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ON A QUESTION OF FEIT CONCERNING
CHARACTER VALUES OF

FINITE SOLVABLE GROUPS

GIDEON AMIT AND DAVID CHILLAG

Let x be an irreducible character of a finite group G and let / be

the smallest integer such that {χ(x)\x e G} c ζ)(yT) The question
raised by W. Feit is: Does G contain an element of order /. In this
article we given an affirmative answer to the question for solvable
groups.

Introduction. Let G be a finite group and χ an irreducible complex
character of G. Denote by Q(χ) the field obtained by adjoining the values
of χ to the rational number field Q. For every positive integer m we
denote by Qm the field β(ω), where ω is a primitive rath root of unity.
Finally, denote by /(χ) the smallest positive integer / for which Q(χ) c

β/
The following question has been raised by Walter Feit (see e.g. [4] p.

178): Let χ be an irreducible complex character of a finite group G, does
G contains an element of order /(χ)?

In this article we show that if G is solvable the answer to the question
is positive. Before stating this result we survey the known positive answers
to the question.

Brauer ([3] Corollary 4) gave an affirmative answer in the case that
/(χ) has the form /(χ) = p^p*1 " ' Plk where α7 > 2 for all i and the
/?/s are primes. There is no restriction on G. In [5] Gow gives an
affirmative answer in the case that G has odd order with no restriction on
f(χ). In [1], Brauer's and Gow's methods are generalized and an affirma-
tive answer is given (Theorem 2.2 of [1]) in a case of which both Brauer's
and Gow's cases are special cases. Also, it is fairly easy to prove ([2]) that
if /(χ) has the form /(χ) = paqβ, p and q primes, the answer is also
positive. The main result of this paper is:

THEOREM. Let G be a finite solvable group and χ an irreducible

complex character of G, then G contains an element of order / ( χ ) .

Most of our notation is standard and taken mainly from [6]. Some
other pieces of notation will be introduced as we go along.
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2. Preliminaries and proof of the theorem. The notation o(a) will

be used to denote the order of the element a of a group. If G is a finite
group and χ G Irr(G) we let 7r(χ) = {p\p Ά prime divisor of /(χ)}. For
each p G π(χ) we fix a generator, σp(χ) of the cyclic group Gel(Qf/Qf/p)9

where / = /(χ) . By Galois theory we have that

//> i f ^ 2 l /

We note that if p2 \ f then pΦl.lt is clear from the definitions that for

all p G π ( χ ) we have that χσ/>(χ) =£ χ.

LEMMA 1. Le/ H be a subgroup of the finite group G, χ G Irr(G)

ψ G Irr(#).

(b) // β(ψ) c β(χ) and ψ°p{χ) * Ψ for all p G ττ(χ), ώe/i /(χ) =

/(Ψ).

Proof. If β(χ) c β(ψ) then Qf(χ) c β / ( ψ ) and (a) follows. As ψσ*(x)

# ψ is equivalent to β(ψ) % Qf(X)/P

 w e S e t that (b) holds.

PROPOSITION 2. Lei χ G Irr(G), / = /(χ) α̂ rf 7r = w(χ). // G con-
tains no element of order /(χ) /Ae« /Λere exist p G 7r ̂ wc/z

(a) ^ 2 + /, α«J
(b) xVx) = χ - /orwwe r

Proof. Let σ̂  = σ^χ) for each q G TΓ and set ^ = G a l ί β / β ) . De-
note by 4̂ the abelian subgroup of the ring of class functions of G that is
generated by (χ σ |σ G ^} . For each σ G S? and α G ̂ 4 define a σ = aσ.
Then 4̂ becomes a Z^-module, where Z is the ring of integers.

Let g G G. Then #(g) is not divisible by the full g-part of / for
some q G 77. Then α(g)σ« = α(g) for all α G A. It follows that if β G ̂ 4
(σ^ - 1) then β(g) = 0. Since each g e G has such a # G TΓ, we get
that if J S G Λ Π , e i r ( σ ^ - l ) , then β(g) = 0 for all g G G. This
shows that TlqGt7Γ(σq — 1) annihilates A and in particular it annihilates χ.

Let τr0 be a subset of TΓ minimal such that χ UqeπQ(σq — 1) = 0.
Let p be the largest prime in τr0 and set mx = τr0 - {p}. Write ε =
Πqev(oq — 1), then χ (σp — l)ε = 0 and the minimality of τr0

implies that χ ε Φ 0. Hence χ σ̂ ε = χ ε # 0. An irreducible constitu-
ent of x - σpε = χσp ε has a form χ σpμ = χ v where μ, p are in the
abelian group B = (σq\q G TΓ^. Thus χ σ̂  = χ pμ"1. Let T = vμ'ι9 then



CHARACTER VALUES OF SOLVABLE GROUPS 259

χ°p = χτ and r e B. We note that if q G π 1 ? then σ̂  G G a ^ g / g ^ ) c

Gai(Qf/Qp) as qΦ p. It follows that r G 5 c Gal(Q/Qp) as required.

Finally, we claim that ?2 I / . For if p2\f, then o(σp) = p and the

equality χσ" = χ τ implies that p\o(τ). On the other hand the maximality

of /? implies that o(σq) < q < p for all σq E β. As T is a product of

elements of B we get that p I o(τ), a contradiction.

DEFINITIONS. (1) Let G be a finite solvable group. A /?-chief factor of

G, AΓ/L, is called distinguished if p \ \G: K\. There is in this case a

unique conjugacy class of complements of K/L in G, a complement being

a subgroup H of G such that G = KH and K Π H = L, \H\ < \G\.

( 2 ) I f N<G a n d 0 G I r r ( N) w e d e f i n e I r r ( G | 0 ) = { χ

The next lemma sums up some known facts from character correspon-

dence theory that will be needed in the proof of the Theorem.

LEMMA 3. Let K/L be α distinguished chief factor of the solvable finite

group G and let H be a complement of K/L. Suppose that χ G Irr(G) is

primitive. Then χκ and χL have, each, a unique irreducible constituent, θ

and φ respectively, and there are just two possiblities:

(i) ΘL = φ. In this case the mapping μ -> μH is a bijection from

Irr(G|0) to Irr(H\φ). In particular: χH = £ G In(H\φ) and ξ and θ

together uniquely determine χ. Thus if σ e G a l ( β / ( χ ) / β ) and £σ = £ and

θσ = θ, then χσ = x.

(ii) ΘL = eφ with e2 = \K: L\. In this case there is a canonically defined

bijection Irr(G|0) -> lττ(H\φ). If χ^> ξ in this bijection then each of χ

and ξ uniquely determines θ and φ and so each determines the other. It

follows by Galois theory that Q(χ) = Q(ξ).

Proof. See [6], [7] and [8].

PROPOSITION 4. Let G be a finite solvable group and χ G Irr(G).

Assume that there exists no proper subgroup X of G and ψ G Irr( X) such

that f(χ) divides /(ψ). For a p G π = ττ(χ), let K/L be a distinguished

p-chief factor and let H be a complement of K/L. If σ = σ (χ), then

(b) χκ = aθ, θ G I r r ^ ) , a a positive integer and θσp Φ θ.

(c) ΘL = φ G Irr(L) and φϋp = φ.

Proof. Assume that the Proposition is false and choose p as large as

possible to get a counterexample. Then the conclusions of the Proposition
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are false for some distinguished p-chieί factor, K/L, and they hold for
distinguished g-chief factors for q > p, q e π.

If χ is induced from some proper subgroup X of G, say χ = ψG,
ψ e Irr(X), then β(χ) c β(ψ) and so /(χ) divides /(ψ). This is a
contradiction. Thus χ is primitive so we apply Lemma 3. Hence χκ = aθ
for some θ G Irr(^) and a natural number a. Let φ be the unique
irreducible constituent of χL. If ΘL = eφ with e 2 = |̂ Γ: L| then there is a
I G Irr(#) with β(χ) = ρ(£). Therefore /(χ) = /(£), a contradiction.
Thus ΘL = φ e Irr(L) and χ H = £ e Irr(#).

Now g(£) c β(χ) but /(£) =* f(χ) and thus there exist q G TΓ with
£σ« = £ (see Lemma 1). Note that £L = χ L = aφ and hence φσ<? = φ. Since
χOq =£ X and χ is uniquely determined by ξ and 0, we must have θσq Φ θ.
If q = p, then ίT/L is not a counterexample contrary to hypothesis.
Therefore q Φ p.

Next {θσi)L = φσ« = φ and so 0 and 0σ<? are two distinct extensions of
φ and hence θ and 0σ« are two distinct irreducible constituents of φκ. By
[6] Corollary 6.17 we get that 0σ« = λθ for some λ e Irr(A/L), λ # 1.
Since o(λ) = /? Φ q we have that λσ« = λ. Thus for every positive integer
fc we have θW = βλΛ. By taking k = o(σ^) we obtain that θ = 0λ^ and
hence λ* = 1 by (6.17) of [6]. It follows that p\o(σq). Recall that o(σq) = q
or q — 1 and p Φ q. Therefore p\q — 1 and q> p

Hence, if Ko/Lo is any distinguished g-chief factor, then the conclu-
sions of the Proposition hold. This means that χKo = aoθo, (0O)LO

 = Φo?
θoq ^ ô? Φo7 = Φo where 0O G Irr(ίΓ0), φ0 G Irr(L0) and α0 is a positive
integer. If q\\G:K\, then we can choose Ko/Lo with K Q Lo. Then
XL0 = βo<ί>o a n d s o aθ = χκ= ao{φo)κ and hence (φ 0 )^ = (a/ao)θ. Since
Φo* = Φo w e S e t that Qϋq = β, a contradiction. Therefore # + |G: ΛΓ|. Now
we choose Ko/Lo with Ko Q L and as above we get that φκ is a multiple
of 0O. But φσ« = φ and this yields (0o)

σ<7 = ô» a contradiction. This
completes the proof.

>/ the Theorem. Let G be a minimal counterexample. If G
contains a proper subgroup H with ψ G Irr(/f) such that /(χ) |/(ψ), then
by induction 7/ contains an element h with o(Λ) = /(ψ). Then there exist
g G (Λ) with o(g) = /(χ), a contradiction. Hence G satisfies the assump-
tions of Proposition 4 and therefore its conclusions. Set / = /(χ), π =
ττ(χ) and σ̂  = σ^ίχ) for all q G TΓ. By Proposition 2 we can choose jr? G TΓ
with /?2 I / and r G Gzl(Qf/Qp) such that χσ/> = χτ. Clearly p Φ 2. Let
AΓ/L be a distinguished /7-chief factor and H a complement of K/L.
Then by Proposition 4 we get: χH = ζ, Xκ= aϋ> ΘL = φ where £ G
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Irr(ίf), θ G Irr(K), φ e Irr(L) and a a positive integer. Moreover ξ°p = £,
φσp = φ but θσp Φ θ.

Since φσp = φ, we have that Q(Φ) Q Qf/p and as p2 \ f we conclude
that φ is /^-rational. As p Φ 2, Theorem (6.30) of [6] implies that φ has a
unique ^-rational extension μ e Irr(^). As ΘL = μL = φ we get by (6.17)
of [6] that θ = λμ for some λ e I r r ^ / L ) . Note that φ and μ uniquely
determine each other so that Q(μ) = Q{φ) c β(β) c Q(χ) c β / # Also
μσ^ is a ^-rational extension of φσp = φ and by the uniqueness we have
μ°p = μ.

Note that λ(g) e g^ for all g G AΓ/L and so λτ = λ. Also, σp agrees
with T on β(χ) . Since β(β) c β(χ), this yields

β°, = θτ = (λμ) τ = λτμτ = λμσ^ = λμ = θ.

This contradiction completes the proof.
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