
PACIFIC JOURNAL OF MATHEMATICS
Vol. 123, No. 1,1986

CONTINUA OF CONSTANT DISTANCES
IN SPAN THEORY

A. LELEK

It is proved that, for each non-negative number β not exceeding the
span of a mapping /: X-* Y, where X and Y are compact metric
spaces, there exists a non-empty continuum Kβ c X x X with identical
two projections and such that the distances between f(x) and f(x') are
all equal to β for (x, x') e Kβ. Similar results hold for other types of
spans.

1. Preliminaries. All spaces are assumed to be non-empty metric
spaces, and all mappings to be continuous functions. Let /: X -> Y be a
mapping. If X is connected, the surjectiυe span σ*(/) of / is defined to be
the least upper bound of the set of real numbers a with the following
property: there exist non-empty connected sets Cac X x X such that
dist[/(JC), /(*')] ^ « for (x, *') e Cβ, and
(σ*) Pι(Ca) = p2(Ca) = X,

where pγ and p2 denote the standard projections of the product, that is,
pλ{x, x') = x and p2(x, x1) = x' The span σ(/), the semispan σo(/),
both for mappings / with the domains X not necessarily connected, and
the surjectiυe semispan σo*(/) in the case of connected domains, are
defined similarly with condition (σ*) relaxed to conditions

(°) Pi(Ca)=p2(Ca),

K) Pι(Ca)z>p2{Ca),

U * ) Pι(Ca) = X,

respectively. The following inequalities and formulae are direct conse-
quences of the definitions:

(1) 0 < σ*(/) < σ(f) < σo(/) < diamΓ,

(2) 0 < σ*(/) < σo*(/) < σo(/) < diamY,

(3) σ ( / ) = Sup{σ*(/|^): A c X, A Φ 0 connected},

(4) <*o(/) = S u P{ σ o*(/M) : A c X, A Φ 0 connected).

For T = σ, σ*, σ0, σ0*, the corresponding spans τ(X) of a space X are
the spans τ(id^) of the identity mapping on X. The span σ(/) of a
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mapping / was originally defined by Ingram [3], while the present author

earlier introduced the span σ(X) and, subsequently, the other types of

these quantities for metric spaces (see [6] and [7]). It is known that, for

some particular spaces, neither two of these four types of spans need to be

equal (see [7] and [8]).

1.1. Iff: X -> Y is a mapping and τ = σ, σ0, then

0 <τ(/) < τ(Y) < diamΓ.

Moreover, if X is connected and /(X) = Y, the same conclusion also

holds for τ = σ*, σ0*. Consequently, τ(Y) = 0 implies τ(f) = 0.

Proof. For a set Ca c X X X, let Da = (/ X f)(Ca). Since / X / is

continuous, the connectedness of Ca implies that of Da. But, since the

standard projections p{ (i = 1,2) commute with other mappings (see [8],

p. 39), conditions ( T ) involving Pi(Ca) in the definition of τ ( / ) , where T

stands for σ, σ*, σ0, or σ0*, imply the analogous conditions involving

pXDa) in the definition of τ(id y ), respectively. This yields τ ( / ) < r(Y).

We show (see 1.3) that, in the case of compact spaces, τ( X) = 0 also

implies τ ( / ) = 0. By a continuum we understand a connected compact

metric space. If A and B are non-empty subsets of a metric space, we

write ρ(A, B) to mean

p(A,B) = I n f { d i s t ( έ i , 6 ) : a(ΞA,b<EB).

1.2. / / / : X -> Y is a mapping, X is a compact metric space, and

T = σ, σ0, then

lni{p[f-χ{y),f-\y>)\: y, y' ef(X), dist(y, y') > τ(/)} < r(X).

Moreover, if X is a continuum, the same conclusion also holds for
T = σ*, σ0*.

Proof. Let / be the number Inf forming the left-hand side of the last

inequality. Notice that / is well-defined since, by the definition of τ ( / )

and the compactness of f(X), there always exist points y, yf <Ξf(X)

satisfying dist(y, yf) > τ(f). From the definition of τ ( / ) , we get an

infinite sequence av a2,... of real numbers converging to τ ( / ) , and

non-empty connected sets Ca c l x l such that

(5) d is t [/(x) ,/(* ' ) ] > *n ((*>*') G Caκ;n = 1,2,...)

and appropriate conditions ( T ) involving pt(Ca ) (/ = 1,2) are satisfied.

Since X X X is compact, the same conditions are then fulfilled for the

closures of Ca which are non-empty continua. Without loss of generality,
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we can assume that Cβi, Cβ 2,... is already a sequence of continua. By the
compactness of I X I , it has a convergent subsequence whose limit is a
continuum (see [5], pp. 45, 49 and 139), and, again, we can assume that
the sequence itself converges to a non-empty continuum C c X x X.
Since

Pi(C) = Pi(UmCaι) = Limp,{cJ 0 = 1,2),

by the compactness of I X I , and the inclusions as well as equalities are
preserved in the process of taking a limit, we see that same conditions (T)
involving Pi{Ca) are also satisfied by Pi(C). Now, let (x, x') e C. There
exist points {xn,x'n) e Ca (n = 1,2,...) converging to (x,x') Let y =
/(jc)and / =/(*')• Thus"

dist(>>,/) = dist[/(x),/(*')] = dist[/( lim χn), /( lim χ'\\

= lim dist[/(xj,/(x;)] > lim «„ = τ ( / ) ,
Λ - * 0 0 /I—• CO

by (5). Moreover, since x e f~\y) and x' G f'\y')9 we obtain

where / is one of the α's in the definition of τ(id^). We conclude that

1.3. If f: X -* Y is a mapping, X is a compact metric space, and
T = σ, σ0, then r(X) = 0 implies τ(/) = 0. Moreover, ifXis a continuum,
the same conclusion also holds for r = σ*, σ0*.

Proof. Observe that if ε > 0 and there exist points y, yf e f(X)
satisfying dist(y, y') > ε, then

Inf{p[/"1(>'),/-1(/)]: V, y' ef{X),&si(y,y') > ε} > 0,
which means that τ(/) > 0 would imply τ(X) > 0, by 1.2.

REMARKS. Let R,I,J, and S denote the real line, the unit interval
[0,1] in R, the open segment /\{0,1}, and the unit circle {(u, v):
u2 4- v2 = 1} in R2, respectively. Consider any two "onto" mappings fx\
I -> S, f2: S -> /, and a homeomorphism /3: J -* R. Clearly, τ(/) =
τ(J) = 0 for T = σ, σ*, σ0, σ0* (see [8], p. 36). By 1.3, we have τ(/i) = 0,
and it is not difficult to check that τ(S) = diamS = 2, whence the
inequality τ(/) < τ(7) in 1.1 cannot be replaced by the equality. Also, by
1.1, we have τ(/2) = 0 which shows that the converse of 1.3 does not
hold. Finally, an easy argument proves that τ(/3) = oo. Hence the com-
pactness of X in 1.3 cannot be omitted.
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2. Main results. One of the consequences of results in this section
is that, in the definition of the span σ(/) (see §1) for compact domains,
the inequality dist[/(x),/(*')] ^ a c a n be replaced by the equality. The
author wishes to thank M. B. de Castro and L. G. Oversteegen for helpful
discussions concerning such a possibility. It can be derived directly from
Theorem 2.1 below, and the same replacement can also be made in the
definitions of other types of spans. The two kinds of definitions, one using
the equality and another one using the inequality, are then equivalent,
respectively, in each of the four cases of the concepts involved for
mappings of compact metric spaces.

2.1. THEOREM. ///: X -> Y is a mapping, X is a compact metric space,
T = σ, σ0, and 0 < β < τ(/), then there exists a non-empty continuum
Kβ c XX X such that

dist[f(x),f(x')]=β

for (x, x') G Kβ, and condition (T) is satisfied for Kβ in lieu of Ca,
respectively. Moreover, if X is a continuum, the same conclusion also holds
for T = σ*, σ0*.

Proof. We distinguish four cases of which the first one is most
significant (cf. [8], Lemmas 2.2 and 2.3).

Case 1. T = σ*. In this case X is a continuum. If σ*(/) = 0, then
β = 0, and the theorem states a trivial fact. Indeed, the diagonal Ko =
{(JC, x): x e X) is a non-empty continuum, and condition (σ*) is satis-
fied for Ko. Assume σ*(/) > 0, and let an, βn be real numbers such that

(6) 0 < βn < an < o*(f), \β-βn\<\/n (/i = 1,2,...).

Without loss of generality, it can be assumed that X is a subset of the
Hubert space Rω, and f(X) is a subset of the Hubert cube Iω. The
continuum /(X) has a metric inherited from the metric space Y, and there
exists a metric d for Iω which is an extension of that given metric in /(X)
(see [2]). We use Iω equipped with this distance d; the metric in Rω,
denoted by p, is arbitrary. Since / can be regarded as a mapping /:
X -> Iω and Iω is an absolute retract, there exists a continuous extension
/: Rω -> Iω of / over Rω. Since X is compact, there exist numbers δn > 0
such that 8n<l/n, and if x e X, z e Rω and p(x,z)<8n, then
d[f(x)J(z)) < \(an - βn) (n = 1,2,...). By (6) and the definition of
σ*(/), there exist non-empty connected sets Q c l x l such that
d[f(x), f(x')] ^ «„ for (x, x') G Cn and condition (σ*) is satisfied for Cn
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(n = 1,2, . . . ) • lί(x,x') e Cn and z, z' <E Rω are points such that ρ(x,z)

< δn and p(x', z') < 8n, then

«n<d[f(x)J{x')]

< d[f(x),f(z)} + d[f(z),f(z')} + d[f(z'),f(x')]

< \{an - βn) + d[f(z),f(z')] + \{an - βm),

whence

(7) ( x , x ' ) e ς , z, z ' e / r , p{x,z)<δn>p(x',z')

imply d[f(z),f(z')]>βa (« = 1,2,...)

Since X is a continuum, it has finite open covers whose elements have

arbitrarily small diameters and whose nerves are connected polyhedra. It

follows that, for each n = 1,2,..., there exist a connected polyhedron

Pn c Rω contained in the (^δ/?)-neighborhood of X in Rω and a mapping

gn: X -» Pn such that gn is a (^δj-translation, i.e., p[x, gn(x)] < \8n for

x G X (see [4], pp. 319, 324 and 330). Since P^ is semilocally 1-connected

(see [11], p. 217), it possesses a covering space Un which is connected and

simply connected (see [12], p. 83). Let hn: Un -> Pn be the covering

projection (n = 1,2,...). Then the product hnx hn: UnX ί/π -> PΛ X Pw

is also a covering projection and Un X t/rt is simply connected (see [11],

pp. 76 and 146). The set

A, = (ft, X SJ(CJ (π = l,2,...)
is a connected subset of Pn X Pn. We select a point (c,,, c',) e C,,, a point

v,, = («„,«;,) e C/n X ί/n such that (AB X AB)(ι>n) = (g,, X gn)(c,,,<), and

a point wn = (M^,', M '̂) in the diagonal of Un X Un. Since

[ ( j ] < δ < δ [ < ( ' ) ] < « < δ

we get d[fhn(un),fhn«)] = d[fgn(cn),fgn(c'n)]> βn, by (7). On the

other hand, d[fhn(u'n'),βtn(u'n')] = 0 < βn, by (6). It follows that the

closed set

(8) Nn = {(IMI') Gί/ n x Un: d[fhn(u),fhn{u')\ = ^

cuts the space ί/Λ X Un between the points υn and wn. But ί/rt X Un is an

arcwise connected and locally arcwise connected space. Being simply

connected, it is also unicoherent (see [5], pp. 439-441). Thus there exists a

connected set Mn c Nn which cuts Un X Un between υn and wn (see [5],
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pp. 438-439). In particular, Mn Φ 0. The non-empty connected set

Ln = (hnXhn)(Mn) (/ι = 1,2,...)

is contained in Pn X Pn c Rω X Rω. Since Mn c Nn, it follows from (8)

that

(9) d[f(z)J(z')]=βn ( (z ,z ' )e £„;/! = 1,2,...).

Extending the notation used in condition (σ*), we denote by p{,

Rω X Rω -> i?ω the standard projection (/ = 1,2). We need to show that

(10) Pi(Dn) <z pt(Ln) (ι = 1,2;* = 1,2,...).

Let z 0 G Pi(Dn) be any point. Let </0 e ΰ n be a point such that

P,(d0) = z0. Denoting dn = (gn X gn){cn, c'n)9 we also have dn G Dn. Let

Σ be a simplicial subdivision of the polyhedron Pn such that diam Δ < \8n

for Δ G Σ. The sets Δ X Δ', where Δ, Δ' G Σ, form a finite cover of

Pn X Pn. Let E be the union of all sets Δ X Δ' (Δ, Δ' G Σ) which intersect

Dn. Then £ is a locally connected continuum, and dθ9 dn ^ Dnc E c Pn

X Pn. Consequently, there exists an arc A c E joining d0 and dn. The arc

A can be regarded as the range of a homotopy of a mapping of a singleton

into dn. Notice that (hn X hn)(υn) = dn. Since hnX hn is a covering

projection, the arc A can be lifted to an arc B c Un X Un such that

υn G 5 and (Λπ X hn)(B) = ̂ 4 (see [11], p. 156). Since dQ G ̂ 4, there exists

a point ^0 G B such that (Λrt X hn)(υ0) = rf0. We use the same symbol p%

to denote the standard projection ρt: Un X Un -> ί7π (/ = 1,2). Let ήr =

pt(υ0) G ί/π. The set p~ι(q) is a copy of £/„, whence it is connected, and

v0 G .β Π p;ι(q). Let W be the diagonal in £/„ X Un. Then Ŵ  is connected

and (q,q) G p~ι(q) Π IF. It follows that the set

ρ = 5 u/?;1^) u w

is a connected subset of Un X Un9 and υn G 5 c g, wn ^ W a Q. But

since Mw cuts the space {/„ x £4 between ϋΛ and wrt, we obtain MnΓ\ Q

Φ 0. Now, let (w, w') G JB be any point. We have

and thus there exist simplexes Δ, Δ' G Σ such that A x A ' contains

(An(w), hn(u')) and intersects Z)Λ. Hence there exists a point (x, t') G Cn

with (gM X g^)(x, xr) e A X A'. This means that A x Δ ' also contains

(&,(*)>&,(*'))> a n d therefore gΛ(x), ΛΛ(w) G Δ and gn(xf),hn(uf) G Δr.

Consequently, we get

P [ X , Λ Λ ( M ) ] £p[x,gn(x)] +P[gn(x)>hn(u)] < 2S»~

p[x',hn{u')\ Zp[x',gn{x')\+pUnW,hnW)\
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which implies d[βn(u\fhn(u')] > /?„, by (7). Since Mn c Nn9 we con-
clude that MnΠ B = 0, by (8). On the other hand, if (w, u) is any point
of the diagonal W, then d[fhn{u\fhn(u)] = 0 < βn, by (6), and MnC\W
= 0 , by (8). Since MnΠ Q Φ 0, as a result we have Mn Π p~ι(q) Φ 0 ,
that is, Pi(υ0) = q e p.(Mn). This yields

= Pi(hn X Λ J ( M J = />,(£„),

and the proof of (10) is completed.

In the product Rω X Rω metrized by the usual Pythagorean metric
([p( > )]2 + [p('> )]2)1/2> Λe distance between two points whose coordi-
nates have distances less than \8n from one another is less than 2ι/1\δn <
8n < \/n. Thus the set Pn X Pn is contained in the (l/«)-neighborhood of
X X X in Rω X Rω and g nXg n : I x l ^ Pn X Pw is a (l/n)-transla-
tion (n = 1,2,...). Since XX X and Pn X P,, are compact sets in Rω X
/?ω, this implies that the union

Z=(XXX)U \J(PnXPn)
n = l

is also a compact set. We have Ln a Pnx Pnc Z for n = 1,2,... The
closures clL,? of the connected sets Ln form an infinite sequence of
non-empty continua contained in Z. By the compactness of Z, it has a
convergent subsequence, and, without loss of generality, we can assume
that the sequence itself converges to a non-empty continuum in Z. We
define Kβ to be this limit, that is,

Kβ = Lim cl Ln.
n-+oo

Since cl Ln c PnX Pn and Pn X Pn lies in the (1/^-neighborhood of
the closed set XX X in Rω X Rω

 (Λ = 1,2,.. .)> we conclude that
Kβ c A" X X If (x, JC') G jKp is any point, there exist points (z,7, z'n) e Lw

(« = 1,2,...) converging to (x, x'). Hence

d[f(x),f(x')] = d[f(x)J(x')} = jf/f lim zn),/( lim z'\\

= \im d[f{zn),f{z'n)}= )xmβn = β,
n-+ oo «-• oo

by (6) and (9). Applying (σ*) for Cn, and (10), we obtain

gn(X) = gnP,(Cn)=Pi(gn X gn)(Cn) =Pi(Dn) oPi(Ln) <zp,(clLn)
for / = 1,2 and « = 1,2,... Since δrt < \/n and gn is a (^δj-translation
of the closed set X in i?ω, the sets gn(X) (n = 1,2,...) converge to X.
On the other hand, the sets /?,(cl Ln) (n = 1,2,...) are images under the
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mapping pt of subsets of the compact set Z which form a convergent
sequence. Thus they themselves make a convergent sequence in pt{Z),
and their limit is p^Kβ). It follows that

X = Umgn(X)cz UmPι(c\Ln)=Pι(Kβ)c:X
n—*oo «—»oo

for / = 1, 2; and condition (σ*) is satisfied for Kβ.

Case 2. T = σ0*. The proof is similar to the argument presented above
in Case 1, the only difference being that now we have / = 1 instead of
i = 1, 2, and condition (σ0*) replaces condition (σ*).

Case 3. T = σ. Since 0 < β < σ(/), we use (3) to get an infinite
sequence βl9 β 2, of real numbers converging to β, and non-empty
connected sets An c X such that 0 < βn < o*(f\An) for n = 1,2,...
Suppose n is fixed, a is a real number and C α c AnX An is a non-empty
connected set such that dist[/(x ),/(*')] ^ « for (x, x') G Ca and Pi(Ca)
= An (i = 1, 2). Then c\ Ca a c\ An X cl An c X x X and
dist[/(x),/(x')] > α for (x, x') G clCft. Since X X X is compact, we also
have ^ ( c l C J = clpt(Ca) = c U w ( / = 1,2). This means that if α belongs
to the set of numbers appearing in the definition of σ*(f\An) (see §1), it
also does in the definition of σ*(/|cl^4n). Hence σ*(f\An) < σ*(/|cl^4π).
But cl An is a non-empty continuum and 0 < βn < σ*(/|cl An). According
to what was proved in Case 1, there exists a non-empty continuum
Kβ <zc\AnXc\An such that dist[/(x),/(x')l = βn for {x,xf)^Kβ

and Λ (ϋΓ A ) = 0 1 ^ ( 1 = 1,2).

By the compactness of X X X, the infinite sequence Kβι, Kβi? ... has
a convergent subsequence whose limit Kβ c X x X is a non-empty con-
tinuum, and, without loss of generality, we can assume that the sequence
itself converges to Kβ. If (x, xf) G Kβ is any point, there exist points
(*„, x ; ) e ^ ( « = l,2,...) converging to (x, x'). Thus

dist[/(x),/(*')] = dist[/( lim xYfl lim χ'nj\
L v « - * oo ; v «—»• oo ' J

= lim
«-• oo

Since

Pι(Kβ)=p(UmKβ)= LimPι{Kβ) (/ = 1,2),
X H-» 00 Π / /I—* 00

by the compactness of X X X, and pλ(Kβn) = p2(Kβ ) for w = 1,2,...,
we obtain pλ{Kβ) = p2(Kβ).
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Case 4. T = σ0. The proof in this case is almost identical with that in

Case 3. We now use (4) instead of (3), and have i = 1 instead of i = 1,2.

The surjective semispan σ0* replaces the surjective span σ*. The result of

Case 2 is utilized instead of Case 1 to find a non-empty continuum

Kβ a c\AnX c\An which satisfies the condition pλ(KβJ = clAno

p2(Kβ ). The formula in the last sentence of the argument for Case 3 is

still true for both / = 1 and i = 2, but the last two equalities there should

be replaced by the inclusions px(K^ 3 PiiKβJ a n < 3 Pι(Kβ) ^> p2(Kβ),

respectively.

2.2. COROLLARY. Iff: X -> Y is a mapping, X is a compact metric

space, τ — o, σ0, and

a{β) = lκi{p\Γ\y),Γ\y')\: y, y' ef(X), dist(y,y') = 0}

for 0 < β < τ(/), then

Sup{a(β):O<β<τ(f)}<τ(X).

Moreover, if X is a continuum, the same conclusion also holds for

τ = σ*, σ*.

2.3. COROLLARY. If X is a compact metric space, T = σ, σ0, and

0 < β < τ( X), then there exists a non-empty continuum Kβ c X X X such

that dist(x, x') = β for (x, xf) G Kβ, and condition ( T ) is satisfied for Kβ

in lieu of Ca, respectively. Moreover, if X is a continuum, the same

conclusion also holds for r = σ*, σ0*.

REMARKS. A special case of 2.2 as well as some other results of this

paper were announced earlier in [9] and [10]. Note that

so that 2.2 is stronger than 1.2. Also, 2.3 is stronger than some previous

results (see [8], Lemmas 2.2 and 2.3).

3. Applications. Given a mapping /: X -> Ύ, we consider the set

Δy of real numbers defined by

Δ 7 = {dist(x, JC'): x, x' e X, f{x)=f{x')}.

3.1. THEOREM. ///: X -> Y, g: Y -> Z are mappings, X is a compact

metric space, r = σ, σ0, and 0 < β < τ(f), then there exist points x0,

JCJG X such that

dist[/(xo),/U)] = β, di4gf(xo),gf{x'o)} < τ(gf).
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Moreover, if X is a continuum, the same conclusion also holds for
T = σ*, σ0*. Consequently, τ(gf) = 0 implies β e Δg, and thus [0, τ(/)] c

Proof. Applying 2.1, we obtain a non-empty continuum Kβ <z X x X
which satisfies the conclusion of 2.1. Suppose, on the contrary, that 3.1 is
not true. Then

dist[gf(x),gf(x')]>r(gf)

for (x, x') G Kβ. Since Kβ is compact, there exists a number α0 > τ(gf)
such that dist[gf(x), gf(x')] > oco for (x, x') e A^. This means that α0 is
one of the numbers taken in the definition of τ(gf) (see §1). Hence
a0 < τ(gf), a contradiction.

3.2. COROLLARY. ///: X -> Y is a mapping, X is a compact metric
space, T = σ, σ0, and τ(f) = 0, then [0, r(X)] c Δf. Moreover, if X is a
continuum, the same conclusion also holds for τ = σ*, σ0*.

3.3. COROLLARY. ///: X -> Y is a mapping, X is a compact metric
space, T = σ, σ0, and τ(Y) = 0, then [0, r(X)] c Δf. Moreover, if X is a
continuum andf(X) = Y, the same conclusion also holds for T = σ*, σ0*.

REMARKS. Substituting the identity mapping for / in 3.1 and switch-
ing g into / produces 3.2 which, when combined with 1.1, implies 3.3.
Again, 3.1 and 3.3 strengthen and generalize some earlier results (see [8],
Theorem 2.4 and Corollary 2.5). We can apply 3.3 to the special case of
real-valued continuous functions since bounded subsets of the real line
have all spans equal to zero (cf. [8], p. 36). Therefore, if X is a continuum,
then the interval [0, τ( X)] is always contained in Δy for each real-valued
continuous function / defined on X, and r = σ, σ*, σ0, σ0*. By (1) and
(2), the longest of these four intervals is [0, σo( X)], so that the best result
is the inclusion [0,o0(X)] c Δ .̂ On the other hand, estimating the semi-
span or the span of spaces by means of other quantities is also possible.
For a mapping g: X -> S of X onto the unit circle S, we consider the
number

ag) = lnΐ{p[g-1(z),g-1(~z)}: z e S),

where -z is the point of S antipodal to z. If X is compact, then ξ(g) > 0.
If X is compact and g is homotopically essential, then f(g) < σ(X) (see
[6], p. 211). Many objects, such as simple closed curves, solenoids, or the
pseudo-circle, admit homotopically essential mappings onto S. If X is any
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of such compact metric spaces with a mapping g: X -» S homotopically
essential, and /: X -> R is any real-valued continuous function, then

by Corollary 3.3. For simple closed curves and some other locally con-
nected continua, a "chord sliding" theorem was proved by Fenn [1]. (I am
indebted to Morton Brown for this reference.) If one allows a "generalized
chord sliding" in which the parameter space is not necessarily I or S but
is permitted to be an arbitrary continuum, then the main results of the
present paper can be interpreted as complementing those of [1]. For
example, it follows from our Corollary 2.3 that if X is a continuum, then
each chord of a length belonging to the interval [0, σ*(X)] can be slid
completely around X in such a generalized way. It is rather easy to show
that, for each simple closed curve C, we have σ(C) = σ*(C). Hence if C
is a simple closed curve, then all chords of lengths from the interval
[0, σ(C)] admit generalized slidings around C. Thus, in particular, the
same thing is true for all chords of lengths from the interval [0,
where h: C -> S is any homeomorphism.
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