CROSSED PRODUCT AND HEREDITARY ORDERS

GERALD H. CLIFF AND ALFRED R. WEISS

Let Λ be the crossed product order $(O_L/O_K, G, \rho)$ where L/K is a finite Galois extension of local fields with Galois group G, and ρ is a factor set with values in O_L^* . Let $\Lambda_0 = \Lambda$, and let Λ_{i+1} be the left order $O_l(\operatorname{rad} \Lambda_i)$ of $\operatorname{rad} \Lambda_i$. The chain of orders $\Lambda_0, \Lambda_1, \ldots, \Lambda_s$ ends with a hereditary order Λ_s . We prove that Λ_s is the unique minimal hereditary order in $A = K\Lambda$ containing Λ , that Λ_s has e/m simple modules, each of dimension f over the residue class field \overline{K} of O_K , and that s = d - (e - 1). Here d, e, f are the different exponent, ramification index, and inertial degree of L/K, and m is the Schur index of A.

1. Introduction. Let O_K be a complete discrete valuation ring having field of fractions K and finite residue class field \overline{K} . Let L be a finite Galois extension of K, with Galois group G, and let O_L be the valuation ring in L. Let ρ be a factor set on $G \times G$ with values in the units of O_L . We are interested in the crossed product order $\Lambda = (O_L/O_K, G, \rho)$ contained in the simple algebra $A = (L/K, G, \rho)$. If ρ is trivial, Auslander-Goldman [1] showed that Λ is a maximal order in A if and only if L/Kis unramified, and Auslander-Rim [2] showed that Λ is hereditary if and only if L/K is tamely ramified. Williamson [8] extended the Auslander-Rim result to the case that ρ is any factor set. We are interested in the wild case. Benz-Zassenhaus [3] showed that Λ is contained in a unique minimal hereditary order in A.

We set $\Lambda_0 = \Lambda$, and define inductively

$$\Lambda_{i+1} = \{ x \in A \colon x \operatorname{rad} \Lambda_i \subseteq \operatorname{rad} \Lambda_i \} = O_i(\operatorname{rad} \Lambda_i).$$

Then we have the sequence of orders

$$\Lambda_0 \subsetneqq \Lambda_1 \subsetneqq \Lambda_2 \subsetneqq \cdots \subsetneqq \Lambda_s = \Lambda_{s+1}$$

for some integer s. Since $\Lambda_s = O_l(\operatorname{rad} \Lambda_s)$, it follows that Λ_s is hereditary ([6, 39.11, 39.14]). From the theory of hereditary orders (see [6, 39.14]) Λ_s may be described as follows: if $A \cong M_n(D)$, the ring of $n \times n$ matrices over a division ring D, and if Δ is the unique maximal order in D, then Λ_s is the set of block matrices, with entries in Δ , where there are r diagonal blocks of size $n_i \times n_i$, and blocks above the diagonal have

entries in rad Δ . The positive integer r is called the type number of Λ_s , and is also equal to the number of simple Λ_s -modules. Our main result is the following.

THEOREM. (1) Λ_s is the unique minimal hereditary O_{K} -order in A containing Λ .

(2) rad $\Lambda_s = P_L \Lambda_s$, where P_L denotes the maximal ideal of O_L .

(3) r = e/m, where e is the ramification index of L/K and m is the Schur index of A.

(4) $n_1 = n_2 = \cdots = n_r = f$, the inertial degree of L/K.

(5) s = d - (e - 1), where d is the exponent $P_L^d = \mathcal{D}$ of the different of L/K.

We prove this by first considering the split case (when $\rho = 1$), and then taking an unramified extension K' of K which splits A, and considering $A \otimes_K K'$ which is a crossed product (L'/K', G, 1), where $L' = L \otimes_K K'$. Then L' is not in general a field, but a Galois algebra over K', and we find it convenient to prove the Theorem when L is a Galois algebra over K to begin with; we take O_L to be the integral closure of O_K in L, we replace P_L by rad O_L , and we give suitable definitions of d, e, and f in §2. We deal with the split case in §3, and the general case in §4. We find generators for the hereditary order Λ_s in §5, in the totally ramified split case. In §6 we show how our results yield those of Auslander-Goldman-Rim-Williamson, as well as some others.

We cite Reiner [6] as a general reference.

2. Galois algebras. Let L be a commutative Galois algebra over K, with finite Galois group G, by which we mean that L is a commutative separable K-algebra with G a group of automorphisms of L fixing K such that the fixed subalgebra $L^G = K$ and $|G| = \dim_K L$. Let O_L be the integral closure of O_K in L. Let E denote the set of primitive idempotents of L. Then for $\varepsilon \in E$, the integral closure $O_{L\varepsilon}$ of O_K in the field $L\varepsilon$ is a complete discrete valuation ring, and $O_{L\varepsilon} = O_L\varepsilon$. Since $L^G = K$, G acts transitively on E.

LEMMA 2.1. Let I be a non-zero O_L -submodule of L which is G-invariant. Then $I = (\operatorname{rad} O_L)^i$ for some integer i.

Proof. For any primitive idempotent ε of L, $I\varepsilon$ is a non-zero $O_{L\varepsilon}$ -submodule of $L\varepsilon$, and therefore $I\varepsilon = (\operatorname{rad} O_{L\varepsilon})^{i_{\varepsilon}}$ for some $i_{\varepsilon} \in \mathbb{Z}$, since $O_{L\varepsilon}$ is a discrete valuation ring. Because G acts transitively on E

and I is G-invariant, it follows that $i_{\epsilon} = i$ is independent of ϵ . Then

$$I = \sum_{\varepsilon \in E} I\varepsilon = \sum_{\varepsilon \in E} (\operatorname{rad} O_{L\varepsilon})^{i} = \sum_{\varepsilon \in E} (\operatorname{rad} O_{L})^{i}\varepsilon = (\operatorname{rad} O_{L})^{i}$$

as desired.

First, let $I = P_K O_L$. Then $P_K O_L = (\operatorname{rad} O_L)^e$ for some integer e, and we call e the ramification index of L/K.

Next, let $\operatorname{tr}_{L/K}: L \to K$ be the trace map, and let

$$\tilde{O}_L = \left\{ x \in L \colon \operatorname{tr}_{L/K}(xO_L) \subseteq O_K \right\}$$

be the complementary module to O_L under the trace. Since

$$\operatorname{tr}_{L/K}(x) = \sum_{g \in G} g(x), \qquad x \in L,$$

it follows that \tilde{O}_L is a *G*-invariant O_L -submodule of *L*, so $\tilde{O}_L = (\operatorname{rad} O_L)^{-d}$ for some integer *d*. We call *d* the *different exponent* of L/K (and $(\operatorname{rad} O_L)^d$ the different $\mathcal{D}_{L/K}$ of L/K).

Define the *inertial degree f* of L/K to be dim_{\overline{K}} $(O_L/\text{rad }O_L)$.

Let $\rho: G \times G \to O_L^*$ be a factor set on G with values in the units of O_L . The crossed product algebra $A = (L/K, G, \rho)$ is the free left L-module with basis $u_g, g \in G$, with multiplication given by

$$xu_g \cdot yu_h = xg(y)\rho(g,h)u_{gh}, \quad x, y \in L, g, h \in G.$$

The order $\Lambda = (O_L/O_K, G, \rho)$ is the O_L -submodule of A spanned by u_g , $g \in G$. We assume that $\rho(g, 1) = \rho(1, g) = 1$, so that O_L may be identified inside Λ as $\{xu_1: x \in O_L\}$.

LEMMA 2.2. (1) L has a normal K-basis with respect to G.

(2) A is a central simple K-algebra, and A is isomorphic to a full matrix ring over K if and only if the class of ρ in $H^2(G, L^*)$ is 1.

(3) The reduced trace trd : $A \rightarrow K$ is given by

$$\operatorname{trd}\left(\sum_{g\in G}a_{g}u_{g}\right)=\operatorname{tr}_{L/K}(a_{1}).$$

Proof. These results are well known if L is a field, and the proofs are essentially the same if L is a Galois algebra. We omit the details.

3. The split case. In this section we assume that L/K is a Galois algebra, and we prove the theorem in the case that $\rho = 1$, with P_L replaced by rad O_L , and with d, e, f defined as in §2. Since $\rho = 1$, then

 $A \cong M_n(K)$, n = |G|. Let V be a simple A-module. The structure theory for hereditary orders ([6, 39.18]) provides a Λ_s -submodule M contained in V with the following properties:

- (a) r is the unique positive integer such that $(\operatorname{rad} \Lambda_s)^r M = P_K M$, (since $\operatorname{End}_A(V) = K$).
- (b) $\Lambda_s = \{ x \in A : x(\operatorname{rad} \Lambda_s)^i M \subseteq (\operatorname{rad} \Lambda_s)^i M, 0 \le i < r \}.$
- (c) rad $\Lambda_s = \{ x \in A : x(rad \Lambda_s)^i M \subseteq (rad \Lambda_s)^{i+1}M, 0 \le i < r \}.$
- (d) $(\operatorname{rad} \Lambda_s)^{i-1} M/(\operatorname{rad} \Lambda_s)^i M$, $1 \le i \le r$, are a full set of simple Λ_s -modules.
- (e) $n_i = \dim_{\overline{K}} (\operatorname{rad} \Lambda_s)^{i-1} M / (\operatorname{rad} \Lambda_s)^i M, 1 \le i \le r.$ The algebra A acts on L, via

$$\left(\sum x_g u_g\right) \cdot y = \sum x_g g(y), \quad \sum x_g u_g \in A, \ y \in L,$$

and acts irreducibly on L, so we may take L to be V. The non-zero Λ -submodules of L are O_L -submodules of L which are G-stable, so they are precisely $(\operatorname{rad} O_L)^i$, $i \in \mathbb{Z}$, by Lemma 2.1. We denote the Λ -module $(\operatorname{rad} O_L)^i$ by M_i .

LEMMA 3.1. For each integer $j \ge 0$,

(1) M_i is a Λ_j -module, $i \in \mathbb{Z}$, and every non-zero Λ_j -submodule of V is M_i for some *i*.

(2) $(\operatorname{rad} \Lambda_i) M_i = M_{i+1}$.

Proof. If (1) holds for some j, then $(\operatorname{rad} \Lambda_j)M_i \subseteq M_i$, by Nakayama's Lemma, so $(\operatorname{rad} \Lambda_j)M_i \subseteq M_{i+1}$, since M_{i+1} is the unique maximal Λ_j -submodule of M_i . But $\operatorname{rad} O_L \subseteq \operatorname{rad} \Lambda_j$, since $(\operatorname{rad} O_L)M_i \subseteq M_i$ for each i, and $(\operatorname{rad} O_L)M_i = M_{i+1}$, so $(\operatorname{rad} \Lambda_j)M_i = M_{i+1}$, proving (2). For (1), we use induction on j, having noted that it holds for Λ_0 . Then for j + 1,

$$\Lambda_{j+1}M_{i} = \Lambda_{j+1}(\operatorname{rad} \Lambda_{j})M_{i-1} \quad (by (2) \text{ for } j)$$
$$\subseteq (\operatorname{rad} \Lambda_{j})M_{i-1} \quad (by \text{ definition of } \Lambda_{i+1})$$
$$= M_{i}$$

so M_i is a Λ_{j+1} -module, $i \in \mathbb{Z}$. Since any Λ_{j+1} -module is also a Λ -module, the proof is complete.

LEMMA 3.2. (1)
$$\Lambda_s = \{x \in A : xM_i \subseteq M_i, i \in \mathbb{Z}\}.$$

(2) rad $\Lambda_s = \{x \in A : xM_i \subseteq M_{i+1}, i \in \mathbb{Z}\}.$
(3) rad $\Lambda_s = (\operatorname{rad} O_L)\Lambda_s = \Lambda_s(\operatorname{rad} O_L).$

Proof. The structure of Λ_s is given in terms of a Λ_s -submodule M contained in V. From Lemma 3.1, any Λ_s -submodule of V must be M_k for some integer k. We have, from (b) and Lemma 3.1,

$$\Lambda_s = \{ x \in A \colon xM_{k+i} \subseteq M_{k+i}, 0 \le i < r \}.$$

From (a), $M_{k+r} = (\operatorname{rad} \Lambda_s)^r M_k = P_K M_k$, and since P_K is a principal ideal of O_K , then $M_{k+r} \cong M_k$ as Λ_s -modules. Then for $i \in \mathbb{Z}$,

$$(\operatorname{rad} \Lambda_s)^{l} M_{k+r} = M_{i+k+r} \cong (\operatorname{rad} \Lambda_s)^{l} M_k = M_{i+k}$$

so $M_{i+r} \cong M_i$ as Λ_s -modules, $i \in \mathbb{Z}$. Thus

$$\Lambda_s = \{ x \in A \colon xM_i \subseteq M_i, i \in \mathbf{Z} \},\$$

proving (1), and (2) follows from (1). Since $\operatorname{rad} O_L \subseteq \operatorname{rad} \Lambda_s$ and $(\operatorname{rad} O_L)M_i = M_{i+1} = (\operatorname{rad} \Lambda_s)M_i$, $i \in \mathbb{Z}$, (3) follows from (2).

Parts (1)–(4) of the Theorem are now straightforward in this case. If Γ is a hereditary order in A containing Λ , then applying the structure theory to Γ , there is a Γ -submodule M of V such that

$$\Gamma = \left\{ x \in A \colon x(\operatorname{rad} \Gamma)^{i} M \subseteq (\operatorname{rad} \Gamma)^{i} M, 1 \le i \le \text{type number of } \Gamma \right\}.$$

Since $\Lambda \subseteq \Gamma$, M is a Λ -module, so $M = M_j$ for some integer j. Also, since $(\operatorname{rad} O_L)M_i \subsetneq M_i$, $i \in \mathbb{Z}$, then $\operatorname{rad} O_L \subseteq \operatorname{rad} \Gamma$, and then $(\operatorname{rad} \Gamma)^{i}M_j = M_{j+i}$, $i \in \mathbb{Z}$. It follows from Lemma 3.2 that $\Lambda_s \subseteq \Gamma$, proving (1) of the theorem. Part (2) is contained in Lemma 3.2. For (3), we know from (a) that r is the integer such that $(\operatorname{rad} \Lambda_s)^r M_k = P_K M_k$. But

$$P_K M_k = P_K O_L M_k = (\operatorname{rad} O_L)^e M_k = M_{k+e}$$

so r = e. (Note that m = 1 here.) For (4),

$$(\operatorname{rad} \Lambda_{s})^{i-1} M_{k} / (\operatorname{rad} \Lambda_{s})^{i} M_{k}$$
$$= M_{k+i-1} / M_{k+i} = (\operatorname{rad} O_{L})^{k+i-1} / (\operatorname{rad} O_{L})^{k+i}$$

and as \overline{K} -modules $(\operatorname{rad} O_L)^{k+i-1}/(\operatorname{rad} O_L)^{k+i} \cong O_L/\operatorname{rad} O_L$ so

$$n_i = \dim_{\overline{K}} O_L / \operatorname{rad} O_L = f, 1 \le i \le r.$$

In order to prove (5), we use the following result.

LEMMA 3.3. Suppose that a is an integer ≥ 0 such that $(\operatorname{rad} \Lambda_s)^a$ is the largest left Λ_s -ideal contained in Λ . Then s = a.

Proof. If a = 0, then $\Lambda_s \subseteq \Lambda$, so $\Lambda_s = \Lambda$, and s = 0. Assuming that a > 0, we show that $(\operatorname{rad} \Lambda_s)^{a-1}$ is the largest left Λ_s -ideal contained in Λ_1 . First,

$$(\operatorname{rad} \Lambda_s)^{a-1} \operatorname{rad} \Lambda \subseteq (\operatorname{rad} \Lambda_s)^{a-1} \operatorname{rad} \Lambda_s = (\operatorname{rad} \Lambda_s)^a.$$

Now $(\operatorname{rad} \Lambda_s)^a \subseteq \Lambda$ by hypothesis, and $\operatorname{rad} \Lambda_s \cap \Lambda \subseteq \operatorname{rad} \Lambda$, by Lemma 3.2. Thus $(\operatorname{rad} \Lambda_s)^a \subseteq \operatorname{rad} \Lambda$. Then $(\operatorname{rad} \Lambda_s)^{a-1}(\operatorname{rad} \Lambda) \subseteq \operatorname{rad} \Lambda$, so $(\operatorname{rad} \Lambda_s)^{a-1} \subseteq \Lambda_1$.

Next, if L is a left Λ_s -ideal contained in Λ_1 , then $L \operatorname{rad} \Lambda \subseteq \operatorname{rad} \Lambda$, so $L \operatorname{rad} \Lambda \subseteq (\operatorname{rad} \Lambda_s)^a$. Then

$$L \operatorname{rad} \Lambda_s = L(\operatorname{rad} \Lambda) \Lambda_s \subseteq (\operatorname{rad} \Lambda_s)^a$$
.

Since rad Λ_s is invertible, $L \subseteq (\operatorname{rad} \Lambda_s)^{a-1}$ as desired.

Now by induction, the length of the chain $\Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_s$ is a - 1, so s = a, and the proof is complete.

Let trd : $A \to K$ be the reduced trace, and for an O_K -submodule L of A with KL = A, let

$$\tilde{L} = \{ x \in A : \operatorname{trd}(xL) \subseteq O_K \}$$

be the complementary module.

LEMMA 3.4. Let Γ be any hereditary O_K -order contained in the split simple algebra $A = M_n(K)$. Then

$$\tilde{\Gamma} = P_{\kappa}^{-1} \operatorname{rad} \Gamma.$$

Proof. Suppose that Γ has type number r, invariants n_1, \ldots, n_r , and Γ consists of block matrices as mentioned in section 1. Let π_K be a prime element of O_K . For integers $i, j, 1 \le i, j \le n$, let Y_{ij} denote the matrix whose i, j-entry is π_K if the i, j-position is above the diagonal of blocks of Γ , or 1 otherwise, and all of whose other entries are 0 (so $Y_{ij} \in \Gamma$.) Let y_{ij} denote the non-zero entry of Y_{ij} . Let $X = (x_{ij})$ be any element of A. Then XY_{ij} has at most one non-zero entry on the main diagonal, namely $x_{ij}y_{ji}$. We have $\operatorname{trd}(XY_{ij}) = \operatorname{trace}$ of matrix $XY_{ij} = x_{ij}y_{ji}$. Then $X \in \tilde{\Gamma} \Leftrightarrow x_{ij}y_{ji} \in O_K$, all $i, j \Leftrightarrow$ when X is partitioned according to the block partition induced by Γ , the entries below the diagonal of blocks are in P_K^{-1} , and the other entries are in O_K . But such matrices are precisely those in P_K^{-1} rad Γ . Since the Y_{ij} give a free basis for Γ over O_K , the result follows.

LEMMA 3.5. Let w = d - (e - 1). Then $(\operatorname{rad} \Lambda_s)^w$ is the largest left Λ_s -ideal contained in Λ .

Proof. From Lemma 3.2, we have rad $\Lambda_s = (\operatorname{rad} O_L) \Lambda_s$, so $(\operatorname{rad} \Lambda_s)^w = (\operatorname{rad} O_L)^{d-(e-1)} \Lambda_s$. From Lemma 3.4

$$\tilde{\Lambda}_s = P_K^{-1} \operatorname{rad} \Lambda_s = (\operatorname{rad} O_L)^{-e} (\operatorname{rad} O_L) \Lambda_s = (\operatorname{rad} O_L)^{-e+1} \Lambda_s$$

so

$$(\operatorname{rad} \Lambda_s)^w = (\operatorname{rad} O_L)^d \tilde{\Lambda}_s = ((\operatorname{rad} O_L)^{-d} \Lambda_s)^{\sim}$$

From Lemma 2.2, $\operatorname{trd}(\sum x_g u_g) = \operatorname{tr}_{L/K}(x_1)$, so

$$\tilde{\Lambda} = \mathscr{D}^{-1}\Lambda = (\operatorname{rad} O_L)^{-d}\Lambda \subseteq (\operatorname{rad} O_L)^{-d}\Lambda_s$$
$$(\operatorname{rad} \Lambda_s)^w = ((\operatorname{rad} O_L)^{-d}\Lambda_s)^{\sim} \subseteq \tilde{\Lambda} = \Lambda,$$

so $(\operatorname{rad} \Lambda_s)^w$ is contained in Λ . If L is any other left Λ_s -ideal contained in Λ , then \tilde{L} is a right Λ_s -module containing $\tilde{\Lambda}$, so

$$\tilde{L} \supseteq \tilde{\Lambda} \Lambda_s = \mathscr{D}^{-1} \Lambda_s = (\operatorname{rad} O_L)^{-d} \Lambda_s,$$

$$L = \tilde{\tilde{L}} \subseteq ((\operatorname{rad} O_L)^{-d} \Lambda_s)^{\sim} = (\operatorname{rad} \Lambda_s)^{w}$$

completing the proof.

Now (5) of the Theorem follows from Lemmas 3.3 and 3.5.

4. The general case. In this section we continue with the assumption that L/K is a Galois algebra, and we prove the Theorem in the case that ρ is any factor set with values in O_L^* . Since \overline{K} is finite, there is an unramified field extension K' of K such that the algebra $A' = A \otimes_K K'$ splits ([7, Prop. 2, p. 191].) Let O' be the integral closure of O_K in K', and let $\Lambda' = \Lambda \otimes_{O_K} O'$.

LEMMA 4.1. If Γ is an O_{K} -order, then

$$\operatorname{rad}(\Gamma \otimes_{O_{K}} O') = (\operatorname{rad} \Gamma) \otimes_{O_{K}} O'.$$

Proof. Denote O_K by O, and P_K by P. Clearly

$$(\operatorname{rad} \Gamma) \otimes_{O} O' \subseteq \operatorname{rad}(\Gamma \otimes_{O} O').$$

For the reverse inclusion, we have

$$(\Gamma \otimes_{O} O')/(\operatorname{rad} \Gamma) \otimes_{O} O' \cong (\Gamma/\operatorname{rad} \Gamma) \otimes_{O} O'.$$

Since $P \subseteq \operatorname{rad} \Gamma$, then $\Gamma/\operatorname{rad} \Gamma$ is an O/P-module, and

$$(\Gamma/\mathrm{rad}\,\Gamma) \otimes_{O} O' \cong (\Gamma/\mathrm{rad}\,\Gamma) \otimes_{O/P} (O'/PO').$$

Since K'/K is unramified, then O'/PO' is field, which is separable over \overline{K} since \overline{K} is finite. Then the semi-simple O/P-algebra $\Gamma/\operatorname{rad}\Gamma$ remains semi-simple after tensoring with O'/PO', so $\Gamma \otimes_O O'/(\operatorname{rad}\Gamma) \otimes_O O'$ is semi-simple, and the result follows.

We let G act on $L' = L \otimes_K K'$ by

$$g(x \otimes y) = g(x) \otimes y, \qquad x \in L, \ y \in K', \ g \in G.$$

Then L' is a Galois algebra over K' with Galois group G. We have $O_{L'} = O_L \otimes_{O_k} O'$, and

$$\Lambda' = \Lambda \otimes_{O_{K}} O' = (O_{L'}/O', G, \rho).$$

Let us show that in going from L/K to L'/K', the numbers d, e, f are unchanged.

Applying Lemma 4.1 to the O_K -order O_L , we have rad $O_{L'} = (\operatorname{rad} O_L) \otimes_{O_K} O'$. Since the maximal ideal P' of O' is $P_K O'$, then

$$P'O_{L'} = (P_K O_L) \otimes_{O_K} O' = (\operatorname{rad} O_L)^e \otimes_{O_K} O' = (\operatorname{rad} O_{L'})^e$$

so the ramification index of L'/K' is still e. Similarly,

$$\dim_{\overline{K}'}(O_{L'}/\operatorname{rad} O_{L'}) = \dim_{\overline{K}}(O_L/\operatorname{rad} O_L) = f.$$

For the different exponent of L'/K', since

$$\operatorname{tr}_{L'/K'}(x \otimes y) = \operatorname{tr}_{L/K}(x) \otimes y, \quad x \in L, \ y \in K',$$

then clearly $\tilde{O}_L \otimes_{O_K} O' \subseteq \tilde{O}_{L'}$; since $\tilde{O}_L = (\operatorname{rad} O_L)^{-d}$, and $\operatorname{rad} O_{L'} = (\operatorname{rad} O_L) \otimes_{O_K} O'$, then $(\operatorname{rad} O_{L'})^{-d} \subseteq \tilde{O}_{L'}$. If $(\operatorname{rad} O_{L'})^{-d-1} \subseteq \tilde{O}_{L'}$, then $(\operatorname{rad} O_L)^{-d-1} \subseteq \tilde{O}_L$, which is not so. Therefore $\tilde{O}_{L'} = (\operatorname{rad} O_{L'})^{-d}$.

LEMMA 4.2. If Γ is an O_K -order contained in a semi-simple algebra A, then

$$O_l(\operatorname{rad} \Gamma) \otimes_{O_k} O' = O_l(\operatorname{rad}(\Gamma \otimes_{O_k} O')).$$

Proof. It is clear that the left side is contained in the right. There is an isomorphism

$$\phi: O_{I}(\operatorname{rad} \Gamma) \to \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma),$$

where rad Γ is considered as a right Γ -module. Similarly, there is an isomorphism

$$\psi \colon O_l(\operatorname{rad} \Gamma') \to \operatorname{Hom}_{\Gamma'}(\operatorname{rad} \Gamma', \operatorname{rad} \Gamma'),$$

where $\Gamma' = \Gamma \otimes_0 O'$. Since Γ is noetherian, then rad Γ is finitely presented over Γ , so from [6, 2.37] we have an isomorphism

$$\sigma: \operatorname{Hom}_{\Gamma}(\operatorname{rad} \Gamma, \operatorname{rad} \Gamma) \otimes_{O} O' \to \operatorname{Hom}_{\Gamma \otimes_{O} O'}(\operatorname{rad} \Gamma \otimes_{O} O', \operatorname{rad} \Gamma \otimes_{O} O')$$
$$= \operatorname{Hom}_{\Gamma'}(\operatorname{rad} \Gamma', \operatorname{rad} \Gamma')$$

from Lemma 4.1. The map

$$\psi^{-1}\sigma(\phi \otimes 1) \colon O_{l}(\operatorname{rad} \Gamma) \otimes_{O_{\kappa}} O' \to O_{l}(\operatorname{rad} \Gamma')$$

is the identity, and the result is proved.

LEMMA 4.3. Let $\Lambda = (O_L/O_K, G, \rho)$ be a crossed product order in $A = (L/K, G, \rho)$ and suppose that A splits over K. Then $\Lambda \cong (O_L/O_K, G, 1)$.

Proof. Since the algebra A is split over K, the class of ρ in $H^2(G, L^*)$ is 1. We shall show that the map $H^2(G, O_L^*) \to H^2(G, L^*)$ is one-to-one, and then the class of ρ in $H^2(G, O_L^*)$ will be 1, and the result will follow.

Let *E* be the set of primitive idempotents of *L* and let $M = \bigoplus_{\varepsilon \in E} Z\varepsilon$ be the free *Z*-module with basis *E*; *G* acts on *M* via its action on *E*. For ε in *E*, let v_{ε} be the normalized valuation on the field $L\varepsilon$, and define $v: L^* \to M$ by

$$v(x) = \sum_{\varepsilon \in E} v_{\varepsilon}(x\varepsilon)\varepsilon, \qquad x \in L^*.$$

Then we get an exact sequence of G-modules

$$o \to O_L^* \to L^* \xrightarrow{\circ} M \to o,$$

giving rise to the exact sequence

$$H^1(G, M) \to H^2(G, O_L^*) \to H^2(G, L^*).$$

Since *M* is a permutation module, *M* is isomorphic to the induced module $\operatorname{Ind}_{H}^{G}(\mathbb{Z}) = \mathbb{Z}G \otimes_{ZH} \mathbb{Z}$, where *H* is the stabilizer of an idempotent in *E*, and $H^{1}(G, M) = H^{1}(H, \mathbb{Z}) = 0$, since *H* is finite. Then $H^{2}(G, O_{L}^{*}) \rightarrow H^{2}(G, L^{*})$ is one-to-one, as desired.

From Lemma 4.2, the chains

$$\Lambda_0 \subseteq \Lambda_1 \subseteq \cdots \subseteq \Lambda_s$$
$$\Lambda'_0 \subseteq \Lambda'_1 \subseteq \cdots \subseteq \Lambda'_s$$

have the same length, and Λ'_s is hereditary. Since the Theorem has been proved in the split case, and since $\Lambda' \cong (O_{L'}/O', G, 1)$, which follows from Lemma 4.3, we find that s = d - (e - 1). If Γ is a hereditary order in Acontaining Λ , then $\Gamma' = \Gamma \otimes_{O_K} O'$ is a hereditary order in A' containing A', and since Λ'_s is the unique minimal hereditary order in A' containing A', then $\Lambda'_s \subseteq \Gamma'$. We may embed Γ in Γ' as $\Gamma \otimes_{O_K} 1$, and A in A' as $A \otimes_K 1$, and then $\Gamma = \Gamma' \cap A \supseteq \Lambda'_s \cap A = \Lambda_s$, so Λ_s is the unique minimal hereditary order in A containing Λ . From [6, 39.14] we have

$$\Lambda_s/\mathrm{rad}\,\Lambda_s \cong \prod_{i=1}^r M_{n_i}(\overline{\Delta})$$

where $\overline{\Delta} = \Delta/\operatorname{rad} \Delta$, and Δ is the unique maximal order in $\operatorname{End}_{\mathcal{A}}(V)$, with V a simple \mathcal{A} -module. Then

$$\Lambda'_{s}/\operatorname{rad} \Lambda'_{s} \cong (\Lambda_{s}/\operatorname{rad} \Lambda_{s}) \otimes_{O_{K}} O' \cong (\Lambda_{s}/\operatorname{rad} \Lambda_{s}) \otimes_{\overline{K}} \overline{K}$$
$$\cong \prod_{i=1}^{r} M_{n_{i}} (\overline{\Delta} \otimes_{\overline{K}} \overline{K}').$$

Now $\overline{\Delta} \otimes_{\overline{K}} \overline{K}' \cong (\overline{K}')^m$, where *m* is the Schur index of *A*, since \overline{K} is finite ([6, 14.3]). Thus

$$\Lambda'_s/\operatorname{rad} \Lambda'_s \cong \left(\prod_{i=1}^r M_{n_i}(\overline{K}')\right)^m$$

Therefore the type number of $\Lambda'_s/\text{rad }\Lambda'_s$, known to be *e* from §3, is equal to *mr*, yielding

$$r=rac{e}{m}$$
.

Each invariant $n_i = f$, since the invariants n_i of Λ'_s are f. Therefore the proof of the theorem is complete.

5. Generators for Λ_s in the split case. In this section we find generators for Λ_s in the case that $\rho = 1$. To simplify the exposition, we assume that L is a field, which is totally ramified over K. We let P_L be the maximal ideal of O_L , and let v_L be the normalized valuation on L. Let M_i denote the Λ -module P_L^i , $i \in \mathbb{Z}$.

LEMMA 5.1. Let w = d - (e - 1), and let x be an element of L such that $v_L(x) = -w$. Let $\alpha = x \sum_{g \in G} u_g \in A$. Then $\alpha M_i \subseteq M_i$, $i \in \mathbb{Z}$ (so $\alpha \in \Lambda_s$, from Lemma 3.2), and unless $i \equiv -w \pmod{e}$, $\alpha M_i \subseteq M_{i+1}$, whereas if $i \equiv -w \pmod{e}$, $\alpha M_i \not\subseteq M_{i+1}$.

Proof. Let tr denote the trace from L to K. We first compute $tr(P_L^i)$, $i \in \mathbb{Z}$. We have, for $j \in \mathbb{Z}$,

$$\operatorname{tr}(P_L^i) \subseteq P_K^j \Leftrightarrow \operatorname{tr}(P_L^i P_K^{-j}) \subseteq O_K$$
$$\Leftrightarrow \operatorname{tr}(P_L^{i-e_j}) \subseteq O_K \Leftrightarrow P_L^{i-e_j} \subseteq \mathscr{D}^{-1}$$
$$\Leftrightarrow P_L^{i-e_j+d} \subseteq O_L \Leftrightarrow i - e_j + d \ge 0$$
$$\Leftrightarrow j \le \frac{i+d}{e}$$

(we have used $\mathcal{D} = P_L^d$). Thus

$$\operatorname{tr}(P_L^i) = P_K^{[(i+d)/e]},$$

where [] denotes greatest integer. Since $\sum u_g \cdot y = \sum g(y) = \operatorname{tr} y, y \in L$, we have

$$O_L \alpha M_i = O_L x \operatorname{tr}(P_L^i) = x O_L P_K^{[(i+d)/e]} = x P_L^{e[(i+d)/e]}$$

Write

$$\left[\frac{i+d}{e}\right] = \left[\frac{i+w}{e} + \frac{d-w}{e}\right] = \left[\frac{i+w}{e} + \frac{e-1}{e}\right]$$

If $(i + w)/e \notin \mathbb{Z}$, then [(i + d)/e] > (i + w)/e, so $e[(i + d)/e] \ge i + w$, and

$$O_L \alpha M_i \subseteq x P_L^{i+w+1} = P_L^{i+1} = M_{i+1}$$

If $(i + w)/e \in \mathbb{Z}$, then [(i + d)/e] = (i + w)/e, so e[(i + d)/e] = i + w, and

$$O_L \alpha M_i = x P_L^{i+w} = M_i.$$

This completes the proof.

Let π_L be a prime element of O_L . Then from Lemma 3.2, we have $\pi_L^{-1}\Lambda_s\pi_L = \Lambda_s$. Let $\alpha = x\Sigma u_g$ be the element of Lemma 5.1, and define

$$\alpha_i = \pi_L^{-i} \alpha \pi_L^i, \qquad 0 \le i < e.$$

From Lemma 5.2, it follows that α_i acts non-trivially on M_{-w+i}/M_{-w+i+1} , whereas α_i annihilates M_j/M_{j+1} if $j \neq -w + i \pmod{e}$. Thus the simple Λ_s -modules M_0/M_1 , $M_1/M_2, \ldots, M_{e-1}/M_e$ are non-isomorphic, and hence form a complete set of simple Λ_s -modules. Recall that $\Lambda_s/\operatorname{rad} \Lambda_s$ $\cong \prod_{i=1}^r M_{n_i}(\overline{K})$, and each $n_i = f = 1$, since we are assuming that L/K is totally ramified. Hence $\Lambda_s/\operatorname{rad} \Lambda_s$ is commutative. Further, r = e, so $\dim_{\overline{K}}(\Lambda_s/\operatorname{rad} \Lambda_s) = e$. Then the elements $\alpha_i + \operatorname{rad} \Lambda_s$ generate $\Lambda_s/\operatorname{rad} \Lambda_s$ as a \overline{K} -module, $0 \le i < e$. Since $\operatorname{rad} \Lambda_s = P_L \Lambda_s$, we see that $O_L \alpha_i$, $0 \le i < e$, generate Λ_s as an O_K -module. So $\pi_L^* \alpha_i$, $0 \le j < e$, $0 \le i < e$, generate Λ_s as an O_K -module.

Finally, from the formula $\operatorname{tr}(P_L^i) = P_K^{\lfloor (i+d)/e \rfloor}$ from Lemma 5.1, if we set i = -w, then i + d = e - 1, so $\operatorname{tr}(P_L^{-w}) = O_K$. Thus we may find y in L with $v_L(y) = -w$ such that $\operatorname{tr}(y) = u$ is a unit of O_K . Then $x = u^{-1}y$ has $v_L(x) = -w$ and $\operatorname{tr}(x) = 1$. Now $(\Sigma u_g)x(\Sigma u_g) = \operatorname{tr}(x)\Sigma u_g = \Sigma u_g$, so $\alpha = x\Sigma u_g$ is idempotent. From the action of α on the simple modules M_i/M_{i+1} , we find that α is a primitive idempotent of Λ_s , and that the elements $\alpha_i + \operatorname{rad} \Lambda_s$ are all the primitive idempotents of $\Lambda_s/\operatorname{rad} \Lambda_s$.

6. Complements. The results of Auslander-Goldman-Rim-Williamson mentioned in the Introduction follow easily from our Theorem. If $\rho = 1$, Λ is a maximal order in $A \Leftrightarrow s = 0$, $r = 1 \Leftrightarrow e/m = 1 \Leftrightarrow e = 1$, since m = 1. For any ρ , Λ is hereditary $\Leftrightarrow s = 0 \Leftrightarrow d = e - 1 \Leftrightarrow L/K$ is tamely ramified, from [7, Prop. 13, p. 67].

We also recover a result of Janusz [4], who showed that, in the tamely ramified case, Λ has type e/m and invariants f. (See also Merklen [5].)

From the fact that r = e/m, we find a way to compute the Schur index *m* of *A* as follows: the centre of $\Lambda_s/\operatorname{rad} \Lambda_s$ has e/m component fields (each of dimension *m* over \overline{K}).

It may be shown that the index

$$(\Lambda_s:\Lambda) = \pi_K^{n^2(d-(e-1))/2e}$$

where n = [L : K]. This follows from

$$(\tilde{\Lambda}:\Lambda) = (\tilde{\Lambda}_s:\Lambda_s)(\Lambda_s:\Lambda)^2.$$

Note that Lemma 3.4 (that $\tilde{\Lambda} = P_K^{-1} \operatorname{rad} \Lambda$ if Λ is hereditary) also holds in the non-split case, as may be shown by tensoring with an unramified extension.

In the split case (§3), the Λ -lattices contained in a irreducible A-module V are linearly ordered, but this fails to be true if A is not split. However, it may be shown, in general, that the Λ -lattices M in V such that End_{Λ}(M) is the maximal order in End_A(V) are linearly ordered, and this can be used to prove the Theorem, just as in §3.

Note that we could have used right-orders $\Lambda'_{j+1} = O_r(\operatorname{rad} \Lambda'_j)$ throughout, instead of left orders, and still obtain the same answer s = d - (e - 1) for the length of the chain $\Lambda'_0 \subseteq \cdots \subseteq \Lambda'_s$. By uniqueness of Λ_s , we would get $\Lambda_s = \Lambda'_s$, but we do not know whether $\Lambda_j = \Lambda'_j$ for all j, 1 < j < s.

References

- M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc., 97 (1960), 1–24.
- [2] M. Auslander and D. S. Rim, Ramification index and multiplicity, Illinois J. Math., 7 (1963), 566-581.
- [3] H. Benz and H. Zassenhaus, Über verschränkte Produktordnungen, J. Number Theory, **20** (1985), 282–298.
- [4] G. Janusz, Crossed product orders and the Schur index, Comm. Algebra, 8 (1980), 697-706.

- [5] H. Merklen, Hereditary crossed product orders, Pacific J. Math., 74 (1978), 391-406.
- [6] I. Reiner, Maximal Orders, Academic Press, London, 1975.
- [7] J.-P. Serre, Corps Locaux, Act. Sci. et Ind. 1296, Hermann, Paris, 1962.
- [8] S. Williamson, Crossed products and hereditary orders, Nagoya Math. J., 23 (1963), 103-120.

Received September 21, 1984 and in revised form March 26, 1985. Supported by NSERC.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada T6G 2G1