SQUAREFREE INTEGERS IN NON-LINEAR SEQUENCES

Friedrich Roesler

The number of squarefree integers in sequences $[f(n+x)], n=$ $1,2,3, \ldots, N$ is $\left(6 / \pi^{2}+o(1)\right) N$ for almost all $x \geq 0$, when f is a polynomial function of degree $k \geq 2$ or an exponential function.

Following a paper of Stux [4] Rieger has shown in [2] that for all real c with $1<c<3 / 2$ the equation

$$
\sum_{\substack{\left[n^{1} \leq n \leq N \\\left[n^{\prime}\right]\right. \text { quarefree }}} 1=\frac{6}{\pi^{2}} N+O_{c}\left(N^{(2 c+1) / 4}\right)
$$

is an immediate consequence from estimates of Deshouillers [1] concerning the distribution of the integer-sequences $\left[n^{c}\right]$ modulo k.

Using the same method and results of [3] we prove for functions f belonging to one of the following classes

$$
\begin{aligned}
& \mathfrak{F}_{\text {pol }}=\left\{a y^{k}+\sum_{i=1}^{m} a_{i} y^{k_{i}} ; a>0, k>k_{1}>\cdots>k_{m} \geq 0\right\}, \\
& \mathfrak{F}_{\text {exp }}=\left\{e^{k y+l}+f(y) ; k>0, f \in \mathfrak{F}_{\text {pol }} \cup\{0\}\right\}:
\end{aligned}
$$

Theorem. For $f \in \mathfrak{F}_{\text {pol }}$ of degree $k \geq 2$ or $f \in \mathfrak{F}_{\text {exp }}$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{1 \leq n \leq N \\[f(n+x)] \leq \text { quarefree }}} 1=\frac{6}{\pi^{2}}
$$

holds for almost all real $x \geq 0$.
Proof. Let $\mathfrak{\unrhd}$ denote the set of squarefree integers, $0 \leq x<1$, and

$$
\begin{aligned}
& S_{N}(\mathfrak{\imath} ; x)=\sum_{\substack{1 \leq n \leq N \\
[f(n+x)] \in \mathfrak{Q}}} 1, \\
& S_{N}(d \mathbf{N} ; x)=\sum_{\substack{1 \leq n \leq N \\
[f(n \not n x) \in d \mathbf{N}}} 1 .
\end{aligned}
$$

Then

$$
|\mu(n)|=\sum_{d>0, d^{2} \mid n} \mu(d)
$$

gives

$$
S_{N}(\mathfrak{N} ; x)=\sum_{d>0} \mu(d) S_{N}\left(d^{2} \mathbf{N} ; x\right)
$$

and therefore
(1) $\int_{0}^{1}\left|S_{N}(\cong ; x)-\frac{6}{\pi^{2}} N\right| d x=\int_{0}^{1}\left|\sum_{d>0} \mu(d)\left(S_{N}\left(d^{2} \mathbf{N} ; x\right)-\frac{N}{d^{2}}\right)\right| d x$

$$
=O\left(\sum_{d>0} \int_{0}^{1}\left|S_{N}\left(d^{2} \mathbf{N} ; x\right)-\frac{N}{d^{2}}\right| d x\right)
$$

To estimate the sum on the right side of (1) we use

$$
\int_{0}^{1}\left|S_{N}(d \mathbf{N} ; x)-\frac{N}{d}\right| d x=d^{1 / 2} O_{f}\left(N^{3 / 4} \log N\right)
$$

which for functions $f \in \mathscr{F}_{\text {pol }}$ of degree $k \geq 2$ is Satz 9 in [3] and for $f \in \mathfrak{F}_{\text {exp }}$ follows easily from the proof of Satz 6(ii) in [3]. Thus we have for small values of d

$$
\begin{equation*}
\sum_{0<d \leq M} \int_{0}^{1}\left|S_{N}\left(d^{2} \mathbf{N} ; x\right)-\frac{N}{d^{2}}\right| d x=O_{f}\left(M^{2} N^{3 / 4} \log N\right) \tag{2}
\end{equation*}
$$

The rest of the sum in (1) is estimated by

$$
\begin{align*}
\sum_{d>M} \int_{0}^{1} \mid S_{N} & \left.\left(d^{2} \mathbf{N} ; x\right)-\frac{N}{d^{2}} \right\rvert\, d x \tag{3}\\
& \leq \sum_{d>M} \int_{0}^{1} S_{N}\left(d^{2} \mathbf{N} ; x\right) d x+N \sum_{d>M} \frac{1}{d^{2}} \\
& \leq \sum_{d>M} \int_{0}^{1} S_{N}\left(d^{2} \mathbf{N} ; x\right) d x+\frac{N}{M}
\end{align*}
$$

The explicit formula for the value of the integral $\int_{0}^{1} S_{N}^{\text {nat }}(\mathfrak{B} ; x) d x$ as a finite sum of interval-lengths

$$
\sum_{1 \leq n \leq N} \sum_{p \in \mathfrak{R}_{n}(0,1)} \mu\left(I_{p, n}^{0,1}\right)
$$

as given at the end of part 1 in [3] shows in particular

$$
\begin{equation*}
\int_{0}^{1} S_{N}\left(d^{2} \mathbf{N} ; x\right) d x=O_{f}\left(\sum_{\substack{m \in d^{2} \mathbf{N} \\ f(0) \leq m \leq f(N+1)}}\left(f^{-1}\right)^{\prime}(m)\right) \tag{4}
\end{equation*}
$$

For $f \in \mathfrak{F}_{\text {pol }}, \operatorname{deg} f=k \geq 2$, we have

$$
\left(f^{-1}\right)^{\prime}(y)=O_{f}\left(y^{1 / k-1}\right)
$$

and thus get from (4)

$$
\begin{align*}
\int_{0}^{1} S_{N}\left(d^{2} \mathbf{N} ; x\right) d x & =O_{f}\left(\sum_{1 \leq n \leq f(N+1) / d^{2}}\left(d^{2} n\right)^{1 / k-1}\right) \tag{5}\\
& =O_{f}\left(d^{2 / k-2} \sum_{1 \leq n \leq N^{k} / d^{2}} n^{1 / k-1}\right)=O_{f}\left(\frac{N}{d^{2}}\right)
\end{align*}
$$

For $f \in \mathfrak{F}_{\text {exp }}$, we even have

$$
\left(f^{-1}\right)^{\prime}(y)=O_{f}\left(y^{-1}\right)
$$

and obtain (5) again.
Finally we choose $M=N^{1 / 12}$ and (1), (2), (3), (5) give

$$
\int_{0}^{1}\left|\frac{1}{N} S_{N}(\Omega ; x)-\frac{6}{\pi^{2}}\right| d x=O_{f}\left(N^{-1 / 12} \log N\right)
$$

This implies first

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{13}} S_{N^{13}}(\mathfrak{\Omega} ; x)=\frac{6}{\pi^{2}}
$$

for almost all x in the interval $[0,1[$ (with respect to the Lebesgue-measure on \mathbf{R}) and then by the principle of Hilfssatz 1 in [3]

$$
\lim _{N \rightarrow \infty} \frac{1}{N} S_{N}(\Omega ; x)=\frac{6}{\pi^{2}}
$$

for almost all $x \geq 0$.

References

[1] J.-M. Deshouillers, Sur la répartition des nombres [n^{c}] dans les progressions arithmétiques, C. R. Acad. Sci. Paris, 277 Ser. A., (1973), 647-650.
[2] G. J. Rieger, Remark on a paper of Stux concerning squarefree numbers in non-linear sequences, Pacific J. Math., 78 (1978), 241-242.
[3] F. Roesler, Über die Verteilung der Primzahlen in Folgen der Form [f($n+x)$], Acta Arith., 35 (1979), 117-174.
[4] I. E. Stux, Distribution of squarefree integers in non-linear sequences, Pacific J. Math., 59 (1975), 577-584.

Received March 9, 1979.
Technische Universität
MÚnchen, Germany

