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NORMAL STRUCTURE AND THE SUM-PROPERTY

THOMAS R. LANDES

For Z = (R^, I I) with symmetric norm | | the Z-direct sum of the
normed spaces Xl9...,XN is its product space with norm \\(xι,..., xN)\\
= 1(11*21|,--,l)*/v!l)l A normed space X is said to have the sum-property
(SP) if each Z-direct sum of finitely many copies of X has normal
structure (NS). It turns out that the class of spaces having the SP is the
largest subclass of the class of spaces having NS which is closed under
each finite Z-direct sum operation. The SP is characterized by the
property that limit-affine (i.e., the functional Λ(x) = lim||xn - x\\ is
defined and affine on conv({xn})) sequences {xn} with non-decreasing
{Λ (x n )} are constant.

In contrast to a previous conjecture it is shown that every infinite
dimensional separable normed space can be renormed to have NS and
not the SP. Moreover, in order that NS is inherited from Xλ,...,XN to
its Z-direct sum, it is not only sufficient (as previously shown) but also
necessary that each line segment (if there is any) in the unit sphere of Z
lies in a hyperpiane {z\zt = a] for some i < N, a Φ 0. In fact, if Z
does not satisfy this condition, and if infinite dimensional separable
normed spaces XλJ..., XN are given, then there are normed spaces Yι

with NS isomorphic to X,- whose Z-direct sum does not have NS.
Finally, it is shown that a normed space with a symmetric (not

necessarily countable) basis can be renormed to have NS if and only if it
can be renormeά to be uniformly convex in eyery direction. In particular,
co(I) can be renormed to have NS if and only if / is countable. As a
counter-example, a reflexive normed space with an unconditional basis is
given which has the SP but cannot be renormed to be uniformly convex
in every direction. All results hold also for weakly NS and the weak SP.

Introduction. A subset A of a normed space X is said to have

normal structure (NS for short) if every bounded convex subset C of A

with positive diameter d = sup{||jc - y\\\x, y e C) is contained in some

ball with center in C and radius strictly smaller than d. This property,

introduced by Brodskii and MiΓman [1], is important in fixed point

theory for nonexpansive mappings. We refer the interested reader to [3],

[4], [5], [6], [8].
In applications, also weakly normal structure (WNS for short) is of

interest. A normed space X is said to have weakly normal structure if

every weakly compact subset of X has NS.

In [10], the author has analyzed stability properties of (W)NS. (The

term (W)NS means both NS and WNS, the " W" refers to all expressions

occurring in brackets. For example, "the (weak) SP implies (W)NS*'
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means both "the SP implies NS" and "the weak SP implies WNS".) The

following problem was raised in [10]:

PI : Is (W)NS preserved under every finite direct-sum-operationΊ

An affirmative answer to PI would mean that, given any symmetric

norm | | on R^— i.e., |(£x, . . . , £ „ ) ! = | ( | ^ | , . . . , | ^ | ) | — and given arbi-

trary normed spaces Xl9...,XN with (W)NS, the direct sum Xλ

Θ - ®XN has (W)NS with respect to the norm IKJcJfLill = KIWI, )?Lil;

this direct sum is written as (Σf=1 θ X,) z, Z = (R*, | |), and called the

Z-direct sum of Xl9..., XN. In [10], it is shown that (W)NS is preserved

under such a Z-direct-sum-operation whenever each — if there is

any — line segment belonging to the positive part of the unit sphere of Z

is contained in a hypeφlane not containing 0 orthogonal to some coordi-

nate axis. This latter condition is formally written in the following way

(condition (*) in [10]):

. * o,,, > o
for all i = 1, . . . , N, then ξ, = ηt > 0 for some i < N

All /^-norms, 1 < p < oo, satisfy (SC), all strictly convex norms on R^

satisfy (SC), but not the /f-norm. We show in §4 that (SC) is not only

sufficient but also necessary for preservation of (W)NS. Consequently, PI

is solved in the negative.

In [10], the isomoφhic analogue of (W)NS is also dealt with: A

normed space X is said to have {weakly) isonormal structure—(W)INS

for short — if X is isomoφhic to a normed space with (W)NS. In [10], it

is shown that X has (W)INS if and only if there is a bounded linear 1-1

operator T from X into a normed space with (W)NS. Especially, every

separable normed space has INS:

Tχ:= (2-"(xϊ,x)) e l2 if | | J C | | = sup |<x*, x> | for all x e X.
N

Moreover, given any normed space X, the subclass of ISO( X) — the class

of all spaces isomoφhic to X— of all spaces with (W)NS is either empty

or dense in ISO(X) in the topology induced by the Banach-Mazur

distance.

The following question was left open in [10]:

P2. Doesc0(I) have (W)INS for uncountable 1"?

In §5, we give the negative answer: cQ(I) has (W)INS if and only if /

is countable, i.e., if and only if co(I) can be renormed to be uniformly
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convex in every direction. This latter characterization extends to the class

of spaces with a symmetric basis but not to the class of spaces with an

unconditional basis.

2. Limit-affine sequences. Problem PI leads in a natural way to the

consideration of limit-affine sequences as we will see.

Given a bounded sequence {xn} in a normed space X, we consider

the limit-functional

Λ ( x ) = lim \\xn-x\\
w-»oo

being defined for all x G X for which the right hand side limit exists. The

sequence {xn} is then called limit-affine if its limit-functional is defined

on the whole convex hull of {xn} and is affine there. If a growth

condition such as "increasingly", "non-increasingly", "constantly" etc. is

added to the term "limit-affine", then this indicates that the sequence

{A(x n )} has this growth behaviour; for example, an increasingly limit-af-

fine sequence {xn} is a limit-affine sequence for which {A(xn)} is

increasing.

A constantly limit-affine sequence is called limit-constant. The associ-

ated limit-functional is constant on the convex hull of a limit-constant

sequence.

A non-decreasingly (non-increasingly, respectively) limit-affine se-

quence {xn} is either constant (Cauchy, resp.) or has no Cauchy subse-

quence and the former is the case if and only if A(xn) = 0 (A(xn) -> 0,

resp.).

Limit-constant sequences arise in connection with (W)NS:

PROPOSITION 1 ([10]). The normed space X has (W)NS if and only if

every (weakly convergent) limit-constant sequence in X is constant.

For the solution of PI, one especially has to consider the /^-norm,

that is, one has to solve:

PI' . Does X®XY, the space XΦ Y with norm \\(x, y)\\ = ||JC|| + \\y\\,

have (W)NS if both X and Y have (W)NS?

If {(xn,yn)} is limit-constant in X®XY, then both {xn} and {yn} are

limit-affine and, passing to some subsequence, either both are limit-con-

stant or one is increasingly limit-affine and the other decreasingly limit-

affine. This demonstrates what we meant above with " . . . PI

leads. . . t o . . . limit-affine sequences...".
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Limit-affineness together with its growth condition inherits to subse-
quences and is preserved under the operation xn -> <xxn + x, a Φ 0,
x e X. So, if there is a limit-affine sequence {xn} in X with
inf,7€ΞNΛ(.x,7) > 0 (i.e., {xn} has no Cauchy subsequence), then we may
assume that {xn} is increasingly or constantly or decreasingly limit-affine
with A(xn) -> 1. Moreover, if some subsequence of {xn} converges in
some vector space topology on X, then we may assume that {xn}
converges to 0 in this topology. If this topology is the weak topology, then

Finally, every limit-affine sequence has a subsequence all of whose
subsequences {xn} satisfy:

( D S ) l i m Σ \\xn + i ~ x k \ \ - n\\χ

n + ι ~ xn\\) = °> x n = ~ Σ **•

Vice versa, if {JC^} satisfies (DS), then it has a limit-affine subsequence
(cf. [10]).

PROPOSITION 2. Let X be a normed space and Y c X* such that

forallx^X.

Let {xn} c Xbe limit-affine and Λ^ be a cluster-point of [A(xn)}. Then,
there is a sequence {yn} in Y and an increasing sequence {mn} such that

(i) { A(xmJ} is monotonous with limit Λ^.
(ii) a = h m ^ ^ j ^x^) exists.

(iii) There is a β e C with \β\ = 1 such that

lim (yn,x) = a — A(x)β for allx

(iv) |α - A(x)β\ < \\x\\ for all x e conv({xπ}).
(v) //ΛQQ > 0, //2̂ « {^} /z^ «o constant subsequence.

If, additionally, xn -> 0 weakly, then
(vi) Λ^ = l i m ^ ^ Λ(xΛ) = Λ(0) am/ α = Λ^/3.

// Y vanishes pointwise at infinity, i.e., if for all x ^ X and ε > 0 there is a
finite F c Y such that \(y,x)\< ε for ally e 7 \ F, //z^

(vii) { JC^ } w e//Aer Cauchy or limit-constant with a = A^β.

Proof. Put Λ^ = A(xk). Choose {pn} increasing such that Λ
\xp - xk\\ < Ak + n 2 , k<n, and \\x - xn\\ > A(xn) - n 2. Then

2
\ χ P n - χ k \ \ - 4 χ

P n - χ » \ \ < - - * °
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Choose yn^Y such that \(yn9xPn ~ x n ) \ > \\xPn — xn\\ - n~2. Fix an
arbitrary x = Σ^λλkxk ^ conv({xn}) and put λ^ = 0, k > m. Since
n{xPn - xn) = xPn - x + Σ£= 1(l - λk)(xPn - xk) we obtain

n\\X

Pn ~ * J - - < n \ O n ^ P n - *n) I

and

n

^ n\\y^X

Pn ~ X n ) \ - L V1 - Λ J | \ J ; n > X:

/>,; ~ ^fc/l

1 n

m -| m

= Σ λ J x A - xk\\ - Δn - - ^ Σ λ^Λ^ = Λ ( ^ )

and we have

x - x > | - > Λ ( x ) for all JC e conv({xn}).

Choose an increasing sequence {kn} such that (i) and (ii) hold for
yn = ykn and mn = pkn and that βk = limπ_oo(<yII,xΛ> exists for each k.
Formula (*) yields \a — βk\ = Ak and

Ak + A, = \la - βk - βx\ < \a - βk\ + \a - β,\ = Ak + Ax.

Since | | on C is strictly convex, a — βk = Akβ for some β e C with
\β\ = 1. A continuity argument implies (iii), and (iv) is an immediate
consequence of (iii).

If some subsequence {y r} of {yn} is constant and Λ^ > 0,

aΦa-A^β <- α - Λ β +- (yrH,xm) = (y^XmJ ,-* a

k->oo k n-*oo k k k->oo

which is absurd.
If xn -> 0 weakly, then 0 e conv({xw}) and (vi) follows from (iv) and

[10, Remark 1].
Let Y vanish pointwise at infinity. If {xn} is not Cauchy, then

{A(xn)} has a cluster-point Λ^ > 0. Choose {yn) and {mn} with (i)-(v).
Then 0 <- (yn, xk) -> a — Akβ, which implies that {Λ^} is constant, i.e.,
Ak = A^ for all k and a = A^β. D
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COROLLARY 1. Every limit-affine sequence in co(I) is either limit-con-

stant or convergent.

3. The sum-property. The observations on PΓ mentioned in §2

motivated the author in [10] to define a property, called the sum-property,

in such a way that the "bad" case ({xn} increasingly, {yn) decreasingly,

{(xn,yn)} constantly limit-affine) is excluded: non-decreasingly limit-af-

fine sequences have to be constant by definition of the sum-property. But,

this definition seems to be rather unnatural and the name "sum-property"

gives no association for its defining property. So, we proceed here in

another way (but come to the same goal). In view of the solution of PI, we

could simply define the (weak) sum-property to be the weakest property

of normed spaces which is stronger than (i.e., stronger than or equivalent

to) (W)NS and is preserved under every finite direct-sum-operation (FDSO

for short). This "definition" is somewhat "dangerous" in view of logical

loops and cannot be written in the form "X has the (weak) sum-property

if . . . " . These difficulties can be avoided in restricting the direct sums to

powers of one space and in requiring these direct sums to have only

(W)NS:

DEFINITION 1. The normed space X is said to have the (weak)

sum-property ((W)SP for short) if each Z-direct sum of finitely many

copies of X has (W)NS, i.e., if XN has (W)NS with respect to the norm

ll( X/)^ill = KIWD/^il whenever | | is a symmetric norm on R^.

Obviously, the (W)SP is stronger than (W)NS and weaker than every

property of normed spaces which is stronger than (W)NS and preserved

under every FDSO. So, the (W)NS is the weakest such property provided

it is preserved under every FDSO. This is shown in Theorem 1:

THEOREM 1. The following are equivalent.

(I) X has the (W)SP.

( 2 ) I Θ 1 K = ( J Θ K)/? has (W)NS, where K is the scalar field R or C.

(3) Every non-decreasingly limit-affine (weakly convergent) sequence in

X is constant.

Moreover, the (W)SP is the weakest property of normed spaces which is

stronger than (W)NS and preserved under every FDSO.
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Proof. (1) => (2). X ΘXK is a subspace of X ΘλX.
(2) => (3). If {xn} is non-decreasingly limit-affine in X, then

{xn, A(xn)} is limit-constant in X ΘXK.
(3) => (1) and the additional statement. Consequence 3 of [10] states

that (3) is preserved under every FDSO. D

So, our definition here for the (W)SP coincides with that given in [10].
Moreover, Theorem 1 shows that PI and PI' are equivalent and both
equivalent to

PI". Does (W)NS imply the (W)SP?

Problem PI" was stated in [10] as a positive conjecture. A priori, there
is no reason why (W)SP and (W)NS should be equivalent, although (2) of
Theorem 1 suggests that both properties differ not too much. But, if one
checks all "classical" sufficient but not necessary conditions for (W)NS
(e.g., uniform convexity (in every direction), uniform smoothness, nearly
uniform convexity, Λ -uniform rotundity, OpiaΓs condition, condition of
Gossez and Lami Dozo,...) one finds out that all these conditions imply
the (W)SP, too (cf. [10]). Moreover, all "classical" sequence spaces have
the (W)SP as soon as they have (W)NS: c0, all modular sequence spaces
including the class of Orlicz sequence spaces as well as lp, 1 < p < oo (cf.
[11], [12]), all Lorentz sequence spaces d(w, p) (all d(w, p) satisfy OpiaΓs
condition so that all d(w,p) have WSP; for p > 1, d(w, p) is reflexive,
thus, has the SP; d(w, 1) does not have NS because {{Σn

k = ιwky
ιΣn

k = ιek}
is limit-constant).

Furthermore, our Corollary 1 implies that every normed space which
is isometric to a subspace of co(I) has the (W)SP as soon as it has (W)NS.

Finally, subspaces of spaces with an "asymptotically co-contractive"
basis — i.e., l iminf^JIPJI = 1, Pn the complement of the canonical
projection Pn— have the WSP if they have WNS. Indeed, if {xn} is
non-decreasingly limit-affine, xn -> 0 weakly and \\PmJ| -> 1, then Λ(0)

^ A(xn) > A(xx) and

A(Xι) ^-

- A(0)-WP^W - Λ(0).
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So, if there is a universal (containing every separable normed space)

space with an asymptotically co-contractive basis, then WSP and WNS

are equivalent.

Taking all these arguments into account, one can really hope that P I "

has an affirmative solution at least for the weak properties or restricted to

the class of reflexive spaces.

4. The solution. The existence of a universal space with an asymp-

totically co-contractive basis would imply that there is no increasingly

limit-affine weakly convergent sequence at all. Such a space cannot exist!

Indeed, the sequence {zn} in /^

0, j < n

is increasingly limit-affine (A(zk) = 1 — εk) and converges weakly to 0 if

{εn} converges decreasingly to 0.

Does the subspace of /^ spanned by {zn} solve PΓ' in the negative?

No! The sequence {zn+1 — εn+1ε~ιzn} is limit-constant. But, some modifi-

cations of the above sequence yield a negative solution of PI" . We even

introduce a number of equivalent norms on c0 which solve P I " negatively

in several ways.

To have easier notation we define the norm || || of X to be of type
TiT2T3T4> T/G{O>1}> if (XII II) does or does not satisfy Si9 i =

1, . . . , 4 — Sλ = SP, S2 = NS, S3 = WSP, S4 = WNS — according to

whether τ, = 1 of τt = 0. For example, the usual /Γnorm is of type 0011,

that is, lλ does not have the SP and not NS but it does have the WSP and

WNS.

Only six types are allowed by the implications SP => NS => WNS and

SP => WSP =* WNS: 1111, 0111, 0101, 0011, 0001, 0000. For reflexive

spaces, the types 0111, 0011 and 0001 are excluded, For Schur-spaces, the

types 0101, 0001 and 0000 are excluded.

In Theorem 2, c0 is considered as real or complex Banach space.

THEOREM 2. RENORMINGS OF C0. Given any of the six possible types

1111, 0111, 0101, 0011, 0001 or 0000, there is an equivalent norm on c0

which is of this type. In particular, for & = ± 1 and 0 < a < 1, put
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ε, = α3-', defineytj e llt 1 < i <j, y. e lx andy e lx by

ί
θ, 7 < v ori = i»,

1 - ε, , j = v,

2εv, j > v Φ i,

(0, j < v,

-e,, j=v, y{v) = εv

ε,, j > v,and consider the following norms on c 0:

| | x | | « = s u p { | < > > , . j , χ ) \ \ l < i <

\\x\\'»,a =

\x\\»,a
y e N

Then, all these norms are equivalent to || H^ and we have

(1) (a) \\en-ek\\a<l-2εk.

(b) {«„} = {Σn

y=ι(ep+ι - 3-'ex)} w || ||

Λ t t(«n) = 1.

(c) {«„} = {«„ + eM+2} is || \\a-limit-affine with Aa(vn) = 1 -

(d) // {xn} i'ί || \\a-limit-affine, xn -» x e /^ pointwise and

λa(xn) -* 1, ίΛen //iere exzsί increasing sequences {jn} and

{mn} such that x(jn) -» ^p W ^ ( Λ ) -> )8, |jS| = 1,

Rep > 1/2.

(2) (a) ( e j is || \\^a-limit-affine with Λ # α (e n ) = 1 - »eH.

(b) {«„} ώ || \\+Ua-limit constant with A+la(un) = 1.

(c) {v'n} = {wn/6 + en + 2} is || \\ + loΓlimit-affine with

= 1 - e
// Λ+2.

} is || \\^a-limit-affine, xn -* x e /„ pointwise,
A»,Λxn) "* 1» *(1 - AΛ i β(xB)) < 0 α«ί/ Λ β (x B ) exists for

alln then Aa(xn) > max{l, Λ^ a(xn)} for all n.

(3) (a) IK, - < y 5 £ 2/3 <; 1 - eA.

(b) 11^ - »ίl|5 < v^6/6 < 1 - εk+2.

(c) jEυery || W^-limit-affine sequence is one-dimensional.

(d) Ifxn-*xela) pointwise and x(jn) -* βp and xn(jn) -* β

for some increasing sequence {jn}, and if \β\ = 1, Rep >

1/2, then limsup^^Hx,, - xk\\5 > 3/2 for all k.
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(4) II L w of type 0011.
(5) (a) {<?„} is II \\'+la-limit-affine with A'+ha(en) = 1 - εM.

(b) {i/B} w II \\'+ι,a-limit constant with A'+la(un) = 1.
(c) \\\\'+ha is of type 0001.

(6) (a) {en} is II \\χι<a-limt-aβne with A"+1Jen) = 1 - εn.
(b) II | | ; ' l i β is o/05pe 0101.

(7) (a) {*„} is II ||l'1>β-/^//-fl^/ie W/A A' : l i Λ (βJ = 1 + εn.

(b) l l l l l ' i .-wo/opell l l .
(8) Consider the norm \\x\\™ = tt\\x\\2

a/2 + έ||Fx||f1)

Vx(i) = χ(j + 2) - jc(i + 3).

(a) {vn} is II \\ΐ-limit-affine with A';'(υn) = 1 - εn+2.
(b) IMir is of type 0111.

(9) 77ιe original norm || H^ w o/ry^e 0000.

f. The proof of (la, b, c), (2a, b, c), (3a, b, c), (5a, b), (6a), (7a),
(8a) and (9) is straightforward and omitted. For (3d), observe that

4
1

\Xn ΛJn) ~ Xk(Jn) + Σ

l 4

2 β + Σ

Assume first (Id) and (2d) to be already proved.
Using the methods described in [10], the following implications are

immediate:

(1) - (4), ((ld)&(2d))&((5a)&(5b)) - (5c),

((ld)&(2d)&(3c, d))&(6a) => (6b), (Id) &(2d) &(3c, d) =» (7b),

(6b)&(4)&(8a)=»(8b).

So, it remains to show (Id) and (2d).

Proof of (Id). Assume that {xn} is || ||α-limit-affine, xn ~* x e lx

pointwise — i.e., weak* in lx — and
( i ) Λ B : = Λ β ( x B ) - » l .

Passing to a subsequence and applying Proposition 2, we find 1 < in < j n

and γ, β e C, \β\ = 1, such that

Putting η = γβ*, xn = β*xn and x = β*x, we arrive at
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We know from (v) of Proposition 2 that in -> oo and j n -» oo.

Switching to a subsequence, we may assume that £ = l i m ^ ^ xn(jn) and

p = l i m ^ ^ ^ x(jn) both exist. Then

(iii) => 17 = 2(j>, jc) + ί~ and

K o o

Thus 1 = 1 and 2{_y, x — xk) = Λ^ — 1. Finally, we obtain

> Λ, + 2εΛ(Rex,(Λ) - Rex(/J - 1/2).

Hence,

Rep <- Rei(Λ) > Rex,(yJ - 1/2 -> 1/2.
/c—> oo Ac—» oo

Proo/ o/ (2d). Assume that (x w ) is || ||^ α-limit-affine, xn -* x G

/^ pointwise, Λ^ = Λ d α (x J -> 1, #(1 - Mn) < 0 and Λ^ =

lim / I_ 0 0 | |x r t - jc^||α exists for all k.

Using essentially the same method as in the proof of (Id) we may

assume that (y, x - xk) = Mk - 1, xn(jn) -> 1 and x{jn) -> p for some

increasing sequence {jn} where xn = β*xn and x = β*x for some β ^ C

with |j8| = 1. Hence, we have

\ l + 2(1 - Λ'J > 1 > Λ^, # = - 1 . D

For the main statement of Theorem 2 only the case & = + 1 and

α = 1 is needed. The norm || H^ α and the parameter a are introduced in

view of Theorem 4, the complete solution of PI.

In the next Theorem 3, the main statement of Theorem 2 is extended

from c0 to arbitrary infinite dimensional separable normed spaces; of

course, we have to pay regard to the type-restrictions for reflexive and

Schur spaces.

THEOREM 3. RENORMINGS OF SEPARABLE INFINITE DIMENSIONAL

SPACES. Let X be an infinite dimensional separable normed space. Let
TiT2T3T4 be any tyPe which is compatible with the topological structure of
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X: T^TaTi = 1111, 0111, 0101, 0011, 0001 or 0000 if X is non-Schur, non-

reflexive, τfcTjΓi = 1111, 0101 or 0000 // X is reflexive, τ1τ2τ3τ4 =

1111, 0111 or 0011 if X is Schur.

Then, X admits an equivalent norm which is of type T^T^. Especially,

given # = ± 1 and 0 < a < 1, there is a sequence {xn} c X and an

equivalent norm || | | d a on X such that {xn} is || \\# a~limit-affine with

Λ »,«(*„) = 1 - ΰa3J" and (X,\\ | | ^ J has NS (the SPif ΰ = -1); i /Zw

non-Schur, then {xn} can be chosen to converge weakly.

For the proof of Theorem 3, we need some elementary facts which are

also useful in other applications. In Lemmas 1-4, X is assumed to be a

separable infinite dimensional normed space.

LEMMA 1. // {xn} c X is bounded and has no Cauchy subsequence,

then there is a subsequence {xmn} and a bounded sequence {x*} c X*

which converges to 0 in σ(X*,X) and is biorthogonal to {xmj, that is

Proof. By the lemma of [9], there is a bounded sequence {y*} in X*

and a subsequence {xm } such that

Passing to a subsequence, we may assume that J / ^ ^ G I * in

σ(X*9 X). Using (i) we obtain (y*9 xmk - xm) = 0. If we call y* - y*

again y*9 we additionally have y* -> 0 in σ(X*, X). Formula (i) implies

that (y*, x ) = an for all k Φ n, where an -> 0. If an = 0 for all n, we

put x* = y*. If not, we choose N with aN Φ 0, put JC* = y%+n ~~
a n d d e n o t e mN+n again by mn. D

LEMMA 2. // {w*} c W*, We: X, is bounded and converges to 0 in

σ(W*,W), then there are extensions y* e X* of w* such that {y*} is

bounded and converges to 0 in σ( X*9 X).

Proof. Choose extensions x* G I * of w* with ||x*|| = ||w*|| < K.

Let d be a translation invariant metric on X* which induces σ(X*, X)

on B = ( x * e Z * | | | JC*| | < AT}. Since every σ(X*, X)-cluster point of

{x*} belongs to B Π W1, we know that J(x*, 5 Π W1) -» 0, i.e., there

is a sequence {z*} c β n l f 1 with d(x*, z*) -> 0. Put ̂ * = x* - z*.D

LEMMA 3. // {xn} <z X is bounded and has no weakly convergent

subsequence, then there is a bounded sequence {y*} c X* which converges
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to 0 in σ(X*, X) and a subsequence {xmn} such that

/ v* x \ =

139

Q
k> n,
k < n.

Proof. By Lemma 1, there is a subsequence {xmn} and a bounded

sequence {**} c Jf* with (x*9xmk) = 8nk and x* "-> 0 in σ(X*, X).

We further may assume that (x*, xm ) -> 1 for some x* e X*, even that

Σ™=1\(x*,xmn) - 1| < oo. Putting z*" = x* - Σ;Γ=1«x*,xmM> - I K * , we

obtain (z*, x w ) = 1 for all n. So, for M = ||z*||, we have

(i)
k

ΣK <M

for all λ/? i = 1,..., k, k e N.

Let w* be the restriction of E"= 1x* to the span of {xm }"=1. Formula

(i) implies ||w*|| < M. Let v* Ξ W*, W the closed span of {xm }JL1? be

extensions of w* with ||ί;*|| < M. Put wf = z* | w and wn* = wf - U*_1 ?

« > 2. Then {w*} is bounded, w* -> 0 in σ( W*, ΪF) and

k> n,
k < n,

Application of Lemma 2 concludes the proof. D

LEMMA 4. // {xn} c X and {x*} c X* are bounded such that

( JC*, x m ) -> 0 /or « -> oo and fixed m as well as for m -> oo and fixed n,

then, given 8 > 0, /Λere are increasing sequences {mn} and {m'n} such

that \(x%m,Xrfk)\ < δ for all n, k.

Proof. Put Pi = 1 and choose inductively / J Λ + 1 so that |(^*π, x Λ ) | < δ

for all k > pn+1. We obtain |(JC*, xPk)\ < 8 if /: > n. The same argument

applied to {x*n} and {xΛ} instead of {xn} and {x*} yields a subse-

quence {p'n) of { Λ } with |<*;,, χ Λ > | < δ for all n Φ k. Put mn = p'ln_γ

and m; = p'ln. U

Proof of Theorem 3. (1) Pick z* G X* with

Δ*, Δ \\zn -> x) I

|z*|| = 1 and

1/2

Then, every || ||'-limit-affine sequence in X is one-dimensional, i.e. || | | r is

of type 1111.
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(2) According to Lemma 1, choose bounded biorthogonal sequences
{xn} and {x*} such that x* -> 0 in σ(X*9 X) and, if X is non-Schur,
xn -> 0 weakly. Define Γ: X -> c0 by (ΓJC)(I) = (JC*,X>. Put rf =

sup^JK - xJΓ and ||x||'' = max{OWI', II^IU τ h e n> {*»}
is || || "-limit-constant with M\xn) = 1 and || | | " is of type 0000, if X is
non-Schur, and of type 0011, if X is Schur.

Put

Then, {xn} is || ||^β-limit-affine with A^a(xn) = 1 - ΰaT\ || | |_ l f β is of
type 1111, and || || + 1 a is of type 0101, if X is non-Schur, and of type
0111, if X is Schur.

(3) Assume X to be non-reflexive non-Schur. According to Lemma 3,
there are bounded sequences {.*„} and {y*} such that y* -> 0 in
σ(X*, X

Define

Put d0

T:

=

x^

sup,, ,

(v*

c0 by (Γx)(/) =

y,-

n\\y* - ym\\'

n

and

<yr,χ

WAV"

m > n
m < n.

). Consider

= max{ ί/j1
MIΓxIl!}. Since 2>B

= «„, {j,,} is || || '"-limit-constant and || | | ' " is of type 0011.
Consider now

- X2y'n = Σ 3-"*2 +

Put ^ = sup||>/ -y'm\\* and HxlU = mΆ{\d^\\x\\\ \\Tx\\[). Since Γ^ =
vn {y'n) i s II Ili-hmit-affine with kλ{y'n) = 1 - 3~"~2 and || \\x is of type
0111.

Assume that X has no subspace isomorphic to lv We may then
additionally assume that {xn} is weak Cauchy. Put y" = xλ and y'J = xn

- xn-ι, n > 2. Then 7>n" = ew and j M " -* 0 weakly. Set d2 =
max{rfo,suPll, J Λ " - jCIΠ and ||x||2 = max{fd?\\x\\\ \\Tx\\'+lΛ). Then,
{^J is || ||2-limit-affine with \2{y'n') = 1 - 3"", {^} is || |^-limit-con-
stant with A2(yn) = 1 and || | |2 is of type 0001.

Finally, assume X to have a subspace isomorphic to lv Let {wn) c X
and {w*} c X* be bounded and biorthogonal such that wπ -> 0 weakly
and w* -> 0 in σ(Λ'*, X). Choose {x'n} a X equivalent to the unit vector
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basis of lv Passing to a subsequence of {x'n} we may assume that
{(wA*,x'n)} is Cauchy for all k. So, some suitable subsequence {xn} of
{•X/' + i "~ xπ) satisfies (w£,xn) -» 0 for all k. Since {xn} can be chosen
to be equivalent to the unit vector basis of ll9 there is a bounded sequence
{y*} in X* which converges to 0 in σ(X*9 X) and satisfies

m> n
\yn>*m? ι u ? m < n .

Using Lemma 4, we may assume that \(y*, wk) \ < δ2/2 and |(w*,.
δ2/3 for all A:, n, where δ is chosen so that δyxll^ < ||x|| + u <
for all x e c0. Define Γ, {jM} and d0 as above and Γ': X -• c0 by
(Γ'xX/) = (w,*, JC). Put ύf3 = m&x{do,sιφn m\\wn — wm||/} and ||x||3 =
maxd/^Hxlf, ||Γx|| + l α , IIΓ^H^j}. Then, we have T'wn = en. More-
over, for n > k:

\\T(wn - wk)\\'+1Λ <\\T(wn - wk)L/δ < δ

and

So, {wn} is || ||3-limit-affine with Λ3(wJ = 1 - 3"", {yn} is || ||3-limit-
constant with A3(yn) = 1 and || | |3 is of type 0001. D

THEOREM 4. SOLUTION OF PI. Let \\ be a symmetric norm on RN; put
Z = (RN, I I). Then (W)NS is preserved under the Z-direct-sum-operation
— that is, the Z-direct sum of Xv..., XN has (W)NS whenever all Xι have
(W)NS— if and only if \ \ satisfies (SC).

In particular, if | | does not satisfy (SC) and if separable infinite
dimensional normed (non-Schur) spaces Xλ,..XN are given, then there
exist equivalent norms || | | ' on Xt such that Y, = (Xiy\\ ||J) has NS but
(ΣfLi Θ Yj)z does not have (W)NS; moreover, at least one of the || || can
be chosen so that Yt has the SP.

Proof. Sufficiency is proved in [10]. We show necessity. Let | | not
satisfy (SC) and let separable infinite dimensional normed (non-Schur)
spaces Xl9 . . . , XN be given. There are ξi > 0, ϋ>

ι = ± 1 and
0 < at < 1, i = l,...,iV, such that the line segment joining (£,-)£.!
and (^(1 - ΰ^i/ty^i belongs to the unit sphere of Z. Then, according
to Theorem 3, there exist (weakly convergent) sequences {xw(0}^=i
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in Xt and equivalent norms || ||; = || ||̂ . α on Xi such that Yi = (Xt, || ||;)
has NS or even the SP if ϋ>

i = -1 — such an / must exist — and
{xn(i)} is || ||;-limit-affine with A'^x^i)) = 1 - ^lal3'n. Obviously,

n(0)£.i} is limit-constant in (Σf=1 Θ y;)z Π

5. Isonormal structure. In this last section, we prove that co(I) has
(W)INS if and only if the index set / is countable. Using a result of
Troyanski [13], we characterize (W)INS of spaces with a symmetric basis.
This characterization fails if the basis is only unconditional. First, we need
some preliminaries. For completeness, we give the definition of the space
co(I): Given a set /, co(I) is the Banach space of all functions x from /
to R or C which vanish at infinity (i.e., for all ε > 0 there is a finite subset
J of I such that |JC(/)| < ε for all / e / \ / ) endowed with the sup-norm
|| 11̂ . Given an element x of co(I), the support of x is the set

s u p p ( x ) = {i\x(i)Φθ}.

Let H(I) be the set of all η ^ co(I) with finite support and values in
{-1,0,1}.

A sequence {xn} in a normed space X is said to be asymptotically
isometric to the unit vector basis {en} of c0 if Ten = xn extends to an
isomorphism of c0 into X with ||Γ|| < 1 and

liminf{||7ϊ|| |{ e= c0, supp(£) c {i\i > n], UlU = l} = 1.

PROPOSITION 3. Let Y be a subset of a normed space X such that

(i) Σ v(y)y forallηtΞH(Y).

Then, for all ξ £ co(Y), the sum Tγξ = ΣyGYζ(y)y converges uncondi-
tionally and defines an operator ofc0( Y) into X with

(ϋ) 2inf \\y\\ - 1 < | |Γ y | | < 1 and
y<=Y

| | Γ y ^ > 2 sup |£(;;) IIWMIέlloo.
y<=Y

If, additionally, Y = [yn\n e N} with l im π _ 0 0 | | < y n | | = 1, then, for some

m ^ N, {ym+n} is asymptotically isometric to the unit vector basis ofc0.

Proof. (1) By induction on the number of different elements of
Λ(δ) = {\t(y)\ \y G supp(ξ)} we show that | |Γ yί | | < UW^ for all { e
co(Y) with finite support. Hypothesis (i) implies the induction basis. For
the induction conclusion, fix ξ e co(Y) with finite support and rx =
minR(ξ) <r2 = msoίR(ξ). Put Z = {y e Y\ \ξ(Y)\ = rι) and define
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ξv e co(Y) by ξv(y) = t(y)> yeY\Z,v = 1,2, and ξ^z) = 0, ξ2(z) =

(r^rjtiz), z e Z. Then Λ(£,) = Λ(*)\{'ϊ} a n d £ = d ~ λ)li + λ£2,
λ = /Ί/r2. The induction hypothesis applied to £„, J> = 1,2, yields

| |Γ y{| | < (1 - X) | | r y ^| | + λ| |Γ y£ 2 | | < (1 - λ)r2 + λr2 = r2 = | | | | | 0 0 .

The induction is complete.
(2) By (1), the sum Tγξ = Σvey£()>).y converges unconditionally for

all ξ G co(Y) and, hence, defines an operator with | |Γ y | | < 1.
(3) Fix ξ e co(7) and y0 e 7. Then

Λ - Σ

Taking the supremum over y0 G y yields (ii).

(4) If 7 = { Λ } , | |Λ|| - 1, then pick m with inf n > # f l | |^ l l > 3/4.
Putting y r = {yn}n>m, we obtain from (ii) that 1/2 < | | Γ r | | < 1 and
||7γ,ί | | > 2inf λ 7 > y v | | Λ | | - 1 -> 1 if 11̂ |)TO = 1 and supp({) c [n\n > N),
N -> oo. D

PROPOSITION 4. // /Λ̂  normed space X contains a sequence {xn}
asymptotically isometric to the unit vector basis of c0, then X does not have
WNS.

Proof. The sequence {xn} converges weakly to 0 and | | x ^ - x ^ | | < l .

M o r e o v e r , \\xn - Σ ^ L i λ ^ H > 2\\xn\\ — l->lifm<n-*ao a n d 0 <
λ A < l . D

COROLLARY 2. // the normed space X contains a sequence {xn} with
\\xn\\ -> r and \\Σ™=ιη(n)xn\\ < r for all η G H(N) for some r > 0, then X
does not have WNS.

THEOREM 5. The space co(I) has (W)INS if and only if I is countable.

Proof. Sufficiency is shown in [10]. We prove necessity. Let || || be an
equivalent norm on co(/), / uncountable. An easy application of Day's
well known construction [2] yields:

(*) Given a countable subset C of /, there is a sequence Y = {yn} in
co(I) such that

(i) M o o = l a n d SUPP(>\) c suPPίΛ + i) c / \ C for all n.
(ii) r(Y) = limn^O0\\yn\\ exists and ||z|| < r(Y) for all z G CO(I) with

ll̂ lloo ^ 1 and supp(z) c / \ C \ U ^ = 1 supp(jj .
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Starting with Cx = 0 and using transfinite induction over all ordinals

γ < ω1 ? ωλ the first uncountable ordinal, we obtain by application of (*) a

transfinite sequence {Yy}y<ω of sequences Yy = {yy%n}™=ι with (i) and

(ii) for C = Cγ = U α < γ U * β l s u p p θ α J . Since, by construction,

{r{ Yy)} γ < is non-increasing, there must be an ordinal γ 0 < ωx such that

r(Yγ) = r for all γ > γ 0 and some r > 0. So, for all n, there are /:„ such

that | | x j | > r - \/n for xn = yΎo+n,k Given η G #(N), we have

HΣ^Λί/iJxJL < 1 and supp(Σ^Mn)xn) c / \ C γ o + 1 , so |Er=1τ?("KII
< ^(Yγo) = r. Corollary 2 yields the conclusion. D

We combine Theorem 5 with a result of Troyanski which char-

acterizes Banach spaces with a symmetric basis that can be equivalently

renormed to be uniformly convex in every direction (cf. [13]). Here, an

unconditional (not necessarily countable) basis is called symmetric if all

sequences of elements of the basis are mutually equivalent basic se-

quences.

COROLLARY 3. Let X be a Banach space with a symmetric basis. Then,

the following are equivalent.

(1) X is isomorphic to a Banach space with the SP.

(2) X is isomorphic to a Banach space with the WSP.

(3) X has INS

(4) Xhas WINS.

(5) X is isomorphic to a Banach space which is uniformly convex in

every direction.

(6) X is not isomorphic to co(I) with uncountable I.

Proof. The implications (1) => (2) => (4) and (1) => (3) => (4) are triv-

ial. (5) => (1): See [10, Appendix]. (4) =* (6): Theorem 5. (6) => (5): See

[13]. D

The implication (4) => (5) in Corollary 3 can not be extended to the

wider class of Banach spaces with an unconditional basis (even when

restricted to reflexive spaces) as the following example shows.

EXAMPLE. A reflexive Banach space X with a monotone unconditional

basis such that neither X nor X* can be renormed to be uniformly convex in

every direction but such that X and X* (in the dual norm) both have the SP:

An unconditional basis {e i} 7 e 7 is monotone if the projections

p/' Σ aieι -* Σ ajej> f c 1 f i n i t e
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all have norm 1. In [7], the following is introduced: Let / be an
uncountable index set and Φ a family of finite non-empty subsets of /
with {/} G Φ for all i G / and f <Ξ Φ iί f φ 0 , / c φ and φ G Φ. Let &
be the set of all collections F of finitely many mutually disjoint elements
of Φ. Define

λ12 = λ1 2(Φ) = ix: I -> R| sup

\X\\F =

1/2

| |*| |l2 = SUp \X\F, X ^ λ 1 2 .

Then, (λ1 2, || | |12) is a Banach space with monotone unconditional bound-
edly complete basis {e,} G / , £,(/) = 1, £,(./) = 0, y Φ i. Since, obviously,

IWI2 = £ / e / | * ( 0 l 2 ) 1 / 2 * IWI12, IWI = (]Wli + iμil^)1 7 2 is an equiva-
lent norm on λ12 with ||JC||2 < ||JC||/ ^2" with respect to which λ12 has the
SP.

There is given an example of / and Φ in [7] such that λ12 is reflexive
and λ12 Θ λ 2̂ as well as (λ1 2 Θ λf2)* cannot be renormed to be uniformly
convex in every direction. This set Φ has the property that, given arbitrary
different /, j e /, there are only finitely many φ G Φ containing both i
and j . So, given any finite subset / c /, the set

/ ' = U { φ e Φ | | / Π φ | > 2 } u /

is finite. For this / and Φ, let X be the space λ12 Θ λ 2̂ with the norm
(||x||2 4- | |x* | |* 2) 1 / 2, where || ||* is the norm on λ 2̂ dual to || ||. So, neither
X nor X* can be renormed to be uniformly convex in every direction. It
remains to show that both X and X* have the SP. It suffices to establish
the SP of (λ^2, II II*). For this purpose, we only have to verify (*) in
Proposition 5 below for c = v 2 + ]/ΐ and / ' as above. To this end, let x9

y G λ12 be given with ||x|| = ||>>|| = 1. Fix F G J ^ and a finite subset /
o f /. P u t Fx = {<p GF\q> c / ' } , F2 = {<p ^ F \ φ Π f = 0 } , F3 =
F\FX\ F2. For all <pGf3 there is an iφ G / such that φ Π / = { / } . Put

x = Pfx9 y = y - Pry. Then, ||jc|| < 1, \\y\\ < 1 and ||Jc||2 < 1/ $ . So,

+ 2 Σ
φeF3
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Taking the supremum over F e f w e obtain as desired

\\*+n2 -ιι*ιi2+
ll + I | χ | | +| | j>| | + l|j>llί + 2 | | i | | | | j > | | < 2

PROPOSITION 5. Let X have an unconditional basis [eι}i^I with

(*) There is a c < 2 such that, for each finite subset f of /, there is a finite

f c I withf c / ' such that

\\Pfx + y — Pfy\\ < c whenever \\x\\ = \\y\\ = 1.

IfXis reflexive, then X* has the SP.

Proof. Let Pf be the dual projection. If X* does not have the SP,
then there is a sequence {x*} in X* such that

x* -> 0 weakly, ||x*|| -^ 1 and Λ(JC*) -> 1.

Fix ε > 0 with 2 - 8ε > c(l 4- 2ε). Choose A: such thatΛ(x^) < 1 4- ε
and ||x*|| > 1 - ε for all n > k. Pick a finite / c / such that

I x * - P/x * I < ε for all finite / D /.

Take n > k so that ||P/x*|| < ε for all / c / 7 and ||JC* - xj?|| <
Λ(xA*) + ε. Then

II Y — Y * — P * ί γ
\\Xn Xk rf'\Xn

So, there are x, y e X such that ||x|| = \\y\\ = 1 and

< * , / > / ( * * - x * ) > > l - 4 ε and

( y 9 χ-n-χt -P?{x*n - ^ * ) > > l - 4

So,

c{\ + 2ε) > | |P 7 x +y- Pf,y\\{k{xt) + ε)

>(Pfx+y- Pf,y, x* - x*) > 2 - 8ε.

contradicting the choice of ε. D

REFERENCES

[1] M. S. Brodskii and D. P. MiΓman, On the center of a convex set, Dokl. Akad. Nauk
SSSR, 59 (1948), 837-840 (Russian).

[2] M. M. Day, Strict Convexity and smoothness, Trans. Amer. Math. Soc, 78 (1955),
516-528.



NORMAL STRUCTURE AND THE SUM-PROPERTY 147

[3] W. A. Kirk, A fixed point theorem for mappings which do not increase distances,
Amer. Math. Monthly, 72 (1965), 1004-1006.

[4] , Fixed Point Theory for Nonexpansiυe mappings, Proc. Workshop on Fixed
Point Theory, Univ. de Sherbrooke, 1980; Lecture Notes in Math., Springer (1981),
4484-505.

[5] , Nonexpansiυe mappings and normal structure in Banach spaces, Proc. Re-
search Workshop on Banach space Theory, Univ. of Iowa, 1981.

[6] , Fixed point theory for nonexpansiυe mappings II.
[7] D. N. Kutzarova and S. L. Troyanski, Reflexiυe Banach spaces without equiυalent

norms which are uniformly conυex or uniformly dίfferentiable in eυery direction, Stud.
Math., 72 (1982), 91-95.

[8] T. R. Landes, Das Iterationstheorem und Fixpunktsάtze bei normaler Struktur,

Dissertation, Paderborn 1981.
[9] , A characterization of totally normal structure, Arch. Math., 37 (1981),

248-255.
[10] , Permanence properties of normal structure, Pacific J. Math., 10 (1984),

125-143.
[11] , Normal structure and weakly normal structure of Orlicz sequence spaces,

Trans. Amer. Math. Soc, 285 (1984), 523-534.
[12] , Normal structure and weakly normal structure of modular sequence spaces,

preprint.
[13] S. L. Troyanski, On nonseparable Banach space with a symmetric basis, Stud. Math.,

53 (1975), 253-263.

Received October 10, 1984 and in revised form February 20, 1985.

UNIVERSITY OF PADERBORN

POSTFACH 1621

D-4790 PADERBORN

WEST GERMANY






