WEAK*-CLOSED COMPLEMENTED INVARIANT SUBSPACES OF $L_{\infty}(G)$ AND AMENABLE LOCALLY COMPACT GROUPS

ANTHONY TO-MING LAU AND VIKTOR LOSERT

One of the main results of this paper implies that a locally compact group G is amenable if and only if whenever X is a weak*-closed left translation invariant complemented subspace of $L_{\infty}(G)$, X is the range of a projection on $L_{\infty}(G)$ commuting with left translations. We also prove that if G is a locally compact group and M is an invariant W^* -subalgebra of the von Neumann algebra VN(G) generated by the left translation operators l_g , $g \in G$, on $L_2(G)$, and $\Sigma(M) = \{g \in G; l_g \in M\}$ is a normal subgroup of G, then M is the range of a projection on VN(G) commuting with the action of the Fourier algebra A(G) on VN(G).

1. Introduction. Let G be a locally compact group and $L_{\infty}(G)$ be the algebra of essentially bounded measurable complex-valued functions on G with pointwise operations and essential sup norm. Let X be a weak*-closed left translation invariant subspace of $L_{\infty}(G)$. Then X is *invariantly complemented* in $L_{\infty}(G)$ if X admits a left translation invariant closed complement, or equivalently, X is the range of a continuous projection on $L_{\infty}(G)$ commuting with left translations.

H. Rosenthal proved in [13] that if G is an abelian locally compact group and X is a weak*-closed translation invariant complemented subspace of $L_{\infty}(G)$, then X is invariantly complemented in $L_{\infty}(G)$. Recently Lau [11, Theorem 3.3] proved that a locally compact group G is left amenable if and only if every left translation invariant weak*-closed subalgebra of $L_{\infty}(G)$ which is closed under conjugation is invariantly complemented. Note that if T is the circle group, then the Hardy space H_{∞} is a weak*-closed translation invariant subalgebra of $L_{\infty}(T)$ and not (invariantly) complemented (see [15] and Corollary 4).

In [20, Lemma 4], Y. Takahashi proved that if G is a compact group, then any weak*-closed complemented left translation invariant subspace of $L_{\infty}(G)$ is invariantly complemented. However, there is a gap in Takahashi's adaptation of Rosenthal's argument (see Zentralblatt für Mathematik 1982: 483.43002). It should be observed that Rosenthal's original argument in [13, Theorem 1.1] is valid only for locally compact groups G which is amenable as discrete (for example when G is solvable). Indeed it follows from [21, Theorem 16] that under Martin's Axiom, if P is a bounded projection of $L_{\infty}(G)$ onto C (which is a weak*-closed and left translation invariant subspace of $L_{\infty}(G)$), the functions $x \rightarrow \langle l_{x^{-1}}Pl_xf, h \rangle = \langle Pl_xf, h \rangle$, where $f \in L_{\infty}(G)$ and $h \in L_1(G)$, is in general bounded but not measurable even when G is compact.

In §3 of this paper, we generalize Rosenthal's result to all amenable locally compact groups (and thus giving a correct proof of Takahashi's Lemma 4 in [20] for all compact groups). More precisely, our Theorem 1 implies that a locally compact group G is amenable if and only if whenever X is a weak*-closed translation invariant complemented subspace of $L_{\infty}(G)$, X is invariantly complemented. Furthermore (Corollary 4), if G is compact, then X is even the range of a weak*-weak* continuous projection which commutes with left translations. Also in this case, $L_{\infty}(G)$ has a unique left invariant mean (for example when G = $SO(n, \mathbb{R})$, $n \ge 5$) if and only if every bounded projection of $L_{\infty}(G)$ into $L_{\infty}(G)$ which commutes with left translations is weak*-weak* continuous.

Our proof of Theorem 1 depends heavily on a recent result of Losert and Rindler [12] on the existence of an asymptotically central unit in $L_1(G)$ of an amenable locally compact group.

Finally in §4 we give a non-commutative analogue of Lau's result [11, Theorem 3.3]. We prove that (Theorem 4) if M is an invariant W^* -subalgebra of the von Neuman algebra VN(G) generated by the left translation operators $\{l_g; g \in G\}$ on $L_2(G)$ of a locally compact group G and $\Sigma(M) = \{g \in G; l_g \in M\}$ is a normal subgroup of G, then M is invariantly complement. However, we do not know if the normality condition on $\Sigma(M)$ may be dropped or not unless $\Sigma(M)$ is compact or open.

2. Preliminaries. If E is a Banach space, then E^* denotes its continuous dual. Also if $\phi \in E^*$ and $x \in E$, then the value of ϕ at x will be written as $\phi(x)$ or $\langle \phi, x \rangle$.

Throughout this paper, G denotes a locally compact group with a fixed left Haar measure. Let C(G) denote the Banach algebra of bounded continuous complex-valued functions on G with the supremum norm, and let $C_0(G)$ be the closed subspace of C(G) consisting of all functions in C(G) which vanish at infinity. The Banach spaces $L_p(G)$, $1 \le p \le \infty$, are as defined in [7]. If f is a complex-valued function defined locally almost everywhere on G, and if $a, t \in G$, then $(l_a f)(t) = f(a^{-1}t)$ and $(r_a f)(t) = f(ta)$ whenever this is defined. We say that G is amenable if there exists

 $m \in L_{\infty}(G)^*$ such that $m \ge 0$, ||m|| = 1 and $m(l_a f) = m(f)$ for which $f \in L_{\infty}(G)$ and $a \in G$ (*m* is called a *left invariant mean*). Amenable locally compact groups include all compact groups and all solvable groups. However, the free group on two generators is not amenable (see [4]).

For $g \in G$, the corresponding inner automorphism induces a map τ'_g on $L_{\infty}(G)$ by $\tau'_g f(x) = f(gxg^{-1})$. The adjoint map τ_g on $L_1(G)$ is given by $\tau_g \phi(x) = \phi(g^{-1}xg)\Delta(g)$, where Δ is the Haar modulus function of G. This can also be written as $\tau_g \phi = \delta_g * \phi * \delta_{g^{-1}}$, where δ_g stands for the Dirac measure concentrated at $g \in G$ (convolution as defined in [7]). A net $\{u_{\alpha}\}$ in $L_1(G)$ is called an *approximate unit* if $\lim_{\alpha} ||u_{\alpha} * \phi - \phi_1||_1 =$ $\lim_{\alpha} ||\phi * u_{\alpha} - \phi||_1 = 0$ for all $\phi \in L_1(G)$. The net $\{u_{\alpha}\}$ is said to be *asymptotically central* if $\lim_{\alpha} ||u_{\alpha}||^{-1} ||\tau_g u_{\alpha} - u_{\alpha}|| = 0$ for all $g \in G$. The following result of Losert and Rindler is the key to the proof of one of our main results:

LEMMA 1 ([12, Theorem 3]). Let G be an amenable locally compact group, then $L_1(G)$ has an asymptotically central approximate unit $\{u_{\alpha}\}$ with $||u_{\alpha}|| \leq 1$.

3. Subspaces of $L_{\infty}(G)$. A *left Banach G-module X* is a Banach space X which is left G-module such that

(i) $||s \cdot x|| \le ||x||$ for all $x \in X$, $s \in G$.

(ii) for all $x \in X$, the map $s \to s \cdot x$ is continuous from G into X. In this case, we define for each $f \in X^*$, $s \in G$, $x \in X$

$$\langle f \cdot s, x \rangle = \langle f, s \cdot x \rangle.$$

Define also $\langle f \cdot \mu, x \rangle = \int \langle f, s \cdot x \rangle d\mu(s), \ \mu \in M(G), \ f \in X^*, \ x \in X,$ where M(G) is the space of (complex, bounded) Radon measures on G. Then $f \cdot \mu \in X^*, \ f \cdot \mu = f \cdot s$ if $\mu = \delta_s$ and $(f \cdot \mu_1) \cdot \mu_2 = f \cdot (\mu_1 * \mu_2)$ for $\mu_1, \mu_2 \in M(G)$.

A subspace $L \subseteq X^*$ is called *G*-invariant if $L \cdot s \subseteq L$ for all $s \in G$.

LEMMA 2. Let L be a weak*-closed subspace of X*. Then L is G-invariant if and only if $L \cdot \phi \subseteq L$ for each $\phi \in L_1(G)$.

Proof. Suppose that L is G-invariant and $\phi \in L_1(G)$, $\phi \ge 0$ and $\|\phi\|_1 = 1$. Define $\Phi(f) = \int f(t)\phi(t) dt$, $f \in C(G)$. Then Φ is a positive functional on C(G) with norm one. Hence there exists a net $\{m_{\alpha}\}$ in $C(G)^*$ such that each m_{α} is a convex combination of point evaluations

and m_{α} converges to Φ in the weak* topology of $C(G)^*$. If $m_{\alpha} = \sum_{i=1}^{n} \lambda_i p_{s_i}$, where $p_s(h) = h(s)$, $h \in C(G)$, $s \in S$, and $f \in L$, then $f \cdot m_{\alpha} = \sum_{i=1}^{n} \lambda_i f \cdot s_i$ converges to $f \cdot \phi$ in the weak*-topology of X*. Hence $f \cdot \phi \in L$.

Conversely, if $L \cdot \phi \subseteq L$ for each $\phi \in L_1(G)$ and $s \in G$, let $m \in L_{\infty}(G)^*$ such that m extends $p_s \in C(G)^*$ and $||m|| = ||p_s|| = 1$. Then $m \ge 0$. Hence there exists a net $\{\phi_{\alpha}\} \subseteq L_1(G), \phi_{\alpha} \ge 0, ||\phi_{\alpha}||_1 = 1$, such that $\{\phi_{\alpha}\}$ converges to m in the weak* topology of $L_{\infty}(G)^*$. Consequently, if $f \in L$, then $f \cdot \phi_{\alpha}$ converges in the weak* topology of X^* to $f \cdot s$.

A left Banach G-module X is called *non-degenerate* if the closed linear span of $\{g \cdot x; g \in G, x \in X\}$ is X.

THEOREM 1. Let G be a locally compact group. Then G is amenable if and only if whenever X is a non-degenerate left Banach G-module and L is a weak*-closed G-invariant subspace of X which is complemented in X, then there exists a projection Q of X* onto L such that $Q(f \cdot s) = Q(f) \cdot s$ for all $s \in G$, $f \in X^*$.

Proof. If G is amenable, there exists an asymptotically central approximate unit $\{u_{\alpha}\}$ in $L_1(G)$, $||u_{\alpha}|| \le 1$ (Lemma 1). Let m be an invariant mean on $L_{\infty}(G)$. For each $s \in G$, $f \in X^*$, put $P_{\alpha,s}(f) = O(f \cdot (u_{\alpha} * \delta_s)) \cdot (\delta_{s^{-1}} * u_{\alpha})$. By Lemma 2, $P_{\alpha,s}$: $X^* \to L$ and $||P_{\alpha,s}|| \le ||P||$. For each fixed α , $f \in X^*$, $x \in X$, the function $s \to \langle x, P_{\alpha,s}(f) \rangle$ is bounded and continuous. Hence we may define the mean P_{α} of the family $\{P_{\alpha,s}\}_{s \in G}$ by

$$\langle x, P_{\alpha}f \rangle = m \{ s \to \langle x, P_{\alpha,s}(f) \rangle \}.$$

Then $P_{\alpha}: X^* \to L$ (since L is weak*-closed and if $x \in X$ is annihilated by L, then $\langle x, P_{\alpha}f \rangle = 0$ by Lemma 2), and $||P_{\alpha}f|| \le ||P||$. Finally define $Q(f) = \text{weak}^* \lim_{\alpha} P_{\alpha}(f)$. Again Q: $X^* \to L$, $||Q|| \le ||P||$. For $f \in L$, $f \cdot (u_{\alpha} * \delta_s) \in L$. Hence $(P_{\alpha,s})(f) = f \cdot (u_{\alpha} * u_{\alpha})$. Now $\{u_{\alpha} * u_{\alpha}\}$ is also an approximate unit in $L_1(G)$. Since X is non-degenerate, Cohen's factorization theorem [8, 32.26] implies that each y in X has the form $\phi \cdot x, x \in X, \phi \in L_1(G)$. Hence

$$\langle f \cdot u_{\alpha} * u_{\alpha} - f, y \rangle = \langle f, (u_{\alpha} * u_{\alpha}) \cdot (\phi \cdot x) - \phi \cdot x \rangle \to 0$$

i.e. $P_{\alpha,s}(f) = f$.

152

Now for each $t \in G$

$$P_{\alpha,s}(f \cdot t) - P_{\alpha,ts}(f) \cdot t = P(f \cdot t \cdot (u_{\alpha} * \delta_{t^{-1}} * \delta_{ts})) \cdot (\delta_{s^{-1}} * u_{\alpha})$$

- $P(f \cdot (u_{\alpha} * \delta_{ts})) \cdot (\delta_{s^{-1}} * u_{\alpha})$
+ $P(f \cdot (u_{\alpha} * \delta_{ts})) \cdot (\delta_{(ts)^{-1}} * \delta_t * u_{\alpha} * \delta_{t^{-1}} * \delta_t)$
- $P(f \cdot (u_{\alpha} * \delta_{ts}))(\delta_{(ts)^{-1}} * u_{\alpha} * \delta_t).$

Hence

$$\|P_{\alpha,s}(f \cdot t) - P_{\alpha,s}(f) \cdot t\| \le 2\|P\| \|f\| \|\delta_t * u_{\alpha} * \delta_{t^{-1}} - u_{\alpha}\|$$

and this estimate carries over to $||P_{\alpha}(f \cdot t) - P_{\alpha}(f) \cdot t||$ by invariance of *m*. Since we assume $||\delta_t * u_{\alpha} * \delta_{t^{-1}} - u_{\alpha}|| \to 0$, we get $Q(f \cdot t) = Q(f) \cdot t$.

The converse follows as in the proof of Theorem 3.3 in [11] by considering $X = L_1(G)$ and $(s \cdot \phi)(t) = \phi(s^{-1}t)$, $s \in G$, $t \in G$, $\phi \in L_1(G)$. Then if $f \in L_{\infty}(G)$, $(f \cdot s)(t) = f(st) = (l_{s^{-1}}f)(t)$.

Let Z be a locally compact Hausdorff space. Consider a jointly continuous action $G \times Z \to Z$. Assume that Z has a quasi-invariant measure ν . For each $s \in G$, define $\chi_s(E) = \nu(s^{-1}E)$. Then $\nu_s \ll \nu$. Hence there is a locally ν -integrable Radon Nikodym derivative $(d\nu_s/d\nu)$ such that $\nu_s = (d\nu_s/d\nu) \cdot \nu$. Also $L_1(Z, \nu)$ is a non-degenerate Banach left G-module (see [5, Lemma 2.3]): $s \cdot \phi = \delta_s * \phi$, $s \in G$, $\phi \in L_1(Z, \nu)$ where $(\delta_s * \phi)(\xi) = (d\nu_s/d\nu)(\xi)(s^{-1}\xi)$ defined ν -a.e. on Z. Hence Theorem 1 implies:

COROLLARY 1. Let G be a locally compact group. Then G is amenable if and only if for any locally compact Hausdorff space Z and jointly continuous action $G \times Z \rightarrow Z$ such that Z has a quasi-invariant measure, then any weak*-closed G-invariant complemented subspace of $L_{\infty}(Z, \nu)$ is invariantly complemented.

REMARK. Theorem 1 also implies Lemma 3.1 of [13] for $L_p(G)$, 1 , and Theorem 4.1 of [11].

If *H* is a closed subgroup of a locally compact group, then there exists a non-trivial quasi-invariant measure ν on the coset space $G/H = \{xH; x \in G\}$ which is essentially unique. Write $L_{\infty}(G/H) = L_{\infty}(G/H, \nu)$.

COROLLARY 2. Let G be a locally compact group. Then G is amenable if and only if every weak*-closed complemented invariant subspace of $L_{\infty}(G/H)$, H a closed subgroup of G, is the range of a projection on $L_{\infty}(G/H)$ which commutes with translation.

COROLLARY 3. Let G be an amenable locally compact group and X be a weak*-closed left translation invariant subspace of $L_{\infty}(G)$. Then X is the range of a weak*-weak* continuous projection on $L_{\infty}(G)$ commuting with left translation if and only if $X \cap C_0(G)$ is weak*-dense in X.

Proof. This follows from Corollary 2 and Lemma 5.2 of [11].

COROLLARY 4. Let G be a locally compact group. Then G is compact if and only if G has the following property:

(*) Whenever X is a weak*-closed complemented left translation invariant subspace of $L_{\infty}(G)$, there exists a weak*-weak* continuous projection from $L_{\infty}(G)$ onto X commuting with left translations.

Proof. If G is compact, property (*) follows from Corollary 2, and Lemma 2.1, Lemma 5.2 of [11]. Conversely, if (*) holds, then apply the property to the one-dimensional subspace $X = \mathbb{C}$. It follows that there exists $\phi \in L_1(G)$, $\phi \ge 0$, $\phi(1) = 1$ such that $\phi(l_s f) = \phi(f)$ for all $f \in L_{\infty}(G)$, $s \in G$. In particular, G is compact.

A bounded linear operator T from $L_{\infty}(G)$ into $L_{\infty}(G)$ is said to commute with convolution from the left if $T(\phi * f) = \phi * T(f)$ for all $\phi \in L_1(G)$ and $f \in L_{\infty}(G)$. In this case, T also commutes with left translations i.e. $T(l_s f) = l_s T(f)$ for all $s \in G$ (see [10, Lemma 2]).

LEMMA 3. If T is a weak*-weak* continuous linear operator from $L_{\infty}(G)$ into $L_{\infty}(G)$ and T commutes with left translations, then T also commutes with convolutions from the left.

Proof. Let $\phi \in L_1(G)$, $\phi \ge 0$ and $\|\phi\|_1 = 1$. Let $\phi_\alpha = \sum_{i=1}^n \lambda_i \delta_{s_i}$ be a net of convex combinations of point measures on G such that $\int f(t) d\phi_\alpha(t)$ converges to $\int f(t) d\phi(t)$ for each $f \in C(G)$. Hence if $h \in L_{\infty}(G)$, then the net

$$\langle \phi_{\alpha} * h, k \rangle = \langle k * \tilde{h}, \phi_{\alpha} \rangle \rightarrow \langle k * \tilde{h}, \phi \rangle = \langle \phi * h, k \rangle$$

for each $k \in L_1(G)$ ($\tilde{h}(t) = h(t^{-1})$). Consequently,

$$T(\phi * h) = \lim_{\alpha} T(\phi_{\alpha} * h) = \lim_{\alpha} \phi_{\alpha} * T(h) = \phi * T(h).$$

LEMMA 4 [10]. If G is compact, then any bounded linear operator T from $L_{\infty}(G)$ into $L_{\infty}(G)$ which commutes with convolution from the left is weak*-weak* continuous.

Proof. This is proved in [10, Theorem 2]¹. We give here a different proof. Indeed if $\phi \in L_1(G)$, then $\phi = \phi_1 * \phi_2$, $\phi_1, \phi_2 \in L_1(G)$ by Cohen's factorization theorem. Hence if $f \in L_{\infty}(G)$, then

$$\langle T^*(\phi), f \rangle = \langle \phi_1 * \phi_2, T(f) \rangle = \langle \phi_2, \tilde{\phi}_1 * T(f) \rangle$$
$$= \langle \phi_2, T(\tilde{\phi}_1 * f) \rangle = \langle T^*(\phi_2), \tilde{\phi}_1 * f \rangle = \langle \phi_1 \odot T^*(\phi_2), f \rangle$$

i.e. $T^*(\phi) = \alpha_1 \odot T^*(\phi_2)$, where \odot is the Arens product defined on the second conjugate algebra $L_{\infty}(G)^* = L_1(G)^{**}$. Since G is compact, $L_1(G)$ is an ideal in $L_{\infty}(G)^*$ (see [6]). Hence $T^*(\phi) \in L_1(G)$, i.e. T is weak*-weak* continuous.

PROPOSITION 1. Let G be a compact group. The following are equivalent:

(a) $L_{\infty}(G)$ has a unique left invariant mean.

(b) If E is a finite dimensional G-invariant subspace of $L_{\infty}(G)^*$

(i.e $l_s^*E \subseteq E$ for all $s \in G$) such that the map $s \to l_s^*\psi$ of G into E is continuous, then $E \subseteq L_1(G)$.

(c) Any bounded (projection) linear operator T from $L_{\infty}(G)$ into $L_{\infty}(G)$ which commutes with left translations is weak*-weak* continuous.

(d) Any bounded (projection) linear operator T from $L_{\infty}(G)$ into $L_{\infty}(G)$ which commutes with left translation also commutes with convolution from the left.

Proof. (a) \Rightarrow (b). Consider a continuous representation π of G on E defined by $\pi(s)(m) = l_{s-1}^{*}m$, $s \in G$, $m \in E$. Since E is finite dimensional, there exists an inner product \langle , \rangle on E such that π is unitary. We may further assume that π is irreducible. Let $\{\psi_1, \ldots, \psi_n\}$ be an orthonormal basis of E. Write $e_{ij}(s) = \langle \pi(s)\psi_j, \psi_i \rangle$ for the coefficients of π . For $g \in L_{\infty}(G)$, $\psi \in L_{\infty}(G)^*$, define $\psi \cdot g \in L_{\infty}(G)^*$ by $\langle \psi \cdot g, f \rangle = \langle \psi, gf \rangle$, $f \in L_{\infty}(G)$. Then for any $f, g \in L_{\infty}(G)$, $\psi \in L_{\infty}(G)^*$, we have

$$\left\langle f, l_s^*(\psi \cdot g) \right\rangle = \left\langle l_s f, \psi \cdot g \right\rangle = \left\langle g \cdot (l_s f), \psi \right\rangle$$
$$= \left\langle l_s((l_{s^{-1}}g) \cdot f), \psi \right\rangle = \left\langle f, (l_s^*\psi) \cdot (l_{s^{-1}}g) \right\rangle$$

¹ The converse to Theorem 2 in [10] was omitted in print. It is stated on page 352.

Consequently $l_s^*(\psi \cdot g) = (l_s^*\psi) \cdot (l_{s^{-1}}g)$. Furthermore, observe that

$$l_{s}^{*}\psi_{i} = \sum_{j=1}^{n} e_{ji}(s^{-1})\psi_{j}, \qquad l_{s^{-1}}e_{ik} = \sum_{l=1}^{n} e_{li}(s^{-1})e_{lk}$$

Since π is unitary, $\sum_{i} e_{ji}(x) e_{li}(x) = \delta_{jl}$. Put $\phi_k = \sum_{i=1}^{n} \psi_i \cdot \bar{e}_{ik}$ (⁻ denotes the complex conjugate). Then

$$l_s^* \phi_k = \sum_i \left(l_s^* \psi_i \right) \cdot \left(l_{s^{-1}}(\bar{e}_{ik}) \right)$$
$$= \sum_{i,j,l} e_{ji}(s^{-1}) \psi_j \overline{e_{li}(s^{-1})} \cdot \overline{e_{lk}} = \sum_j \psi_j \overline{e}_{jk} = \phi_k$$

for all $s \in G$. By assumption, $\phi_k \in L_1(G)$. Finally

$$\sum_{k} \phi_{k} \cdot e_{lk} = \sum_{i} \psi_{i} \left(\sum_{k} \bar{e}_{ik} \cdot e_{lk} \right) = \psi_{l}$$

and $\phi \cdot f \in L_1(G)$ whenever $\phi \in L_1(G)$, $f \in L_{\infty}(G)$. Hence $\psi_l \in L_1(G)$ for all l = 1, 2, ..., n.

(b) \Rightarrow (c). Since G is compact, it follows that $T(\phi * f) = \phi * T(f)$ for all $\phi \in L_1(G)$, $f \in C(G)$. If $\phi \in L_1(G)$ such that $\{l_s^*\phi; s \in G\}$ belongs to a finite-dimensional G-invariant subspace of $L_{\infty}(G)^*$, then the same is true for $T^*\phi$. Hence $T^*\phi \in L_1(G)$ by (b). Since elements of this type are dense in $L_1(G)$, $T^*(L_1(G)) \subseteq L_1(G)$ i.e. T is weak*-weak* continuous.

That (c) \Rightarrow (d) follows from Lemma 3.

(d) \Rightarrow (a). If $L_{\infty}(G)$ has more than one left invariant mean, then there exists a left invariant mean *m* such that $m \notin L_1(G)$. Now define $T(f) = m(f) \cdot 1$, $f \in L_{\infty}(G)$. Then *T* is a projection of $L_{\infty}(G)$ into $L_{\infty}(G)$ commuting with left translations. But *T* does not commute with convolution by Lemma 4.

REMARK. As known (see [3], [15] and [16]) if G is a nondiscrete compact abelian group (or more generally, G is amenable as discrete), then $L_{\infty}(G)$ has more than one left invariant mean. However, if $n \ge 5$, and $G = SO(n, \mathbb{R})$, then $L_{\infty}(G)$ has a unique left invariant mean (see [14] and [17] for more details).

4. Subspaces of VN(G). Let P(G) be the continuous positive definite functions on G (see [6]). If H is a closed subgroup of G, let

$$P_H = \{ \phi \in P(G); \phi(g) = 1 \text{ for all } g \in H \}$$

Then P_H is a subsemigroup of P(G).

LEMMA 5. If H is a closed normal subgroup of G, $g \notin H$, there exists $\phi \in P_H$ such that $\phi(g) = 0$.

156

Proof. Consider the quotient group G/H and let $\psi \in P(G/H)$ such that $\psi(gH) = 0$ and $\psi(H) = 1$. Define $\phi = \psi \circ \pi$, where π is the canonical mapping of G onto G/H. Then $\phi \in P(G)$, $\phi(h) = 1$, for all $h \in H$ and $\phi(g) = 0$ (see [2, p. 199]).

Let VN(G) denote the von Neumann algebra generated by the left translation operators l_g , $g \in G$, on $L_2(G)$. Then the predual of VN(G) may be identified with A(G), a subalgebra of $C_0(G)$ with pointwise multiplication, consisting of all functions ϕ of the form $\phi(g) = \int h(g^{-1}t)\overline{k(t)} dt$, $h, k \in L_2(G)$. Furthermore, A(G) with the predual norm is a semi-simple commutative Banach algebra and a closed two sided ideal of B(G), the linear span of P(G). There is a natural action of A(G) on VN(G) defined by $\langle \phi \cdot x, \psi \rangle = \langle x, \phi \psi \rangle$, $x \in VN(G)$. When G is commutative, then A(G) and VN(G) are isometrically isomorphic to $L_1(\hat{G})$ and $L_{\infty}(\hat{G})$ respectively (where \hat{G} is the dual group of G) and the action of A(G) on VN(G) corresponds to convolution of functions in $L_1(\hat{G})$ and $L_{\infty}(\hat{G})$. (see [2] for more details.)

A subspace M of VN(G) is called *invariant* if $\phi \cdot x \in M$ for all $\phi \in A(G), x \in M$. Define

$$\sum (M) = \{ g \in G; \, l_g \in M \}.$$

If M is an invariant W^* -subalgebra of VN(G), then $\Sigma(M) = H$ is a non-empty closed subgroup of G and $M = N_H$, the ultraweak closure of the linear span of $\{l_g; g \in H\}$ in VN(G) (see [18, Theorems 6 and 8]).

LEMMA 6. Let M be an invariant W*-subalgebra of VN(G) such that $\Sigma(M) = H$ is a normal subgroup of G. Then $M = \{x \in VN(G); \phi \cdot x = x \text{ for all } \phi \in P_H\}.$

Proof. Let $N = \{x \in VN(G); \phi \cdot x = x \text{ for all } \phi \in P_H\}$. Then N is weak*-closed, invariant and $N \supseteq N_H = M$ (since $\phi \cdot l_g = \phi(g)l_g = l_g$ for $\phi \in P_H$, $g \in H$). Now if $g \in G$ and $l_g \in N$, then $\phi(g) = 1$ for all $\phi \in P_H$. In particular $\Sigma(M) \subseteq H$ by Lemma 4. Hence if $x \in N$, then $\supp(x) \subseteq \Sigma(N) \subseteq H$ by Proposition 4.4 [2]. Consequently, $x \in N_H$ by Theorem 3 [19].

The following implies one direction of Theorem 3.3 [11] when G is abelian:

THEOREM 2. Let M be an invariant W*-subalgebra of VN(G) such that $\Sigma(M) = H$ is a normal subgroup of G. Then there exists a continuous projection P of VN(G) onto M such that $P(\phi \cdot x) = \phi \cdot P(x)$ for all

 $\phi \in A(G)$ and $x \in VN(G)$. In particular, M admits a closed complement which is also invariant.

Proof. By Lemma 6, $M = \{x \in VN(G); \phi \cdot x = x \text{ for all } \phi \in P_H\}$. For each $x \in VN(G)$, let K_x denote the weak*-closed convex hull of $\{\phi \cdot x; \phi \in P_1(G)\}$, where $P_1(G) = \{\phi \in P(G); \phi(e) = 1\}$, and $\langle \phi \cdot x, \psi \rangle = \langle x, \phi \psi \rangle, \psi \in A(G)$. Then K_x is a weak*-closed subset of VN(G). For each $\psi \in P_H$, let $T_{\psi}: K_x \to K_x$ be defined by $T_{\psi}(y) = \psi \cdot y, y \in K_x$. Then T_{ψ} is weak*-weak* continuous and affine. Since P_H is a commutative semigroup, an application of the Markov-Kakutani fixed point theorem ([1, p. 456]) shows that $M \cap K_x$ is nonempty for each $x \in VN(G)$. By Theorem 2.1 in [9], there exists a projection P from VN(G) onto Mand P commutes with any weak*-weak* continuous operator from Minto M which commutes with $\{T_{\psi}; \psi \in P_H\}$. Hence $P(\phi \cdot x) = \phi \cdot P(x)$ for each $\phi \in A(G), x \in VN(G)$.

REMARK. Lemma 5 (hence Lemma 6 and Theorem 2) holds for any compact subgroup (see Eymard [2, Lemma 3.2]) and any open subgroup H of G (see Hewitt and Ross [8, 32.43]) without normality.

References

- N. Dunford and J. T. Schwartz, *Linear Operators* 1, Interscience Publishers, Inc., New York, 1957.
- P. Eymard, L'algèbe de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181–236.
- [3] E. Granirer, Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc., 40 (1973), 615–624.
- [4] F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand (1969).
- [5] ____, Amenable actions of locally compact groups, J. Funct. Anal., 4 (1969), 295-315.
- [6] M. Grosser, $L_1(G)$ as an ideal in its second dual space, Proc. Amer. Math. Soc., 73 (1979), 363–364.
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1963.
- [8] _____, Abstract Harmonic Analysis II, Springer-Verlag, 1970.
- [9] A. T. Lau, Semigroup of operators on dual Banach spaces, Proc. Amer. Math. Soc., 54 (1976), 393–396.
- [10] ____, Operators which commute with convolutions on subspaces of $L_{\infty}(G)$, Colloquium Mathematicum, **39** (1978), 351–359.
- [11] _____, Invariantly complemented subspaces of $L_{\infty}(G)$ and amenable locally compact groups, Illinois J. Math., **26** (1982), 226–235.
- [12] V. Losert and H. Rindler, Asymptotically Central Functions and Invariant Extensions of Dirac Measure, Probability Measures on Groups VII, Proceedings Oberwolfach 1983, Springer Lecture Notes Math. 1069 (1984), 368–378.

- [13] H. P. Rosenthal, *Projections onto translation invariant subspace of* $L^{p}(G)$, Memoirs Amer. Math. Soc., **63** (1966).
- J. Rosenblatt, Uniqueness of invariant means for measure-preserving transformations, Trans. Amer. Math. Soc., 265 (1981), 623–636.
- [15] W. Rudin, Invariant means on L^{∞} , Studia Mathematica, 44 (1972), 219–227.
- [16] J. D. Stafney, Arens multiplication and convolution, Pacific J. Math., 14 (1964), 1423–1447.
- [17] D. Sullivan, For n > 3 there is only one finitely additive rotationally invariant measure on the n-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc., 4 (1981), 121–123.
- [18] M. Takesaki and N. Tatsuuma, *Duality and subgroups*, Ann. of Math., 93 (1971), 344–364.
- [19] _____, Duality and subgroups II, J. Funct. Anal., 11 (1972), 184–190.
- [20] Y. Takahashi, A characterization of certain weak*-closed subalgebras of $L_{\infty}(G)$, Hokhaido Math. J., **11** (1982), 116–124.
- [21] M. Talgrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier, Grenoble, 32 (1982), 39-69.

Received January 10, 1985. The first author is supported by NSERC Grant A-7679.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada T6G-2G1

AND

UNIVERSITÄT WIEN STRUDLHOFGASSE 4 A-1090 WIEN Austria