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ON A PROBLEM OF GAUSS-KUZMIN TYPE FOR

CONTINUED FRACTION WITH

ODD PARTIAL QUOTIENTS

SOFIA KALPAZIDOU

Let x be a number of the unit interval. Then x may be written in a
unique way as a continued fraction

x = l/(er , (x) + e , ( x ) / ( « 2 ( * ) + ε2(x)/(a,(x) +•••)))
where ε,, e {-1,1}, an > 1, an = 1 (mod 2) and an 4- ε,, > 1. Using the
ergodic behaviour of a certain homogeneous random system with com-
plete connections we solve a variant of Gauss-Kuzmin problem for the
above expansion.

1. Introduction. We define continued fraction with odd partial quo-
tients as follows. Let us partition the unit interval into

k'Ύk^ΪY £ = 1,2,..., and

and define the transformation T: [0,1] -> [0,1] by

where

e = l i f x e l - ί - , 1

.2k'2k-\Γ

and

1 1
e = -1 if x e

2k- 1 ' Ik - 2

We arrive at

1

and therefore the map T generates a continued fraction

(1.1) * =
ax{x) + ε!(x)/(α2(*) + ε2(x)/(a3(x)

1, ε^jc), ε 2 ( x ) , . . . 1

«i(*)> « 2 (* )> « 3 (*)> I
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where εn e {-1,1}, αΛ ̂  1, «„ = 1 (mod2) and an + εn > 1. The expres-
sion (1.1) is called the continued fraction with odd partial quotients expan-
sion of x.

Let us denote

The purpose of this paper is to find the limit

lim μ(rn > t) = I
n-+oo

for a given nonatomic measure μ on the σ-algebra of the Borel sets of
[0,1] and to estimate the error μ(rn > t) — I. This is the variant of
Gauss-Kuzmin problem for the continued fraction with odd partial quo-
tients expansion. For solving of the above problem we shall use the
approach of the random system with complete connections.

NOTATION.

TV* = {1,2,3,...},
N= {0,1,2,...},
R = the set of real numbers,
[a] = the integral part of a e i?,
IA = the characteristic function of A,
G = (/5 + l)/2,
^?[oi] = ^ e σ-algebra of the Borel sets of [0,1],
@>\ X) = the power set of X,
(X, SCr) = the H-fold product measurable space of (X, SC).

2. Preliminaries.

DEFINITION 2.1. A quadruple {(W,iΓ)9 (X9&)9u,P} is named a
homogeneous random system with complete connections (RSCC) if

(i) (W,iΓ) and (X, 2C) are arbitrary measurable spaces;
(ii) u: W X X -> W is a (τΓ<8> X, ?Γ)-measurable function;

(iii) P is a transition probability function from (W, ifr)to(X,X).

Next, denote the element (xv . . . , J c n ) e Γ b y x{n\

DEFINITION 2.2. The functions u(n): W X Xn -> W, n e TV*, are
defined as follows:

Convention. We shall write WJC(W) instead of w(λί)(w,
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DEFINITION 2.3. The transition probability functions Pr9 r G ]V*, are

defined by

P(w,A), if r = 1

ryw,x1) i^ rywx1,x2) j^ rywx ,xr)iA\x j ,

if r> 1,

for any M/ e If, r G TV* and A e 5*r.

DEFINITION 2.4. Assume that X° X A = A. Then we define

for any w e. W, n, r e N* and A e S*r.

THEOREM 2.5. (Existence theorem.) Let {{W,if\ (X, X), u, P} be a

homogeneous RSCC and let w0 G W. Then there exist a probability space

(Ω, JΓ, PWQ) and two chains of random variables (ξn)nGN* and (ζ)nξ=N

defined on Ω with values in X and W respectively, such that

(b) Pw((ξ +m9. . ,ζn+m+r-i) G A\ξ(n)) = Pm(woξ(n\A)9 Pw-a.e.

for any n, m, r G N* and A G 3C\ where ^n\ ζ^ denote the random

vectors (ξv ..., ξn) and (ξl9 ...,ξn) respectively.

(ii) (ζn)neN is a homogeneous Markov chain with initial distribution

concentrated in w0 and with the transition operator U defined by

(2.1) Uf(w)= Σ P(w,x)f(wx),

for any f real W-measurable and bounded function.

This theorem is proved by Iosifescu [2],

REMARK, (i) Letting m = r = 1 in (i)b we obtain

that is the conditioned distribution of ξn+ι by the past depends actually

by this, through u(n\ This fact justifies the name of chain of infinite order

or chain with complete connections used for (ξn)n e N.
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(ii) On account of (2.1) we have

(2.2) U"f(w)= Σ P/2(w,x(/7))/(wx(/7)), n<ΞN*

for any / real ^measurable and bounded function.
(iii) The transition probability function of the Markov chain (ζn)n<EN*

is

where Aw= [x ^ X: wx ^ A), w e W. It follows that the transition
probability after n paths of the Markov chain (ζn)n e N is

where Λ(

M"> = {x(n): wx(n)eA).

2.6. Let (2,, be the transition probability function defined by

and let Un be the Markov operator associated with Qn. Next, denote
L(W) the space of all real Lipschitz functions defined on W and assume
that (L( IV), || ||) is a Banach space with respect to a norm || ||.
* (i) If there exists a linear bounded operator U°° from L(W) to
L{W) such that

lim \\UJ- t/°°/|| = 0,

for any / e L( H7) with | |/| | = 1, we say U ordered.
(ii) If

lim \\U"f- ί/°°/||=0,

for any/ e L(W) with | |/| | = 1, we say U aperiodic.
(iii) If U is ordered and U^iLiW)) is one-dimensional space, it is

named ergodic with respect to L(W).
(iv) If ί/ is ergodic and aperiodic, it is named regular with respect to

L( W) and the corresponding Markov chain has the same name.

DEFINITION 2.7. If {(W,iT)9 (X, X\ u, P} is a RSCC which satisfies
the properties

(i) (W, d) is a metric separable space;
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(ii) rx < oo, where

Σ * > , * ) ( } ,
χk U\W ,W )

(iii) Rx < oo, where

R - sun sun \P("'> A) - P(w", A)\ .
κ ι - S U P S U P T?— — 7 Λ 9

(iv) there exists k G N* such that rk < 1, it is named RSCC with
contraction.

This definition is due to M. F. Norman [3].

THEOREM 2.8. Let (W,d) be a compact space and {(W,W),
(X, X\ u,P} be a RSCC with contraction.

The Markov chain associated to the RSCC is regular, if and only if,
there exists a point w e W such that

lim d(σn(w),w) = 0,

for any w ^ W, where σn(w) = suppQn(w, •) (suppμ denotes the support
of the measure μ).

LEMMA 2.9. We have

w'Gσ m (H')

for any m, n ^ N, w & W (the line designates the topological aderence).

Theorem 2.8 and Lemma 2.9 are due to Iosifescu [1].

DEFINITION 2.10. Let {{W,iT),(X9£)u,P} be a RSCC. The RSCC
is called uniformly ergodic if for any r e JV* there exists a probability Pr°°
on 3Cr such that lim εn = 0, as n -> oo, where

εn= sup | P ; ( w , ^ ) - P

THEOREM 2.11. Let (W9d) be a compact space. If the RSCC {(W9iT)9

ίΓ), ι/, P) with contraction has regular associated Markov chain, then it
is uniform ergodic.

This result one can find in [1].
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3. The Gauss-Kuzmin type equation. Let μ be a nonatomic measure on

define

Clearly F0(w) = μ([O,w]).

PROPOSITION 3.2. (The Gauss-Kuzmin type equation) Fn, n e N, satisfy

the relation

F Λw)= y
(k,ε)

k = l\

Proof. We start from the relation

Thus

Fn + iW = M(^"+2 < w,εΛ + 1 = l) + μ ( c + i < ^ , ε n + 1 = - l )

= Σ μ((k + wΓ1 < r~lχ < k
k = \ (mod 2)

+ Σ K * - 1 < r U < { k -
A: = 1 (mod 2)

A l

and this completes the proof.

Further, suppose that /"Q exists and it is bounded (μ has bounded

density). By induction we obtain that F'n exists and it is bounded too for

any n e TV*. Deriving the Gauss-Kuzmin type equation we arrive at

(k,ε) {k + εw)

Let us denote for p(w) = (G - 1 + w)"1 - (-G - 1 + w)~\ w

[0,1] and « e TV
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Then (3.1) becomes

/ 1

Now, we prove

PROPOSITION 3.3. The function

»/... tu ~ u _ G2-(l-w)2

((G - 1)(Λ: + εw) + 1)((G + 1)(A: + εw) - 1)

defines a transition probability function from ([0,1], ^[0;i]) to (1
where

X= {(k,ε): k> 1, k = 1 (mod2), | ε | = 1, k + ε> 1}.

Proof. We must verify that

Σ P(w,(k,ε)) = l.

Indeed, noting that (G - I)"1 = G and (G + I)"1 = -G + 2, we have

£ } ((G - l)(/c + εw) + 1)((G + 1)(A: + εw) -

y 1
k-h,... ( k ~ w + G)(k -w + G-w)

G 2 - ( l - w ) 2

Σ

2G \ ,_ ft U - 2 + w + G k + w + G

, _ _ , k - 2 - w + G k-w +
K — J ,D, . . .

1
2G \G-(1-W)

that is the desired result.
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Now, we can define a random system with complete connections as

follows.

(3.2)

where

{(w,ir),(x,ar),u,p}

X = { ( k , ε ) : k > \ , k = 1 ( m o d 2 ) , | e | = 1, k + ε > l } ,

P(w,(k,ε)) =
G2-(l-w)2

((G - l)(k + εw) + 1)((G + l)(k + εw) - 1) '

4. The ergodic behaviour of the RSCC. In this section we study the

ergodic behaviour of RSCC (3.2) in order to solve a Gauss-Kuzmin type

theorem.

In what follows we shall introduce the norm || || L defined by

L= sup |
ive W

sup
w'Φw"

!/(»') -f(w) I
\W - W

Then (L(W), \\ • \\L) is a Banach algebra.

f^L(W).

PROPOSITION 4.1. RSCC (3.2) is α RSCC with contraction and its

associated Markov operator U is regular with respect to L(W).

Proof. We have

dP 2(1 - w){(G - l)(x + εw) + l)((G + 1)(JC + εw) - l)
dw " ((G - ΐ)(k + εw) + 1)2((G + l)(k + εw) - if

2ε(G2 - ( 1 - w)2){(G2 - 1)(JC + εw) + l)

((G - l)(k + εw) + 1)2((G + l)(k + εw) - l ) 2 '

^ ε

εw)2

Therefore

sup

sup
we Ĥ

< oo,

^ = 3,5, . . .
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It follows that Rλ < oo and rx < 1, that is, (3.2) is a SALC with
contraction.

To prove the regularity of U with respect to L(W), define the
recurrence relation ^ + 1 = (wn + I)" 1, n e N, with w0 = w. Clearly wn+1

e σ(wn). Then using Lemma 2.9 and by induction we obtain wn ̂  on(w),
n & N*. Because wn tends to G — 1 as n -> oo, for every w e [0,1], then

as n -> oo. The regularity of ί/ with respect to L(W) follows from
Theorem 2.8. and the proof is completed.

Now, by virtue of Theorem 2.11, RSCC (3.2) is uniformly ergodic.
Moreover, Theorem 2.1.57 of Iosifescu-Theodorescu [2], implies that
β"( , •) converges uniformly to a probability Q°° and there exist two
positive constants q < 1 and c such that

(4.1) \\U"f-U°°f\\L<cq»

for all n e JV , / e L(PF), where

(4.2) 17°°/= f

Further, by virtue of Lemma 2.1.58 of Iosifescu-Theodorescu [2], U has
no eigenvalues of modulus 1 other than 1. Then, taking into account
Proposition 2.1.6 of [2] the adjoint of the operator U with the transition
probability function Q has the only eigenvector the measure β0 0, that is

(4.3) ίl

for all the Borel sets B of [0,1].
Generally, the form of Q°° cannot be identified but in our case this is

possible as we shall show below

PROPOSITION 4.2. The probability g0 0 has the density

and the normalizing constant 1/(3 logG).
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Proof. By virtue of uniqueness of β 0 0 we have to prove the equality

(4.3) where

Q(w,B)= , ( * , ε)),

Since the intervals [0, u] c [0,1] generate ^[0,i]> ^ suffices to verify the

equality (4.3) only for B = [0, u]9 0 < u < 1. First, we consider that [u~ι]

is even. Then

ί1 Q(w,[0,u))p(w)ώv

-i: Σ P{w,(k,-l))\p(w)dw

k>[u'1-w]

i G2-(\-w)2

Ό 2(G2 - 1)

x

-h

X

k - 2 + w + G k + w + G

+ [«-']-«-' G 2 - ( l -Γu~ι
2G

1
p(w) dw

i G2-(l-w)2

2G

1

= log-
ju-1] - 1 G +

u-ι-2

p(w) dw
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Analogously if [u~ι] is odd we have

/•I

r«-'-[„-•] G2-(I -wf _ p(w) dw

+ C „-> G 2 G " U - i ] - 2 + w + G ^

2G

u~ι + G [u-1] + G - 1 [ t r 1 ] + G

^ [ U ^ I + G ' M ^ + G - I ' [ i / ^ l + G - l

5. The Gauss-Kuzmin type theorem. Now, we may determine where

μ(rn > t) tends as n -* oo and give the rate of this convergence.

PROPOSITION 5.1. (The solution of Gauss-Kuzmin type problem.) If the

density FQ of μ is a Riemann integrable function, then

- i ) - i ) ' ' -

// ί/ze density FQ of μ is a Lipschitz function, then there exist two

positive constants c and q < 1 such that for all t > 1, n G TV*

where θ = ^(μ, Λ, /) with \θ\ < c.

Proof. Let FQ be a Lipschitz function. Then f0 G L(W) and by virtue
of (4.2)

/; n (») *
According to (4.1) there exist two constants c and q < 1 such that
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U% = £/°°/o + T"f0, n

Further, consider C[0,1] the metric space of real continuous functions
defined on [0,1] with the norm | | = sup| |. Since L([0,1]) is a dense
subset of C([0,1]) we have

(5.1) lim|Γ"/0 | = 0

for f0 e C([0,1]). Therefore (5.1) is valid for measurable /0 which is
Q°°-almost surely continuous, that is for Riemann integrable /0. Thus

lim μ(rn>t)= lim ^ - 1 ( 7

= lim ίl/t U"~%(u)p(u)dw

and the desired result follows.
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