L / K}(x) \otimes y, \quad x \in L, y \in K^{\prime}
$$

then clearly $\tilde{O}_{L} \otimes_{O_{K}} O^{\prime} \subseteq \tilde{O}_{L^{\prime}} ;$ since $\tilde{O}_{L}=\left(\operatorname{rad} O_{L}\right)^{-d}$, and $\operatorname{rad} O_{L^{\prime}}=$ $\left(\operatorname{rad} O_{L}\right) \otimes_{O_{K}} O^{\prime}$, then $\left(\operatorname{rad} O_{L^{\prime}}\right)^{-d} \subseteq \tilde{O}_{L^{\prime}}$. If $\left(\operatorname{rad} O_{L^{\prime}}\right)^{-d-1} \subseteq \tilde{O}_{L^{\prime}}$, then $\left(\operatorname{rad} O_{L}\right)^{-d-1} \subseteq \tilde{O}_{L}$, which is not so. Therefore $\tilde{O}_{L^{\prime}}=\left(\operatorname{rad} O_{L^{\prime}}\right)^{-d}$.

Lemma 4.2. If Γ is an $O_{K^{-}}$order contained in a semi-simple algebra A, then

$$
O_{l}(\operatorname{rad} \Gamma) \otimes_{O_{K}} O^{\prime}=O_{l}\left(\operatorname{rad}\left(\Gamma \otimes_{O_{K}} O^{\prime}\right)\right)
$$

Proof. It is clear that the left side is contained in the right. There is an isomorphism

$$
\phi: O_{l}(\operatorname{rad} \Gamma) \rightarrow \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma)
$$

where $\operatorname{rad} \Gamma$ is considered as a right Γ-module. Similarly, there is an isomorphism

$$
\psi: O_{l}\left(\operatorname{rad} \Gamma^{\prime}\right) \rightarrow \operatorname{Hom}_{\Gamma^{\prime}}\left(\operatorname{rad} \Gamma^{\prime}, \operatorname{rad} \Gamma^{\prime}\right)
$$

where $\Gamma^{\prime}=\Gamma \otimes_{\mathrm{O}} \mathrm{O}^{\prime}$. Since Γ is noetherian, then $\operatorname{rad} \Gamma$ is finitely presented over Γ, so from $[6,2.37]$ we have an isomorphism

$$
\begin{aligned}
\sigma: \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma) \otimes_{O} O^{\prime} & \rightarrow \operatorname{Hom}_{\Gamma \otimes_{O} O^{\prime}}\left(\operatorname{rad} \Gamma \otimes_{O} O^{\prime}, \operatorname{rad} \Gamma \otimes_{O} O^{\prime}\right) \\
& =\operatorname{Hom}_{\Gamma^{\prime}}\left(\operatorname{rad} \Gamma^{\prime}, \operatorname{rad} \Gamma^{\prime}\right)
\end{aligned}
$$

from Lemma 4.1. The map

$$
\psi^{-1} \sigma(\phi \otimes 1): O_{l}(\operatorname{rad} \Gamma) \otimes_{O_{K}} O^{\prime} \rightarrow O_{l}\left(\operatorname{rad} \Gamma^{\prime}\right)
$$

is the identity, and the result is proved.
Lemma 4.3. Let $\Lambda=\left(O_{L} / O_{K}, G, \rho\right)$ be a crossed product order in $A=(L / K, G, \rho)$ and suppose that A splits over K. Then $\Lambda \cong$ $\left(O_{L} / O_{K}, G, 1\right)$.

Proof. Since the algebra A is split over K, the class of ρ in $H^{2}\left(G, L^{*}\right)$ is 1 . We shall show that the map $H^{2}\left(G, O_{L}^{*}\right) \rightarrow H^{2}\left(G, L^{*}\right)$ is one-to-one, and then the class of ρ in $H^{2}\left(G, O_{L}^{*}\right)$ will be 1 , and the result will follow.

Let E be the set of primitive idempotents of L and let $M=\oplus_{\varepsilon \in E} Z \varepsilon$ be the free Z-module with basis E; G acts on M via its action on E. For ε in E, let v_{ε} be the normalized valuation on the field $L \varepsilon$, and define $v: L^{*} \rightarrow M$ by

$$
v(x)=\sum_{\varepsilon \in E} v_{\varepsilon}(x \varepsilon) \varepsilon, \quad x \in L^{*}
$$

Then we get an exact sequence of G-modules

$$
o \rightarrow O_{L}^{*} \rightarrow L^{*} \xrightarrow{v} M \rightarrow o
$$

giving rise to the exact sequence

$$
H^{1}(G, M) \rightarrow H^{2}\left(G, O_{L}^{*}\right) \rightarrow H^{2}\left(G, L^{*}\right)
$$

Since M is a permutation module, M is isomorphic to the induced module $\operatorname{Ind}_{H}^{G}(\mathbf{Z})=\mathbf{Z} G \otimes_{Z H} \mathbf{Z}$, where H is the stabilizer of an idempotent in E, and $H^{1}(G, M)=H^{1}(H, \mathbf{Z})=0$, since H is finite. Then $H^{2}\left(G, O_{L}^{*}\right)$ $\rightarrow H^{2}\left(G, L^{*}\right)$ is one-to-one, as desired.

From Lemma 4.2, the chains

$$
\begin{aligned}
& \Lambda_{0} \subseteq \Lambda_{1} \subseteq \cdots \subseteq \Lambda_{s} \\
& \Lambda_{0}^{\prime} \subseteq \Lambda_{1}^{\prime} \subseteq \cdots \subseteq \Lambda_{s}^{\prime}
\end{aligned}
$$

have the same length, and Λ_{s}^{\prime} is hereditary. Since the Theorem has been proved in the split case, and since $\Lambda^{\prime} \cong\left(O_{L^{\prime}} / O^{\prime}, G, 1\right)$, which follows from Lemma 4.3, we find that $s=d-(e-1)$. If Γ is a hereditary order in A containing Λ, then $\Gamma^{\prime}=\Gamma \otimes_{O_{K}} O^{\prime}$ is a hereditary order in A^{\prime} containing A^{\prime}, and since Λ_{s}^{\prime} is the unique minimal hereditary order in A^{\prime} containing A^{\prime}, then $\Lambda_{s}^{\prime} \subseteq \Gamma^{\prime}$. We may embed Γ in Γ^{\prime} as $\Gamma \otimes_{O_{K}} 1$, and A in A^{\prime} as $A \otimes_{K} 1$, and then $\Gamma=\Gamma^{\prime} \cap A \supseteq \Lambda_{s}^{\prime} \cap A=\Lambda_{s}$, so Λ_{s} is the unique minimal hereditary order in A containing Λ.

From [6, 39.14] we have

$$
\Lambda_{s} / \operatorname{rad} \Lambda_{s} \cong \prod_{i=1}^{r} M_{n_{t}}(\bar{\Delta})
$$

where $\bar{\Delta}=\Delta / \operatorname{rad} \Delta$, and Δ is the unique maximal order in $\operatorname{End}_{A}(V)$, with V a simple A-module. Then

$$
\begin{aligned}
\Lambda_{s}^{\prime} / \operatorname{rad} \Lambda_{s}^{\prime} & \cong\left(\Lambda_{s} / \operatorname{rad} \Lambda_{s}\right) \otimes_{O_{K}} O^{\prime} \cong\left(\Lambda_{s} / \operatorname{rad} \Lambda_{s}\right) \otimes_{\bar{K}} \bar{K}^{\prime} \\
& \cong \prod_{i=1}^{r} M_{n_{i}}\left(\bar{\Delta} \otimes_{\bar{K}} \bar{K}^{\prime}\right)
\end{aligned}
$$

Now $\bar{\Delta} \otimes_{\bar{K}} \bar{K}^{\prime} \cong\left(\bar{K}^{\prime}\right)^{m}$, where m is the Schur index of A, since \bar{K} is finite ([6, 14.3]). Thus

$$
\Lambda_{s}^{\prime} / \operatorname{rad} \Lambda_{s}^{\prime} \cong\left(\prod_{i=1}^{r} M_{n_{i}}\left(\bar{K}^{\prime}\right)\right)^{m}
$$

Therefore the type number of $\Lambda_{s}^{\prime} / \operatorname{rad} \Lambda_{s}^{\prime}$, known to be e from $\S 3$, is equal to $m r$, yielding

$$
r=\frac{e}{m}
$$

Each invariant $n_{t}=f$, since the invariants n_{i} of Λ_{s}^{\prime} are f. Therefore the proof of the theorem is complete.
5. Generators for Λ_{s} in the split case. In this section we find generators for Λ_{s} in the case that $\rho=1$. To simplify the exposition, we assume that L is a field, which is totally ramified over K. We let P_{L} be the maximal ideal of O_{L}, and let v_{L} be the normalized valuation on L. Let M_{i} denote the Λ-module $P_{L}^{i}, i \in \mathbf{Z}$.

Lemma 5.1. Let $w=d-(e-1)$, and let x be an element of L such that $v_{L}(x)=-w$. Let $\alpha=x \sum_{g \in G} u_{g} \in A$. Then $\alpha M_{t} \subseteq M_{i}, i \in \mathbf{Z}$ (so $\alpha \in \Lambda_{s}$, from Lemma 3.2), and unless $i \equiv-w(\bmod e), \alpha M_{\imath} \subseteq M_{i+1}$, whereas if $i \equiv-w(\bmod e), \alpha M_{\imath} \nsubseteq M_{\imath+1}$.

Proof. Let tr denote the trace from L to K. We first compute $\operatorname{tr}\left(P_{L}^{l}\right)$, $i \in \mathbf{Z}$. We have, for $j \in \mathbf{Z}$,

$$
\begin{aligned}
\operatorname{tr}\left(P_{L}^{i}\right) & \subseteq P_{K}^{j} \Leftrightarrow \operatorname{tr}\left(P_{L}^{i} P_{K}^{-j}\right) \subseteq O_{K} \\
& \Leftrightarrow \operatorname{tr}\left(P_{L}^{i-e j}\right) \subseteq O_{K} \Leftrightarrow P_{L}^{i-e j} \subseteq \mathscr{D}^{-1} \\
& \Leftrightarrow P_{L}^{i-e_{J}+d} \subseteq O_{L} \Leftrightarrow i-e j+d \geq 0 \\
& \Leftrightarrow j \leq \frac{i+d}{e}
\end{aligned}
$$

(we have used $\mathscr{D}=P_{L}^{d}$). Thus

$$
\operatorname{tr}\left(P_{L}^{i}\right)=P_{K}^{[(i+d) / e]}
$$

where [] denotes greatest integer. Since $\sum u_{g} \cdot y=\Sigma g(y)=\operatorname{tr} y, y \in L$, we have

$$
O_{L} \alpha M_{i}=O_{L} x \operatorname{tr}\left(P_{L}^{i}\right)=x O_{L} P_{K}^{[(i+d) / e]}=x P_{L}^{e[(i+d) / e]}
$$

Write

$$
\left[\frac{i+d}{e}\right]=\left[\frac{i+w}{e}+\frac{d-w}{e}\right]=\left[\frac{i+w}{e}+\frac{e-1}{e}\right]
$$

If $(i+w) / e \notin \mathbf{Z}$, then $[(i+d) / e]>(i+w) / e$, so $e[(i+d) / e] \geq$ $i+w$, and

$$
O_{L} \alpha M_{i} \subseteq x P_{L}^{l+w+1}=P_{L}^{i+1}=M_{l+1}
$$

If $(i+w) / e \in \mathbf{Z}$, then $[(i+d) / e]=(i+w) / e$, so $e[(i+d) / e]=i+$ w, and

$$
O_{L} \alpha M_{i}=x P_{L}^{\prime+w}=M_{i}
$$

This completes the proof.
Let π_{L} be a prime element of O_{L}. Then from Lemma 3.2, we have $\pi_{L}^{-1} \Lambda_{s} \pi_{L}=\Lambda_{s}$. Let $\alpha=x \sum u_{g}$ be the element of Lemma 5.1, and define

$$
\alpha_{t}=\pi_{L}^{-i} \alpha \pi_{L}^{i}, \quad 0 \leq i<e .
$$

From Lemma 5.2, it follows that α_{i} acts non-trivially on M_{-w+l} / M_{-w+i+1}, whereas α_{i} annihilates M_{j} / M_{j+1} if $j \not \equiv-w+i(\bmod e)$. Thus the simple Λ_{s}-modules $M_{0} / M_{1}, M_{1} / M_{2}, \ldots, M_{e-1} / M_{e}$ are non-isomorphic, and hence form a complete set of simple Λ_{s}-modules. Recall that $\Lambda_{s} / \mathrm{rad} \Lambda_{s}$ $\cong \prod_{i=1}^{r} M_{n_{i}}(\bar{K})$, and each $n_{i}=f=1$, since we are assuming that L / K is totally ramified. Hence $\Lambda_{s} / \operatorname{rad} \Lambda_{s}$ is commutative. Further, $r=e$, so $\operatorname{dim}_{\bar{K}}\left(\Lambda_{s} / \operatorname{rad} \Lambda_{s}\right)=e$. Then the elements $\alpha_{i}+\operatorname{rad} \Lambda_{s}$ generate $\Lambda_{s} / \operatorname{rad} \Lambda_{s}$ as a \bar{K}-module, $0 \leq i<e$. Since $\operatorname{rad} \Lambda_{s}=P_{L} \Lambda_{s}$, we see that $O_{L} \alpha_{i}, 0 \leq i$ $<e$, generate Λ_{s} as an O_{K} module. So $\pi_{i}^{\prime} \alpha_{i}, 0 \leq j<e, 0 \leq i<e$, generate Λ_{s} as an O_{K}-module.

Finally, from the formula $\operatorname{tr}\left(P_{L}^{i}\right)=P_{K}^{[(i+d) / e]}$ from Lemma 5.1, if we set $i=-w$, then $i+d=e-1$, so $\operatorname{tr}\left(P_{L}^{-w}\right)=O_{K}$. Thus we may find y in L with $v_{L}(y)=-w$ such that $\operatorname{tr}(y)=u$ is a unit of O_{K}. Then $x=u^{-1} y$ has $v_{L}(x)=-w$ and $\operatorname{tr}(x)=1$. Now $\left(\sum u_{g}\right) x\left(\sum u_{g}\right)=\operatorname{tr}(x) \sum u_{g}=\sum u_{g}$, so $\alpha=x \sum u_{g}$ is idempotent. From the action of α on the simple modules M_{i} / M_{i+1}, we find that α is a primitive idempotent of Λ_{s}, and that the elements $\alpha_{i}+\operatorname{rad} \Lambda_{s}$ are all the primitive idempotents of $\Lambda_{s} / \operatorname{rad} \Lambda_{s}$.
6. Complements. The results of Auslander-Goldman-Rim-Williamson mentioned in the Introduction follow easily from our Theorem. If $\rho=1, \Lambda$ is a maximal order in $A \Leftrightarrow s=0, r=1 \Leftrightarrow e / m=1 \Leftrightarrow e=1$, since $m=1$. For any ρ, Λ is hereditary $\Leftrightarrow s=0 \Leftrightarrow d=e-1 \Leftrightarrow L / K$ is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely ramified case, Λ has type e / m and invariants f. (See also Merklen [5].)

From the fact that $r=e / m$, we find a way to compute the Schur index m of A as follows: the centre of $\Lambda_{s} / \operatorname{rad} \Lambda_{s}$ has e / m component fields (each of dimension m over \bar{K}).

It may be shown that the index

$$
\left(\Lambda_{s}: \Lambda\right)=\pi_{K}^{n^{2}(d-(e-1)) / 2 e}
$$

where $n=[L: K]$. This follows from

$$
(\tilde{\Lambda}: \Lambda)=\left(\tilde{\Lambda}_{s}: \Lambda_{s}\right)\left(\Lambda_{s}: \Lambda\right)^{2}
$$

Note that Lemma 3.4 (that $\tilde{\Lambda}=P_{K}^{-1} \operatorname{rad} \Lambda$ if Λ is hereditary) also holds in the non-split case, as may be shown by tensoring with an unramified extension.

In the split case (§3), the Λ-lattices contained in a irreducible A-module V are linearly ordered, but this fails to be true if A is not split. However, it may be shown, in general, that the Λ-lattices M in V such that $\operatorname{End}_{\Lambda}(M)$ is the maximal order in $\operatorname{End}_{A}(V)$ are linearly ordered, and this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders $\Lambda_{j+1}^{\prime}=O_{r}\left(\operatorname{rad} \Lambda_{j}^{\prime}\right)$ throughout, instead of left orders, and still obtain the same answer $s=d-(e-1)$ for the length of the chain $\Lambda_{0}^{\prime} \subseteq \cdots \subseteq \Lambda_{s}^{\prime}$. By uniqueness of Λ_{s}, we would get $\Lambda_{s}=\Lambda_{s}^{\prime}$, but we do not know whether $\Lambda_{j}=\Lambda_{j}^{\prime}$ for all $j, 1<j<s$.

References

[1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
[2] M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math., 7 (1963), 566-581.
[3] H. Benz and H. Zassenhaus, Über verschränkte Produktordnungen, J. Number Theory, 20 (1985), 282-298.
[4] G. Janusz, Crossed product orders and the Schur index, Comm. Algebra, 8 (1980), 697-706.
[5] H. Merklen, Hereditary crossed product orders, Pacific J. Math., 74 (1978), 391-406.
[6] I. Reiner, Maximal Orders, Academic Press, London, 1975.
[7] J.-P. Serre, Corps Locaux, Act. Sci. et Ind. 1296, Hermann, Paris, 1962.
[8] S. Williamson, Crossed products and hereditary orders, Nagoya Math. J., 23 (1963), 103-120.

Received September 21, 1984 and in revised form March 26, 1985. Supported by NSERC.

University of Alberta
Edmonton, Alberta
Canada T6G 2G1

