ON A PROBLEM OF GAUSS-KUZMIN TYPE FOR CONTINUED FRACTION WITH ODD PARTIAL QUOTIENTS

Sofia Kalpazidou

Let x be a number of the unit interval. Then x may be written in a unique way as a continued fraction

$$
x=1 /\left(\alpha_{1}(x)+\varepsilon_{1}(x) /\left(\alpha_{2}(x)+\varepsilon_{2}(x) /\left(\alpha_{3}(x)+\cdots\right)\right)\right)
$$

where $\varepsilon_{n} \in\{-1,1\}, \alpha_{n} \geq 1, \alpha_{n} \equiv 1(\bmod 2)$ and $\alpha_{n}+\varepsilon_{n}>1$. Using the ergodic behaviour of a certain homogeneous random system with complete connections we solve a variant of Gauss-Kuzmin problem for the above expansion.

1. Introduction. We define continued fraction with odd partial quotients as follows. Let us partition the unit interval into
$\left(\frac{1}{2 k}, \frac{1}{2 k-1}\right], k=1,2, \ldots, \quad$ and $\quad\left(\frac{1}{2 k-1}, \frac{1}{2 k-2}\right], k=2,3, \ldots$ and define the transformation $T:[0,1] \rightarrow[0,1]$ by

$$
T x=e\left(\frac{1}{x}-(2 k-1)\right)
$$

where

$$
e=1 \quad \text { if } x \in\left(\frac{1}{2 k}, \frac{1}{2 k-1}\right),
$$

and

$$
e=-1 \quad \text { if } x \in\left(\frac{1}{2 k-1}, \frac{1}{2 k-2}\right] .
$$

We arrive at

$$
x=\frac{1}{2 k-1+e(T x)}
$$

and therefore the map T generates a continued fraction

$$
\begin{align*}
x & =\frac{1}{\alpha_{1}(x)+\varepsilon_{1}(x) /\left(\alpha_{2}(x)+\varepsilon_{2}(x) /\left(\alpha_{3}(x)+\cdots\right)\right)} \tag{1.1}\\
& =\left[\begin{array}{c}
1, \varepsilon_{1}(x), \varepsilon_{2}(x), \ldots \\
\alpha_{1}(x), \alpha_{2}(x), \alpha_{3}(x), \ldots
\end{array}\right]
\end{align*}
$$

where $\varepsilon_{n} \in\{-1,1\}, \alpha_{n} \geq 1, \alpha_{n} \equiv 1(\bmod 2)$ and $\alpha_{n}+\varepsilon_{n}>1$. The expression (1.1) is called the continued fraction with odd partial quotients expansion of x.

Let us denote

$$
r_{n}=\alpha_{n}+\left[\begin{array}{c}
\varepsilon_{n+1}, \ldots \\
\alpha_{n+1}, \ldots
\end{array}\right], \quad n=1,2, \ldots
$$

The purpose of this paper is to find the limit

$$
\lim _{n \rightarrow \infty} \mu\left(r_{n}>t\right)=l
$$

for a given nonatomic measure μ on the σ-algebra of the Borel sets of $[0,1]$ and to estimate the error $\mu\left(r_{n}>t\right)-l$. This is the variant of Gauss-Kuzmin problem for the continued fraction with odd partial quotients expansion. For solving of the above problem we shall use the approach of the random system with complete connections.

Notation.
$N^{*}=\{1,2,3, \ldots\}$,
$N=\{0,1,2, \ldots\}$,
$R=$ the set of real numbers,
[a] = the integral part of $a \in R$,
$I_{A}=$ the characteristic function of A,
$G=(\sqrt{5}+1) / 2$,
$\mathscr{B}_{[0,1]}=$ the σ-algebra of the Borel sets of $[0,1]$,
$\mathscr{P}(X)=$ the power set of X,
$\left(X, \mathscr{X}^{r}\right)=$ the n-fold product measurable space of (X, \mathscr{X}).

2. Preliminaries.

Definition 2.1. A quadruple $\{(W, \mathscr{W}),(X, \mathscr{X}), u, P\}$ is named a homogeneous random system with complete connections (RSCC) if
(i) (W, \mathscr{W}) and (X, \mathscr{X}) are arbitrary measurable spaces;
(ii) u : $W \times X \rightarrow W$ is a $(\mathscr{W} \otimes \mathscr{X}, \mathscr{W})$-measurable function;
(iii) P is a transition probability function from (W, \mathscr{W}) to (X, \mathscr{X}).

Next, denote the element $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ by $x^{(n)}$.
Definition 2.2. The functions $u^{(n)}: W \times X^{\mathrm{n}} \rightarrow W, n \in N^{*}$, are defined as follows:

$$
u^{(n+1)}\left(w, x^{(n+1)}\right)= \begin{cases}u(w, x), & \text { if } n=0 \\ u\left(u^{(n)}\left(w, x^{(n)}\right), x_{n+1}\right), & \text { if } n \geq 1\end{cases}
$$

Convention. We shall write $w x^{(n)}$ instead of $u^{(n)}\left(w, x^{(n)}\right)$.

Definition 2.3. The transition probability functions $P_{r}, r \in N^{*}$, are defined by
$P_{r}(w, A)=\left\{\begin{array}{l}P(w, A), \quad \text { if } r=1 \\ \sum_{x_{1} \in X} P\left(w, x_{1}\right) \sum_{x_{2} \in X} P\left(w x_{1}, x_{2}\right) \cdots \sum_{x_{r} \in X} P\left(w x^{(r-1)}, x_{r}\right) I_{A}\left(x^{(r)}\right), \\ \text { if } r>1,\end{array}\right.$
for any $w \in W, r \in N^{*}$ and $A \in \mathscr{X}^{r}$.

Definition 2.4. Assume that $X^{0} \times A=A$. Then we define

$$
P_{r}^{n}(w, A)=P_{n+r-1}\left(w, X^{n-1} \times A\right)
$$

for any $w \in W, n, r \in N^{*}$ and $A \in \mathscr{X}^{r}$.

Theorem 2.5. (Existence theorem.) Let $\{(W, \mathscr{W}),(X, \mathscr{X}), u, P\}$ be a homogeneous $R S C C$ and let $w_{0} \in W$. Then there exist a probability space $\left(\Omega, \mathscr{K}, P_{w_{0}}\right)$ and two chains of random variables $\left(\xi_{n}\right)_{n \in N^{*}}$ and $(\zeta)_{n \in N}$ defined on Ω with values in X and W respectively, such that
(i)(a) $P_{w_{0}}\left(\left(\xi_{n}, \ldots, \xi_{n+r-1}\right) \in A\right)=P_{r}^{n}\left(w_{0}, A\right)$,
(b) $P_{w_{0}}\left(\left(\xi_{n+m}, \ldots, \xi_{n+m+r-1}\right) \in A \mid \xi^{(n)}\right)=P_{r}^{m}\left(w_{0} \xi^{(n)}, A\right), P_{w_{0}}$ a.e.
(c) $P_{w_{0}}\left(\left(\xi_{n+m}, \ldots, \xi_{n+m+r-1}\right) \in A \mid \xi^{(n)}, \zeta^{(n)}\right)=P_{r}^{m}\left(\zeta_{n}, A\right), \quad P_{w_{0}}$-a.e. for any $n, m, r \in N^{*}$ and $A \in \mathscr{X}^{r}$, where $\xi^{(n)}$, $\zeta^{(n)}$ denote the random vectors $\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ respectively.
(ii) $\left(\zeta_{n}\right)_{n \in N}$ is a homogeneous Markov chain with initial distribution concentrated in w_{0} and with the transition operator U defined by

$$
\begin{equation*}
U f(w)=\sum_{x \in X} P(w, x) f(w x) \tag{2.1}
\end{equation*}
$$

for any freal W-measurable and bounded function.
This theorem is proved by Iosifescu [2].
Remark. (i) Letting $m=r=1$ in (i) b we obtain

$$
P_{w_{0}}\left(\xi_{n+1} \in A \mid \xi^{(n)}\right)=P\left(w_{0} \xi^{(n)}, A\right), \quad P_{w_{0}} \text {-a.e. }
$$

that is the conditioned distribution of ξ_{n+1} by the past depends actually by this, through $u^{(n)}$. This fact justifies the name of chain of infinite order or chain with complete connections used for $\left(\xi_{n}\right)_{n \in N}$.
(ii) On account of (2.1) we have

$$
\begin{equation*}
U^{n} f(w)=\sum_{x^{(n)} \in X^{n}} P_{n}\left(w, x^{(n)}\right) f\left(w x^{(n)}\right), \quad n \in N^{*} \tag{2.2}
\end{equation*}
$$ for any f real \mathscr{W}-measurable and bounded function.

(iii) The transition probability function of the Markov chain $\left(\zeta_{n}\right)_{n \in N^{*}}$ is

$$
Q(w, A)=\sum_{x \in X} P(w, x) I_{A}(w x)=P\left(w, A_{w}\right)
$$

where $A_{w^{\prime}}=\{x \in X: w x \in A\}, w \in W$. It follows that the transition probability after n paths of the Markov chain $\left(\zeta_{n}\right)_{n \in N}$ is

$$
Q^{n}(w, A)=P_{n}\left(w, A_{w}^{(n)}\right)
$$

where $A_{u^{\prime}}^{(n)}=\left\{x^{(n)}: w x^{(n)} \in A\right\}$.
2.6. Let Q_{n} be the transition probability function defined by

$$
Q_{n}(w, A)=n^{-1} \sum_{k=1}^{n} Q^{k}(w, A)
$$

and let U_{n} be the Markov operator associated with Q_{n}. Next, denote $L(W)$ the space of all real Lipschitz functions defined on W and assume that $(L(W),\|\cdot\|)$ is a Banach space with respect to a norm $\|\cdot\|$.
(i) If there exists a linear bounded operator U^{∞} from $L(W)$ to $L(W)$ such that

$$
\lim _{n \rightarrow \infty}\left\|U_{n} f-U^{\infty} f\right\|=0
$$

for any $f \in L(W)$ with $\|f\|=1$, we say U ordered.
(ii) If

$$
\lim _{n \rightarrow \infty}\left\|U^{n} f-U^{\infty} f\right\|=0
$$

for any $f \in L(W)$ with $\|f\|=1$, we say U aperiodic.
(iii) If U is ordered and $U^{\infty}(L(W))$ is one-dimensional space, it is named ergodic with respect to $L(W)$.
(iv) If U is ergodic and aperiodic, it is named regular with respect to $L(W)$ and the corresponding Markov chain has the same name.

Definition 2.7. If $\{(W, \mathscr{W}),(X, \mathscr{X}), u, P\}$ is a RSCC which satisfies the properties
(i) (W, d) is a metric separable space;
(ii) $r_{1}<\infty$, where

$$
r_{k}=\sup _{w^{\prime} \neq w^{\prime \prime}} \sum_{X^{k}} P_{k}\left(w, x^{(k)}\right) \frac{d\left(w^{\prime} x^{(k)}, w^{\prime \prime} x^{(n)}\right)}{d\left(w^{\prime}, w^{\prime \prime}\right)}, \quad k \in N^{*}
$$

(iii) $R_{1}<\infty$, where

$$
R_{1}=\sup _{A \in \mathscr{O}} \sup _{w^{\prime} \neq w^{\prime \prime}} \frac{\left|P\left(w^{\prime}, A\right)-P\left(w^{\prime \prime}, A\right)\right|}{d\left(w^{\prime}, w^{\prime \prime}\right)}
$$

(iv) there exists $k \in N^{*}$ such that $r_{k}<1$, it is named RSCC with contraction.

This definition is due to M. F. Norman [3].
THEOREM 2.8. Let (W, d) be a compact space and $\{(W, \mathscr{W})$, $(X, \mathscr{X}), u, P\}$ be a RSCC with contraction.

The Markov chain associated to the RSCC is regular, if and only if, there exists a point $\tilde{w} \in W$ such that

$$
\lim _{n \rightarrow \infty} d\left(\sigma_{n}(\tilde{w}), w\right)=0
$$

for any $w \in W$, where $\sigma_{n}(w)=\operatorname{supp} Q^{n}(w, \cdot)(\operatorname{supp} \mu$ denotes the support of the measure μ).

Lemma 2.9. We have

$$
\sigma_{m+n}(w)=\bigcup_{w^{\prime} \in \sigma_{m}(w)} \sigma_{n}\left(w^{\prime}\right),
$$

for any $m, n \in N, w \in W$ (the line designates the topological aderence).
Theorem 2.8 and Lemma 2.9 are due to Iosifescu [1].
Definition 2.10. Let $\{(W, \mathscr{W}),(X, \mathscr{X}) u, P\}$ be a RSCC. The RSCC is called uniformly ergodic if for any $r \in N^{*}$ there exists a probability P_{r}^{∞} on \mathscr{X}^{r} such that $\lim \varepsilon_{n}=0$, as $n \rightarrow \infty$, where

$$
\varepsilon_{n}=\sup _{\substack{w \in W, r \subset N^{*} \\ A \in \mathscr{X}^{r}}}\left|P_{r}^{n}(w, A)-P_{r}^{\infty}(A)\right|
$$

Theorem 2.11. Let (W, d) be a compact space. If the $\operatorname{RSCC}\{(W, \mathscr{W})$, (X, \mathscr{X}), $u, P\}$ with contraction has regular associated Markov chain, then it is uniform ergodic.

This result one can find in [1].
3. The Gauss-Kuzmin type equation. Let μ be a nonatomic measure on $\mathscr{B}_{[0,1]}$ and define

$$
F_{n}(w)=F_{n}(w, \mu)=\mu\left(r_{n+1}^{-1}<w\right), \quad n \in N, w \in[0,1] .
$$

Clearly $F_{0}(w)=\mu([0, w])$.

Proposition 3.2. (The Gauss-Kuzmin type equation) $F_{n}, n \in N$, satisfy the relation

$$
F_{n+1}(w)=\sum_{\substack{(k, \varepsilon) \\ k \equiv 1(\bmod 2) \\|\varepsilon|=1, k+\varepsilon>1}} \varepsilon\left(F_{n}\left(\frac{1}{k}\right)-F_{n}\left(\frac{1}{k+\varepsilon w}\right)\right), \quad w \in[0,1] .
$$

Proof. We start from the relation

$$
r_{n+1}=\alpha_{n+1}+\frac{\varepsilon_{n+1}}{r_{n+2}}
$$

Thus

$$
\begin{aligned}
F_{n+1}(w)= & \mu\left(r_{n+2}^{-1}<w, \varepsilon_{n+1}=1\right)+\mu\left(r_{n+1}^{-1}<w, \varepsilon_{n+1}=-1\right) \\
= & \sum_{k=1(\bmod 2)} \mu\left((k+w)^{-1}<r_{n+1}^{-1}<k^{-1}\right) \\
& +\sum_{\substack{k \equiv 1(\bmod 2) \\
k \neq 1}} \mu\left(k^{-1}<r_{n+1}^{-1}<(k-w)^{-1}\right) \\
= & \sum_{(k, \varepsilon)} \varepsilon\left(F_{n}\left(\frac{1}{k}\right)-F_{n}\left(\frac{1}{k+\varepsilon w}\right)\right) .
\end{aligned}
$$

and this completes the proof.

Further, suppose that F_{0}^{\prime} exists and it is bounded (μ has bounded density). By induction we obtain that F_{n}^{\prime} exists and it is bounded too for any $n \in N^{*}$. Deriving the Gauss-Kuzmin type equation we arrive at

$$
\begin{equation*}
F_{n+1}^{\prime}(w)=\sum_{(k, \varepsilon)} \frac{1}{(k+\varepsilon w)^{2}} F_{n}^{\prime}\left(\frac{1}{k+\varepsilon w}\right) \tag{3.1}
\end{equation*}
$$

Let us denote for $\rho(w)=(G-1+w)^{-1}-(-G-1+w)^{-1}$, $w \in$ $[0,1]$ and $n \in N$

$$
f_{n}(w)=F_{n}^{\prime}(w) / \rho(w)
$$

Then (3.1) becomes

$$
\begin{aligned}
& f_{n+1}(w)=\left(G^{2}-(1-w)^{2}\right) \\
& \quad \times \sum_{(k, \varepsilon)} \frac{1}{((G-1)(k+\varepsilon w)+1)((G+1)(k+\varepsilon w)-1)} f_{n}\left(\frac{1}{k+\varepsilon w}\right) .
\end{aligned}
$$

Now, we prove
Proposition 3.3. The function

$$
P(w,(k, \varepsilon))=\frac{G^{2}-(1-w)^{2}}{((G-1)(k+\varepsilon w)+1)((G+1)(k+\varepsilon w)-1)}
$$

defines a transition probability function from $\left([0,1], \mathscr{B}_{[0,1]}\right)$ to $(X, \mathscr{P}(X))$ where

$$
X=\{(k, \varepsilon): k \geq 1, k \equiv 1(\bmod 2),|\varepsilon|=1, k+\varepsilon>1\}
$$

Proof. We must verify that

$$
\sum_{(k, \varepsilon)} P(w,(k, \varepsilon))=1
$$

Indeed, noting that $(G-1)^{-1}=G$ and $(G+1)^{-1}=-G+2$, we have

$$
\begin{aligned}
& \sum_{(k, \varepsilon)} \frac{G^{2}-(1-w)^{2}}{((G-1)(k+\varepsilon w)+1)((G+1)(k+\varepsilon w)-1)} \\
& =\frac{G^{2}-(1-w)^{2}}{G^{2}-1}\left(\sum_{k=1,3, \ldots} \frac{1}{(k+w+G)(k+w+G-2)}\right. \\
& \left.\quad+\sum_{k=3,5, \ldots} \frac{1}{(k-w+G)(k-w+G-w)}\right) \\
& =\frac{G^{2}-(1-w)^{2}}{2 G}\left(\sum_{k=1,3, \ldots}\left(\frac{1}{k-2+w+G}-\frac{1}{k+w+G}\right)\right. \\
& \left.\quad+\sum_{k=3,5, \ldots}\left(\frac{1}{k-2-w+G}-\frac{1}{k-w+G}\right)\right) \\
& =\frac{G^{2}-(1-w)^{2}}{2 G}\left(\frac{1}{G-(1-w)}+\frac{1}{G+(1-w)}\right)=1
\end{aligned}
$$

that is the desired result.

Now, we can define a random system with complete connections as follows.

$$
\begin{equation*}
\{(W, \mathscr{W}),(X, \mathscr{X}), u, P\} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{gathered}
W=[0,1], \quad \mathscr{W}=\mathscr{B}, \\
X=\{(k, \varepsilon): k \geq 1, k \equiv 1(\bmod 2),|\varepsilon|=1, k+\varepsilon>1\} \\
\mathscr{X}=\mathscr{P}(X), \quad u(w,(k, \varepsilon))=\frac{1}{k+\varepsilon w}, \\
P(w,(k, \varepsilon))=\frac{G^{2}-(1-w)^{2}}{((G-1)(k+\varepsilon w)+1)((G+1)(k+\varepsilon w)-1)} .
\end{gathered}
$$

4. The ergodic behaviour of the RSCC. In this section we study the ergodic behaviour of RSCC (3.2) in order to solve a Gauss-Kuzmin type theorem.

In what follows we shall introduce the norm $\|\cdot\|_{L}$ defined by

$$
\|f\|_{L}=\sup _{w \in W}|f(w)|+\sup _{w^{\prime} \neq w^{\prime \prime}} \frac{\left|f\left(w^{\prime}\right)-f\left(w^{\prime \prime}\right)\right|}{\left|w^{\prime}-w^{\prime \prime}\right|}, \quad f \in L(W) .
$$

Then $\left(L(W),\|\cdot\|_{L}\right)$ is a Banach algebra.
Proposition 4.1. RSCC (3.2) is a RSCC with contraction and its associated Markov operator U is regular with respect to $L(W)$.

Proof. We have

$$
\begin{gathered}
\frac{d P}{d w}=\frac{2(1-w)((G-1)(x+\varepsilon w)+1)((G+1)(x+\varepsilon w)-1)}{((G-1)(k+\varepsilon w)+1)^{2}((G+1)(k+\varepsilon w)-1)^{2}} \\
-\frac{2 \varepsilon\left(G^{2}-(1-w)^{2}\right)\left(\left(G^{2}-1\right)(x+\varepsilon w)+1\right)}{((G-1)(k+\varepsilon w)+1)^{2}((G+1)(k+\varepsilon w)-1)^{2}}, \\
\frac{d u}{d w}=\frac{\varepsilon}{(k+\varepsilon w)^{2}} .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\sup _{w \in W,(x, \varepsilon) \in X}\left|\frac{d}{d w} P(w,(x, \varepsilon))\right|<\infty, \\
\sup _{w \in W}\left|\frac{d}{d w} u(w,(x, \varepsilon))\right|<\frac{1}{(x-1)^{2}}, \quad k=3,5, \ldots
\end{gathered}
$$

It follows that $R_{1}<\infty$ and $r_{1}<1$, that is, (3.2) is a SALC with contraction.

To prove the regularity of U with respect to $L(W)$, define the recurrence relation $w_{n+1}=\left(w_{n}+1\right)^{-1}, n \in N$, with $w_{0}=w$. Clearly w_{n+1} $\in \sigma\left(w_{n}\right)$. Then using Lemma 2.9 and by induction we obtain $w_{n} \in \sigma_{n}(w)$, $n \in N^{*}$. Because w_{n} tends to $G-1$ as $n \rightarrow \infty$, for every $w \in[0,1]$, then

$$
\left|\sigma_{n}(w), G-1\right| \leq\left|w_{n}-G+1\right| \rightarrow 0
$$

as $n \rightarrow \infty$. The regularity of U with respect to $L(W)$ follows from Theorem 2.8. and the proof is completed.

Now, by virtue of Theorem 2.11, RSCC (3.2) is uniformly ergodic. Moreover, Theorem 2.1.57 of Iosifescu-Theodorescu [2], implies that $Q^{n}(\cdot, \cdot)$ converges uniformly to a probability Q^{∞} and there exist two positive constants $q<1$ and c such that

$$
\begin{equation*}
\left\|U^{n} f-U^{\infty} f\right\|_{L} \leq c q^{n} \tag{4.1}
\end{equation*}
$$

for all $n \in N^{*}, f \in L(W)$, where

$$
\begin{equation*}
U^{\infty} f=\int_{W} f(w) Q^{\infty}(d w) \tag{4.2}
\end{equation*}
$$

Further, by virtue of Lemma 2.1.58 of Iosifescu-Theodorescu [2], U has no eigenvalues of modulus 1 other than 1 . Then, taking into account Proposition 2.1.6 of [2] the adjoint of the operator U with the transition probability function Q has the only eigenvector the measure Q^{∞}, that is

$$
\begin{equation*}
\int_{0}^{1} Q(w, B) Q^{\infty}(d w)=Q^{\infty}(B) \tag{4.3}
\end{equation*}
$$

for all the Borel sets B of $[0,1]$.
Generally, the form of Q^{∞} cannot be identified but in our case this is possible as we shall show below

Proposition 4.2. The probability Q^{∞} has the density

$$
\rho(w)=\frac{1}{w+G-1}-\frac{1}{w-G-1}, \quad w \in[0,1]
$$

and the normalizing constant $1 /(3 \log G)$.

Proof. By virtue of uniqueness of Q^{∞} we have to prove the equality (4.3) where

$$
Q(w, B)=\sum_{\substack{(x, \varepsilon) \in X \\(x+\varepsilon w)^{-1} \in B}} P(w,(x, \varepsilon)), \quad w \in[0,1], B \in \mathscr{B}_{[0,1]}
$$

Since the intervals $[0, u] \subset[0,1]$ generate $\mathscr{B}_{[0,1]}$, it suffices to verify the equality (4.3) only for $B=[0, u], 0<u \leq 1$. First, we consider that $\left[u^{-1}\right]$ is even. Then

$$
\begin{aligned}
& \int_{0}^{1} Q(w, {[0, u)) \rho(w) d w } \\
&= \int_{0}^{1}\left(\sum_{\substack{k=1,3, \ldots \\
k>\left[u^{-1}-w\right]}} P(w,(k, 1))+\sum_{\substack{k=3,5, \ldots \\
k>\left[u^{-1}\right]}} P(w,(k,-1))\right) \rho(w) d w \\
&= \int_{0}^{1} \frac{G^{2}-(1-w)^{2}}{2\left(G^{2}-1\right)} \\
& \times\left(\sum_{k=\left[u^{-1}\right]+1}^{\infty}\left(\frac{1}{k-2+w+G}-\frac{1}{k+w+G}\right)\right) \rho(w) d w \\
&+\int_{0}^{1+\left[u^{-1}\right]-u^{-1}} \frac{G^{2}-(1-w)^{2}}{2 G} \\
& \times\left(\sum_{k=\left[u^{-1}\right]+1}^{\infty}\left(\frac{1}{k-2+w+G}-\frac{1}{k+w+G}\right) \rho(w) d w\right. \\
&+\int_{1+\left[u^{-1}\right]-u^{-1}}^{1} \frac{G^{2}-(1-w)^{2}}{2 G} \\
& \times\left(\sum_{k=\left[u^{-1}\right]+3}^{\infty}\left(\frac{1}{k-2-w+G}-\frac{1}{k-w+G}\right) \rho(w) d w\right. \\
&= \log \frac{G+\left[u^{-1}\right]}{G+\left[u^{-1}\right]-1} \cdot \frac{G+\left[u^{-1}\right]-1}{G+u^{-1}-2} \cdot \frac{G+u^{-1}}{G+\left[u^{-1}\right]} \\
&= \log \frac{(G+1)(G-1+u)}{(G-1)(G+1-u)}=\int_{0}^{u} \rho(w) d w . \\
& \sum_{0}
\end{aligned}
$$

Analogously if $\left[u^{-1}\right]$ is odd we have

$$
\begin{aligned}
& \int_{0}^{1} Q(w,[0, u)) \rho(w) d w \\
&= \int_{0}^{u^{-1}-\left[u^{-1}\right]} \frac{G^{2}-(1-w)^{2}}{2 G} \cdot \frac{\rho(w)}{\left[u^{-1}\right]+w+G} d w \\
&+\int_{u^{-1}-\left[u^{-1}\right]}^{1} \frac{G^{2}-(1-w)^{2}}{2 G} \cdot \frac{\rho(w)}{\left[u^{-1}\right]-2+w+G} d w \\
&+\int_{0}^{1} \frac{G^{2}-(1-w)^{2}}{2 G} \cdot \frac{\rho(w)}{\left[u^{-1}\right]-w+G} d w \\
&= \log \frac{u^{-1}+G}{\left[u^{-1}\right]+G} \cdot \frac{\left[u^{-1}\right]+G-1}{u^{-1}+G-1} \cdot \frac{\left[u^{-1}\right]+G}{\left[u^{-1}\right]+G-1} \\
&= \log \frac{(G+1)(G-1+u)}{(G-1)(G+1-u)}=\int_{0}^{u} \rho(w) d w .
\end{aligned}
$$

5. The Gauss-Kuzmin type theorem. Now, we may determine where $\mu\left(r_{n}>t\right)$ tends as $n \rightarrow \infty$ and give the rate of this convergence.

Proposition 5.1. (The solution of Gauss-Kuzmin type problem.) If the density F_{0}^{\prime} of μ is a Riemann integrable function, then

$$
\lim _{n \rightarrow \infty} \mu\left(r_{n}>t\right)=\frac{1}{3 \log G} \cdot \log \frac{(G+1)(t(G-1)+1)}{(G-1)(t(G+1)-1)}, \quad t \geq 1
$$

If the density F_{0}^{\prime} of μ is a Lipschitz function, then there exist two positive constants c and $q<1$ such that for all $t \geq 1, n \in N^{*}$

$$
\mu\left(r_{n}>t\right)=\frac{1}{3 \log G}\left(1+\theta q^{n}\right) \log \frac{(G+1)(t(G-1)+1)}{(G-1)(t(G+1)-1)}
$$

where $\theta=\theta(\mu, n, t)$ with $|\theta| \leq c$.

Proof. Let F_{0}^{\prime} be a Lipschitz function. Then $f_{0} \in L(W)$ and by virtue of (4.2)

$$
U^{\infty} f_{0}=\int_{0}^{1} f_{0}(w) Q^{\infty}(d w)=\frac{1}{3 \log G} \int_{0}^{1} F_{0}^{\prime}(w) d w=\frac{1}{3 \log G}
$$

According to (4.1) there exist two constants c and $q<1$ such that

$$
U^{n} f_{0}=U^{\infty} f_{0}+T^{n} f_{0}, \quad n \in N^{*}
$$

with $\left\|T^{n} f_{0}\right\|_{L} \leq c q^{n}$.
Further, consider $C[0,1]$ the metric space of real continuous functions defined on $[0,1]$ with the norm $|\cdot|=\sup |\cdot|$. Since $L([0,1])$ is a dense subset of $C([0,1])$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|T^{n} f_{0}\right|=0 \tag{5.1}
\end{equation*}
$$

for $f_{0} \in C([0,1])$. Therefore (5.1) is valid for measurable f_{0} which is Q^{∞}-almost surely continuous, that is for Riemann integrable f_{0}. Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mu\left(r_{n}>t\right) & =\lim _{n \rightarrow \infty} F_{n-1}\left(\frac{1}{t}\right) \\
& =\lim _{n \rightarrow \infty} \int_{0}^{1 / t} U^{n-1} f_{0}(u) \rho(u) d w \\
& =\frac{1}{3 \log G} \int_{0}^{1 / t} \rho(w) d w
\end{aligned}
$$

and the desired result follows.

References

[1] S. Grigorescu and M. Iosifescu, Dependence with Complete Connections and Applications, Ed. St. Encicl., Bucharest, 1982.
[2] M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer-Verlag, Berlin, 1969.
[3] M. F. Norman, Markov Processes and Learning Models, Academic Press, New York, 1972.
[4] F. Schweiger, Continued fractions with odd and even partial quotients, Arbeitsbericht Math. Instit. der Univ. Salzburg, 4 (1982), 59-70.

Received October 5, 1984.

Aristotle University
Thessaloniki, Greece

