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CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let Λ be the crossed product order (OL/OK, G,p) where L/K is a
finite Galois extension of local fields with Galois group G, and p is a
factor set with values in 0*. Let Λo = Λ, and let Λ / + 1 be the left order
O^rad A,) of rad Ar The chain of orders Λo, Al9...9As ends with a
hereditary order As. We prove that As is the unique minimal hereditary
order in A = KA containing A, that As has e/m simple modules, each
of dimension / over the residue class field K of Oκ, and that s = d -
(e — 1). Here d,e,f are the different exponent, ramification index,
and inertial degree of L/K, and m is the Schur index of A.

1. Introduction. Let Oκ be a complete discrete valuation ring having
field of fractions K and finite residue class field K. Let L be a finite
Galois extension of K, with Galois group G, and let OL be the valuation
ring in L. Let p be a factor set o n G x G with values in the units of OL.
We are interested in the crossed product order Λ = (OL/Oκ,G,ρ) con-
tained in the simple algebra A = (L/K,G,p). If p is trivial, Auslander-
Goldman [1] showed that Λ is a maximal order in A if and only if L/K
is unramified, and Auslander-Rim [2] showed that Λ is hereditary if and
only if L/K is tamely ramified. Williamson [8] extended the Auslander-
Rim result to the case that p is any factor set. We are interested in the
wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique
minimal hereditary order in A.

We set Λo = Λ, and define inductively

Λ y + 1 = [x <Ξ A: xτ&άAjQ radΛy} = O7(radΛy).

Then we have the sequence of orders

for some integer s. Since As = O7(rad Λs), it follows that Λs is hereditary
([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) As

may be described as follows: if A = Mn(D)y the ring of n X n matrices
over a division ring D, and if Δ is the unique maximal order in D, then
As is the set of block matrices, with entries in Δ, where there are r
diagonal blocks of size ni X ni9 and blocks above the diagonal have

333
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entries in radΔ. The positive integer r is called the type number of As9

and is also equal to the number of simple Λ5-modules. Our main result is

the following.

THEOREM. (1) As is the unique minimal hereditary O^order in A

containing A.

(2) rad Λ5 = PLAS, where PL denotes the maximal ideal of OL.

(3) r = e/m9 where e is the ramification index of L/K and m is the

Schur index of A.

(4) nx = n2 = = nr= /, the inertial degree of L/K.

(5) s = d — (e — 1), where d is the exponent P£ = Sd of the different of

L/K.

We prove this by first considering the split case (when p = 1), and

then taking an unramified extension Kf of K which splits A, and

considering A ®KK' which is a crossed product (L'/K',G,ΐ)9 where

Lf = L ®KK'. Then L' is not in general a field, but a Galois algebra over

K\ and we find it convenient to prove the Theorem when L is a Galois

algebra over K to begin with; we take OL to be the integral closure of Oκ

in L, we replace PL by radO L , and we give suitable definitions of d, e,

and / in §2. We deal with the split case in §3, and the general case in §4.

We find generators for the hereditary order As in §5, in the totally

ramified split case. In §6 we show how our results yield those of Aus-

lander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.

2. Galois algebras. Let L be a commutative Galois algebra over

K, with finite Galois group G, by which we mean that L is a commutative

separable K-sAgebra, with G a group of automorphisms of L fixing K such

that the fixed subalgebra LG = K and \G\ = dim^L. Let OL be the

integral closure of Oκ in L. Let E denote the set of primitive idempotents

of L. Then for ε e E, the integral closure OLε of Oκ in the field Lε is a

complete discrete valuation ring, and OLε = OLε. Since LG = K, G acts

transitively on E.

LEMMA 2.1. Let I be α non-zero OL-submodule of L which is G-in-

υαriαnt. Then I = (rad OL)1 for some integer i.

Proof. For any primitive idempotent ε of L, Ie is a non-zero

OLε-submodule of Lε, and therefore Jε = (radOL ε)
/ ε for some iε e Z,

since OLε is a discrete valuation ring. Because G acts transitively on £
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and / is G-invariant, it follows that iε = i is independent of ε. Then

/ = Σ Ie = Σ (radOLε)< = Σ ( radOj 'e = ( r a d O j '

as desired.

First, let / = PKOL. Then PKOL = (rad(9L)e for some integer e, and

we call e the ramification index of L/ΛΓ.

Next, let tΐL/κ\ L -> K be the trace map, and let

OL=

be the complementary module to OL under the trace. Since

) = Σ g(*), * ^ L,

it follows that OL is a G-invariant OL-submodule of L, so OL = (mdOL)~d

for some integer d. We call d the different exponent of L/X (and

(rad OL)d the different S L / / Γ of L/K).

Define the inertial degree f of L/K to be dim^(OL/rad OL).

Let p: G X G ̂  O* be a factor set on G with values in the units of

OL. The crossed product algebra A = (L/K, G, p) is the free left L-mod-

ule with basis ug, g e G, with multiplication given by

= *g(y)p(g,h)ugh, x,y e L, g,λ e G.

The order Λ = (OL/OK,G, p) is the OL-submodule of yί spanned by ug9

g e G. We assume that p(g, 1) = p(l, g) = 1, so that OL may be identi-

fied inside Λ as {xux: x G O L } .

LEMMA 2.2. (1) L /zα.y a normal K-basis with respect to G.

(2) A is a central simple K-algebra, and A is isomorphic to a full matrix

ring over K if and only if the class ofp in H2(G, L*) is 1.

(3) The reduced trace trd : A -> K is given by

trd

Proof. These results are well known if L is a field, and the proofs are

essentially the same if L is a Galois algebra. We omit the details.

3. The split case. In this section we assume that L/K is a Galois

algebra, and we prove the theorem in the case that p = 1, with PL

replaced by radOL, and with d, e,f defined as in §2. Since p = 1, then
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A = Mn(K), n = |G|. Let V be a simple yl-module. The structure theory

for hereditary orders ([6, 39.18]) provides a Λ5-submodule M contained in

V with the following properties:

(a) r is the unique positive integer such that (rad As)
rM = PKM,

(since EndA(V) = K).

(b) As = {x ΪΞA: x(mdAsYM Q(mdAs)
lM,0 < i < r}.

(c) r a d Λ s = {x e A: x ( r a d Λ s ) i M c ( r a d Λ s ) z + 1 M , 0 < i < r).

(d) (τaAKs)
ι-ιM/(τaάKsγM9 1 < i < r, are a full set of simple As-

modules.

(e) nι = dim^rad A,)/-1M/(rad AS)'M, 1 < / < r.

The algebra A acts on L, via

and acts irreducibly on I , so we may take L to be V. The non-zero

Λ-submodules of L are OL-submodules of L which are G-stable, so they

are precisely (radOL)', / G Z, by Lemma 2.1. We denote the Λ-module

( r a d O J ' b y M , .

LEMMA 3.1. For each integer j > 0,

(1) Mi is a A-module, i e Z, αwJ every non-zero Aj-submodule of V is

Mt for some i.

(2)(mdAJ)Mι = Mι+1,

Proof. If (1) holds for some j, then (rad AJ)Mι c Mι9 by Nakayama's

Lemma, so (rad Aj)Mi c M + 1 , since M / + 1 is the unique maximal Λy-sub-

module of Mr But radOL c radΛ j 9 since (rad OL)Mι c M; for each /,

and (radOL)Mι = Afl+1, so (radA7)M7 = Mι+l9 proving (2). For (1), we

use induction on j, having noted that it holds for Λo. Then for j + 1,

AJ + 1M, = Λ ^ ^ r a d Λ , ) ^ ^ (by (2) for j)

c (rad Aj )Mι_ι (by definition of Λ / +

so Mt is a Λ7 + 1-module, / G Z. Since any Λy+1-module is also a Λ-mod-

ule, the proof is complete.

LEMMA 3.2. (1) As = {x G ^ : xMz c Mi9 i G Z}.

(2) radΛ 5 = ( c G >4: xMi c M / + 1, / e Z}.

(3) radΛ 5 = (radOL)Λ5 =
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Proof. The structure of As is given in terms of a Λ5-submodule M

contained in V. From Lemma 3.1, any Λ5-submodule of V must be Mk

for some integer k. We have, from (b) and Lemma 3.1,

Λ,= {XΪΞA: xMk+ιQMk+ι,0<i<r}.

From (a), Mk+r = (rad As)
rMk = PκMk, and since Pκ is a principal ideal

of Oκ, then Mk+r = Mk as Λ5-modules. Then for i e Z,

( r a d A J X + r = Mi+k+r= ( r a d A j ' M , = M, + ,

soM / + / . = M, as Λ5-modules, / e Z. Thus

Λ5 = ( x G ^ : xM c M | 9 / e Z},

proving (1), and (2) follows from (1). Since r a d O L c r a d Λ 5 and

(rad OL)Mi = Mi+1 = (rad Λ5)M / 9 / e Z, (3) follows from (2).

Parts (l)-(4) of the Theorem are now straightforward in this case. If

Γ is a hereditary order in A containing Λ, then applying the structure

theory to Γ, there is a Γ-submodule M of V such that

Γ = j i G i : * ( r a d Γ ) ' M c (radΓ) 'M, 1 < i < type number of ΓJ .

Since Λ c Γ, M is a Λ-module, s o M = Mj for some integer j . Also,

since (rad OL)Mi c Mi9 i e Z, then radO L c radΓ, and then ( r a d Γ ) ^

= MJ+i, i G Z. It follows from Lemma 3.2 that Λ^ c Γ, proving (1) of

the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from

(a) that r is the integer such that (rad As)
rMk = PκMk. But

PκMk = PκOLMk = ( r a d O J X = Mk+e

so r = e. (Note that m = 1 here.) For (4),

(mdAsY~ιMk/(mdAs)
ιMk

and as Z-modules ( radO L ) / c + / " 1 /(radO L ) / c + z = O L /radO L so

nι = d im^O L /radO L = /, 1 < / < r.

In order to prove (5), we use the following result.

LEMMA 3.3. Suppose that a is an integer > 0 such that (rad As)
a is the

largest left As-ideal contained in Λ. Then s = a.

Proof. If a = 0, then As c Λ, so As = Λ, and s = 0. Assuming that

a > 0, we show that (radΛJ""1 is the largest left Λs-ideal contained in

Av First,

(radΛj^'radΛ c (radΛj^'radΛ, = (radΛjβ .
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Now (radΛJ* c Λ by hypothesis, and radΛ5 Π Λ c radΛ, by Lemma
3.2. Thus (radΛ5)* c radΛ. Then (rad A,)β"1(rad Λ) c rad Λ, so
(rad A,)"" 1 c Av

Next, if L is a left Λ^-ideal contained in Al9 then LradΛ c radΛ,
so L rad Λ c (rad As)

a. Then

LradΛ 5 = L(radΛ)Λ, c (radΛj*.
s

a-\Since rad As is invertible, L c (rad As)
a ι as desired.

Now by induction, the length of the chain Λ x c Λ 2 c ••• c Λ ^ i s
a — 1, so s = a, and the proof is complete.

Let trd : A -> K be the reduced trace, and for an O^submodule L of
Λt with KL = ̂ 4, let

1 = { x G ^ t : t r d ( x L ) c O^}

be the complementary module.

LEMMA 3.4. Let Γ fe α«y hereditary O^order contained in the split
simple algebra A = Mn(K). Then

f = P ^ r a d Γ .

Proof. Suppose that Γ has type number r, invariants nl9...,nr9 and
Γ consists of block matrices as mentioned in section 1. Let πκ be a prime
element of Oκ. For integers /, y, 1 < /, j < n, let YtJ denote the matrix
whose /, y-entry is πκ if the i, y-position is above the diagonal of blocks of
Γ, or 1 otherwise, and all of whose other entries are 0 (so Ytj e Γ.) Let ytj

denote the non-zero entry of YιJ. Let X = (xu) be any element of A.
Then XY.j has at most one non-zero entry on the main diagonal, namely
xijyji- W e h a v e t r d ( ^ ^ 7 ) = t r a c e o f matrix XYtj = x^y^ Then X e f
«=> Xijyji e Oκ, all /, j <=» when X is partitioned according to the block
partition induced by Γ, the entries below the diagonal of blocks are in
P^1, and the other entries are in Oκ. But such matrices are precisely those
in PχX rad Γ. Since the Ytj give a free basis for Γ over Oκ, the result
follows.

LEMMA 3.5. Let w = d - (e - 1). Then (radΛ^)" is the largest left
A fideal contained in A.

Proof. From Lemma 3.2, we have radΛ5 = (radOL)Λ5, so (radΛJ"
= (mdOL)d-{e-l)As. From Lemma 3.4

A, = Pz1 radΛ, = (radOLΓ(radOL)Λ s = (rad<9LH+1Λ,,
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SO

(radΛ,Γ = (radtfj'A, = ((rad0LΓΆ,)~ .

From Lemma 2.2, trd(Σxgug) = t£L/κ{xλ), so

A = &~ιA = (radOL)"JΛ c (rad(9L)^Λ5,

(rad A J W = ( ( r a d O j ^ Λ ^ c A = Λ,

so (radΛ^)^ is contained in Λ. If L is any other left Λ^-ideal contained
in Λ, then L is a right Λ^-module containing Λ, so

&-ιAs = (mdOL)~dAsy

(y= (radAj",

completing the proof.

Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.

4. The general case. In this section we continue with the assump-
tion that L/K is a Galois algebra, and we prove the Theorem in the case
that p is any factor set with values in O*. Since K is finite, there is an
unramified field extension Kf of K such that the algebra A' = A ®κK

f

splits ([7, Prop. 2, p. 191].) Let Of be the integral closure of Oκ in K\ and
let Λ' = Λ <8>o O'.

LEMMA 4.1. // Γ is an O^order, then

Proof. Denote Oκ by O, and Pκ by P. Clearly

(radΓ) ®OO' c rad(Γ ®oO r).

For the reverse inclusion, we have

(Γ ® O O ' ) / M Γ ) ΘO(T s (Γ/radΓ) ®OO'.

Since P c rad Γ, then Γ/rad Γ is an O/P-module, and

(Γ/radΓ) ΘOO' ̂  (Γ/radΓ)

Since Kf/K is unramified, then Of/POf is field, which is separable over
K since ΛΓ is finite. Then the semi-simple O/P-algebra Γ/rad Γ remains
semi-simple after tensoring with O'/PO\ so Γ ®o<9'/(radΓ) ®OO' is
semi-simple, and the result follows.
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We let G act on L' = L ®KK' by

g(x®y) = g(x)®y, xeL,yeK',geG.

Then L' is a Galois algebra over K' with Galois group G. We have
OL> = OL ®o0\ and

Let us show that in going from L/K to L'/K\ the numbers d,e,f are
unchanged.

Applying Lemma 4.1 to the O^order OL, we have mdOL, =
(rad OL) ®oκ°'-

 S i n c e t h e maximal ideal P' of 0 ' is PKO\ then

P Ό L , = (PKOL) *op' = (radOL) e β ^ O '

so the ramification index of L'/K' is still e. Similarly,

dim r (O r /radO L ,) = dim^(<9L/rad<9L) = / .

For the different exponent of L'/K\ since

trL,/jr(x ®y) = teL/κ(x) ®y, xeL, yeK',

then clearly OL®op' QθL>\ since OL = (mdOL)'d, and r a d θ r =
(rad OL) ®oκ°'>

 t h e ^ (radO r )" J c bv. If ( radO^)"^ 1 c OL/, then
(rad OLYd-* c OL, which is not so. Therefore O r = (rad Ovy

d.

LEMMA 4.2. // Γ is an O^order contained in a semi-simple algebra A,
then

O7(radΓ) ®oO
f = O7(rad(Γ *oP%

Proof. It is clear that the left side is contained in the right. There is an
isomorphism

φ: Oz(radΓ) -> HomΓ(radΓ,radΓ),

where radΓ is considered as a right Γ-module. Similarly, there is an
isomorphism

ψ: O ίradΓO -> H o m r ^ r a d ^ r a d r ) ,

where Γr = Γ ®OO'. Since Γ is noetherian, then radΓ is finitely pre-
sented over Γ, so from [6, 2.37] we have an isomorphism

σ: HomΓ(radΓ,radΓ) <8>O0' - o

= Hom r (radΓ,radΓ')
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from Lemma 4.1. The map

ψ - ^ φ ® 1): O,(radΓ) %oO
f -> O^radΓ')

is the identity, and the result is proved.

LEMMA 43. Let A = (OL/Oκ,G,p) be a crossed product order in
A = (L/K,G, p) and suppose that A splits over K. Then A =

Proof. Since the algebra A is split over K, the class of p in H2(G, L*)
is 1. We shall show that the map # 2 ( G , 0 * ) -> H2(G, L*) is one-to-one,
and then the class of p in H2(G, 0*) will be 1, and the result will follow.

Let E be the set of primitive idempotents of L and let M = 0 e e ^Zε
be the free Z-module with basis E\ G acts on M via its action on E. For
ε in E, let vε be the normalized valuation on the field Lε, and define
v: L* -> M by

Then we get an exact sequence of G-modules

VV

o -> O* -* L* -+ M -> o,

giving rise to the exact sequence

Hι{G,M) -> H2{G,O*) -> i/2(G,L*).

Since M is a permutation module, M is isomorphic to the induced
module Ind^(Z) = ZG ^Z^/Z, where i/ is the stabilizer of an idempotent
in £, and H\G, M) = Hι(H9Z) = 0, since # is finite. Then i/2(G,O*)
-> H2(G, L*) is one-to-one, as desired.

From Lemma 4.2, the chains

Λo c Ax c •• c Λv

have the same length, and Λ'5 is hereditary. Since the Theorem has been
proved in the split case, and since Λr = {Ov/O\ G, 1), which follows from
Lemma 4.3, we find that s = d - (e — 1). If Γ is a hereditary order in A
containing Λ, then Γ / = = Γ ® o 0 ' i s a hereditary order in A' containing
A\ and since A's is the unique minimal hereditary order in A' containing
A\ then A', c Γ'. We may embed Γ in Γ' as Γ ®ol, and A in A' as
A <S>̂ 1, and then T = T' Π A "D A's Π A = As9 so Λv is the unique
minimal hereditary order in A containing Λ.
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From [6, 39.14] we have

where Δ = Δ/rad Δ, and Δ is the unique maximal order in End^F), with

V a simple A -module. Then

; = ( Λ / r a d Λ j ®OO' = (A,/radΛ,) « * * '

i - l

Now Δ ®χK' = (K')m, where m is the Schur index of A, since K is finite

([6,14.3]). Thus

r

Therefore the type number of Λ^/rad A',, known to be e from §3, is equal

to mr, yielding

e
r = — .

m

Each invariant nι = /, since the invariants ni of Λ^ are /. Therefore the

proof of the theorem is complete.

5. Generators for As in the split case. In this section we find

generators for As in the case that p = 1. To simplify the exposition, we

assume that L is a field, which is totally ramified over K. We let PL be

the maximal ideal of OL, and let vL be the normalized valuation on L. Let

Mt denote the Λ-module P[, i e Z.

LEMMA 5.1. Let w = d — (e — 1), and let x be an element of L such

that vL(x) = ~w. Let a = xΣg€ΞG

u

g

 G A τ h e n aMι £ Mi> ' G z (so

a e Λ5, from Lemma 3.2), and unless i = -w (mode), aMι c M / + 1 ,

whereas if i = -w (mode), aMι (£ Mι + V

Proof. Let tr denote the trace from L to K. We first compute tr(P[)>

i G Z. We have, for y G Z,

/ " ^ ) c Oκ <=> Pι

L~ej c

i + d
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(we have used 3) = P[). Thus

where [ ] denotes greatest integer. Since Σug y = Σg(y) = try, y e L,
we have

OLαM, = OLxtr(Pι

L) = xOLPψ+d)/e] = xP/[(/

Write

ί/1 Γ / + w d — w 1 \i + w e — 1

If (i + w)/e £ Z, then [(/ + d)/e] > (/ + w)/e, so e[(i + </)/<?] >
/ 4- w, and

zαM, c xPfw+ι = P[+ι = Ml + 1.

If (/ + w)/e e Z, then [(/ + J)/e] = (/ + w)/e, so e[(i + J)/e] = / +
w, and

^ XP[+W = M.r

This completes the proof.

Let πL be a prime element of OL. Then from Lemma 3.2, we have
irrί~

ιAs7r[ = Λy. Let a = xΣug be the element of Lemma 5.1, and define

α/ = tf/7'απ/^ 0 < ι < e.

From Lemma 5.2, it follows that α, acts non-trivially on M__w+ι/M_w+j+v

whereas α, annihilates Mj/Mj+ι if y ΞΞ -w + / (mode). Thus the simple
Λv-modules M0/Mv Mι/M2,...,Me_ι/Me are non-isomorphic, and
hence form a complete set of simple ΛΓmodules. Recall that Ks/mάAs

= ΠJ"βlA/ (ϋf), and each /iy = / = 1, since we are assuming that L/ΛΓ is
totally ramified. Hence Λ5/radΛv is commutative. Further, r = e, so
dim^(Λ5/rad Λy) = e. Then the elements α7 4- rad As generate Λ5/rad As

as a AΓ-module, 0 < i < e. Since rad Λs = PLAs9 we see that OLai9 0 < i
< e, generate As as an O^module. So π/a^ 0 <j < e, 0 < i < e, gener-
ate Λy as an O^module.

Finally, from the formula tr(P/) = pW+dVe] fΓ0m Lemma 5.1, if we
set / = -w, then i 4- d = e — 1, so tr(P/7

M;) = Oκ. Thus we may find y in
L with f/ ί̂̂ ) = -w such that tr(j^) = u is a unit of O^. Then c = u~ιy
has ^/(x) = -w and tr(x) = 1. Now (Σug)x(Σug) = tr(x)Σug = Σug, so
a = xΣug is idempotent. From the action of a on the simple modules
Mt/Mi+V we find that a is a primitive idempotent of Λv, and that the
elements ai + rad As are all the primitive idempotents of Λ v/rad Λ v.
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6. Complements. The results of Auslander-Goldman-Rim-William-

son mentioned in the Introduction follow easily from our Theorem. If

p = 1, Λ is a maximal order in A ^> s = 0, r = 1 <=> e/m = 1 <=> e = 1,

since m = 1. For any p, Λ is hereditary **s = 0*>d=e— 1 <=> L/K

is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely

ramified case, Λ has type e/m and invariants /. (See also Merklen [5].)

From the fact that r = e/m, we find a way to compute the Schur

index m of A as follows: the centre of ΛyradΛ^ has e/m component

fields (each of dimension m over K).

It may be shown that the index

(A/. Λ) = ^2(d-(e

where n = [L : K]. This follows from

Note that Lemma 3.4 (that A = P^ 1 rad Λ if Λ is hereditary) also holds

in the non-split case, as may be shown by tensoring with an unramified

extension.

In the split case (§3), the Λ-lattices contained in a irreducible ^-mod-

ule V are linearly ordered, but this fails to be true if A is not split.

However, it may be shown, in general, that the Λ-lattices M in V such

that E n d Λ ( M ) is the maximal order in End^(F) are linearly ordered, and

this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders A'J+ι = Or(radAy)

throughout, instead of left orders, and still obtain the same answer

s = d - (e - 1) for the length of the chain Λ'o c c A ' r By unique-

ness of As9 we would get As = Λ^, but we do not know whether Λ7 = A7

y

for all j \ 1 < j < s.
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