DIRICHLET'S THEOREM FOR THE RING OF POLYNOMIALS OVER GF(2)

DOUGLAS HENSLEY

Let G denote the ring GF(2)[x] of polynomials g(x) over the field of integers mod 2. Let

 $I(k) = \# \{ p \in G : \deg p = k \text{ and } p \text{ is irreducible in } G \}.$

It is well known that $I(k) = (1/k)\sum_{d|k} \mu(d)2^{k/d}$. Here we prove an analog to Dirichlet's Theorem on primes in arithmetic progressions. For any $m \in G$ the *p* counted in I(k) are uniformly distributed among the congruence classes $(b) \mod m$ for which (b, m) = 1. The result is especially sharp when *m* is square-free.

1. Introduction and notation. As in the abstract, G = GF(2)[x]. We will suppress the variable and write, for instance, 1011 in place of $x^3 + x + 1$. We denote the set of irreducible $p \in G$ by *I*. The only part of this work which does not seem to generalize easily to other GF(q)[x], q a prime, is the special role of square-free moduli. Defining $\phi: G \to Z$ in the natural way ($\phi(m) = \#\{a: \deg a = \deg m \text{ and } (a, m) = 1\}$), we have that

(1.1)
$$\phi(m)$$
 is odd if and only if m is square-free.

Consequently, none of the "Dirichlet characters" on G/mG can have as their range $\{-1, 0, 1\}$. The absence of this kind of Dirichlet character permits sharper bounds. For fixed $m \in G$, $b \in G$ with (b, g) = 1, let $I_b(n)$ denote the number of irreducible $p \in G$ of degree n such that $p \equiv b \mod m$.

THEOREM. There exist positive effectively computable constants C_1 and C_2 such that for all integers M, $N \ge 1$, for all square-free polynomials $m \in G$ of degree M, and for all congruence classes (b) mod m relatively prime to m,

$$\left| I_b(N) - \frac{2^N}{N\phi(m)} \right| \leq \frac{C_1 M 2^N}{N} \exp\left(-C_2 N M^{-9} (\log M)^{-3}\right).$$

That is,

$$I_b(N) = \frac{2^N}{N\phi(m)} \Big(1 + O\Big(M\phi(m) e^{-C_2 N M^{-9}(\log M)^{-3}} \Big) \Big)$$

uniformly in N, M, m and b.

The result, of course does not constitute any improvement on the trivial bounds $0 \le I_b(N) \le I(N)$ unless N is larger, roughly, than M^9 . It differs from results of Uchiyama and Carlitz [1, 3, 4] in its generality and uniformity with respect to the modulus, treating the ring G as fixed. Basically they kept G variable and constrained m.

When *m* is not square-free, characters of the second kind intrude, and we must settle for $2^{-M}M^{-2}$ in place of $M^{-9}(\log M)^{-3}$ in Theorem 1.

2. Preliminaries. For much of its length our proof follows the path of the classic proof of Dirichlet's theorem. There are analogs to Dirichlet characters, to *L*-functions, and product expansions valid in a half-plane. The difference is that in this case the *L*-functions are essentially polynomial functions on C. This simplifies the analysis. We can dispense with contour integrations, and just compare coefficients in two expansions of

$$\sum_{\chi \bmod m} \frac{1}{\chi(b)} \frac{L'(s,\chi)}{L(s,\chi)},$$

as series in $t = 2^{-s}$. The reader who wants to see just what is *different* can skip this section.

Let $Na = 2^{\deg a}$, for $a \in G$. Let

(2.1) $\phi(m) = \#\{a: \deg a = \deg m \text{ and } (a, m) = 1\}.$

Note that for $p \in G$ irreducible, $\phi(p) = Np - 1$ and is odd. Finally, the usual proof that

(2.2)
$$\phi(m) = (Nm) \prod_{p \mid m} \left(1 - \frac{1}{Np}\right)$$

is valid in this setting too, so $\phi(m)$ is multiplicative. Thus $\phi(m)$ is odd if and only if m is square-free.

A character mod m is a function $\chi: G \to \mathbf{C}$ such that

(2.3)
(i)
$$\chi(a)\chi(b) = \chi(ab)$$
 for $a, b \in G$.
(ii) $\chi(a) = \chi(b)$ if $a \equiv b \mod m$
(iii) $\chi(a) = 0$ for $(a, m) \neq 1$.

As with characters in the integers, $\chi(1) = 1$, and if (a, m) = 1 then $\chi(a)$ is a $\phi(m)$ th root of 1. For every *m* except 1, 10, 11 and 110, there is a character other than the trivial character χ_0 , where

 $\chi_0(a) = 1$ for (a, m) = 1, $\chi_0(a) = 0$ otherwise.

Further, with the same exceptions,

(2.4)
$$\sum_{a \mod m} \chi(a) = 0 \quad \text{for all } \chi \neq \chi_0$$

(2.5)
$$\sum_{\chi \bmod m} \chi(a) = 0 \quad \text{for all } a \neq 1 \mod m.$$

(All irreducibles except the factors of m are $\equiv 1 \mod m$ when m = 1, 10, 11 or 110, since only 1 mod m is relatively prime to m in these cases. From now on, we assume m is not 1, 10, 11 or 110.)

(2.6)
$$\sum_{\chi \bmod m} \chi(1) = \phi(m)$$

and

(2.7)
$$\sum_{a \bmod m} \chi_0(a) = \phi(m).$$

Proof. The classical proofs go over word for word. See e.g. Landau [2].

We now define a power series $f_{\chi}(t)$ corresponding to each $\chi \mod m$. With the substitution $t = 2^{-s}$ we get the analog of a Dirichlet *L*-series.

DEFINITION.

(2.8)
$$f_{\chi}(t) = \sum_{a \in G} \chi(a) t^{\deg a} = \sum_{j=0}^{\infty} \left\{ \sum_{\deg a=j} \chi(a) \right\} t^{j},$$

and

$$L(s,\chi) = \sum_{\substack{a \in G \\ a \neq 0}} \chi(a) (Na)^{-s}.$$

Let $C_j(\chi) = \sum_{\deg a=j} \chi(a)$. Then by (2.4), for $\chi = \chi_0$, $C_j(\chi) = 0$ for $j \ge \deg m$.

Thus for $\chi \neq \chi_0$, and with $M = \deg m$,

(2.9)
$$f_{\chi}(t) = \sum_{j=0}^{m-1} C_{j}(\chi) t^{j}$$

and is a polynomial over the complex numbers of degree $\leq M - 1$. We note here that

(2.10)
$$f_{\chi}(0) = 1, \quad f_{\chi}(1) = 0, \text{ and } |C_j| \le 2^j.$$

If we forget temporarily that $f_x(t)$ is a polynomial, it is natural to ask for a product expansion. Formally,

(2.11)
$$f_{\chi}(t) = \prod_{p \in I} \left(1 - \frac{\chi(p)}{(Np)^s} \right)^{-1} = \prod_{p \in I} (1 - \chi(p)t^{\deg p})^{-1},$$

and the product converges absolutely for $|t| < \frac{1}{2}$ (Re(s) > 1). The function corresponding to the Riemann zeta function here is

(2.12)
$$Z(t) := \sum_{a \neq 0} t^{\deg a} = \frac{1}{1 - 2t},$$

and this has the product expansion

(2.13)
$$Z(t) = \prod_{k=1}^{\infty} (1 - t^k)^{-I(k)}.$$

Finally, for $\chi = \chi_0 \mod m$,

(2.14)
$$f_{\chi_0}(t) = Z(t) \prod_{p|m} (1 - t^{\deg p}).$$

The well known identity

(2.15)
$$I(k) = \frac{1}{k} \sum_{d|k} \mu(d) 2^{k/d}$$

now follows from a (*much*) simplified reprise of the proof of the prime number theorem. We have Z'(t)/Z(t) = 2/(1-2t) on one hand, while from (2.13) it is $\sum_{k=1}^{\infty} kI(k)t^{k-1}/(1-t^k)$. Expanding both sides as series about t = 0 and equating coefficients gives

(2.16)
$$2^k = \sum_{d|k} dI(d),$$

which is equivalent to (2.15).

The same ideas feature in the proof of Theorem 1: differentiate $\log f_{\chi}(t)$, use the product formula on one side, expand things as series in t and equate coefficients.

3. Partial fractions. For $\chi = \chi_0 \mod m$,

(3.1)
$$f_{\chi_0}(t) = \frac{1}{1-2t} \prod_{p|m} (1-t^{\deg p})$$

for $t \neq 1/2$. With the notations $I_m(k) = \#\{p \in I: p | m \text{ and deg } p = k\}, e(r) = e^{2\pi i r}$, we have

(3.2)
$$\frac{f_{\chi_0}'(t)}{f_{\chi_0}(t)} = \frac{2}{1-2t} \sum_{k=1}^M \frac{1}{k} I_m(k) \sum_{j=0}^{k-1} \frac{1}{t-e(j/k)}$$

which has simple poles at t = 1/2 and at various roots of unity. In all, there are $1 + \sum_{k=1}^{M} k I_m(k)$ poles of $(f'_{\chi_0}/f_{\chi_0})(t)$, and for *m* square-free, this is just M + 1. Now for any polynomial f(t) over **C** with zeros w_1 , w_2, \ldots, w_j to multiplicity N_1, N_2, \ldots, N_j ,

(3.3)
$$\frac{f'(t)}{f(t)} = \sum_{i=1}^{j} \frac{N_i}{t - w_i}.$$

Thus for any character $\chi \neq \chi_0 \mod m$,

$$\frac{f_{\chi}'(t)}{f_{\chi}(t)} = \sum_{w \in \Omega_{\chi}} \frac{N(w)}{t - w},$$

where Ω_{χ} is the set of zeros of $f_{\chi}(t)$ and N(w) the corresponding multiplicity, for $w \in \Omega_{\chi}$. By (2.11), $f_{\chi}(t) \neq 0$ for |t| < 1/2, that is, $|w| \ge 1/2$ if $w \in \Omega_{\chi}$. We now fix $b \mod m$, (b, m) = 1, and consider

(3.4)
$$\sum_{\chi \mod m} \frac{1}{\chi(b)} \frac{f'_{\chi}(t)}{f_{\chi}(t)}.$$

On one hand, this is equal to

(3.5)
$$\sum_{\substack{\chi \mod m \\ \chi \neq \chi_0}} \frac{1}{\chi(b)} \sum_{w \in W_{\chi}} \frac{N(w)}{t - w} + \frac{2}{1 - 2t} - \sum_{k=1}^{M} \frac{1}{k} I_m(k) \sum_{j=0}^{k-1} \frac{1}{t - e(j/k)}.$$

We anticipate that for small t, the series expansion of this about zero converges, and that the dominant contribution to the coefficient of t^n for large n comes from 2/(1-2t).

On the other hand, (3.4) equals

$$(3.6) \qquad \sum_{\chi \mod m} \frac{1}{\chi(b)} \sum_{p \in I} \frac{\chi(p)(\deg p)t^{\deg p-1}}{1 - \chi(p)t^{\deg p}} \\ = \sum_{k=1}^{\infty} k \sum_{j=0}^{\infty} \sum_{p \in I} \sum_{\chi \mod m} \frac{1}{\chi(b)} (\chi(p))^{j+1} t^{(j+1)k-1} \\ = \sum_{n=1}^{\infty} nt^{n-1} \sum_{d \mid n} \frac{1}{d} \sum_{\substack{p \in I \\ \deg p = n/d}} \sum_{\chi \mod m} \frac{1}{\chi(b)} (\chi(p))^{d}.$$

Thus the coefficient of t^{n-1} in the expansion of (3.6) about t = 0 is

(3.7)
$$n\sum_{d\mid n} \frac{1}{d} \sum_{\substack{p \in I \\ \deg p = n/d}} \sum_{\chi \mod m} \frac{1}{\chi(b)} \chi(p)^d.$$

In (3.7), the part due to d = 1 is predominant, as we shall see. This part simplifies by (2.5) and (2.6) to

$$n\phi(m)\sum_{\substack{p\in I\\ \deg p=n}} 1 = n\phi(m)I_b(n).$$

The other terms may be estimated rather crudely. For any d,

$$\left|\sum_{\chi \mod m} \frac{1}{\chi(b)} \chi(p)^d\right| \leq \varphi(m),$$

and $I(d) \le 2^d/d$. Thus in (3.7) the part of the sum due to a particular d has absolute value $\le (n/d)2^d\phi(m)$.

This gives

(3.8)
$$\sum_{\chi \mod m} \frac{1}{\chi(b)} \frac{f'_{\chi}(t)}{f_{\chi}(t)} = \sum_{n=1}^{\infty} n\phi(m) \Big\{ I_b(n) + O\Big(\frac{1}{n} 2^{n/2}\Big) \Big\} t^{n-1}.$$

The implicit constant is independent of b, m, and n.

In (3.5) the expansion of 2/(1-2t) is simple, and the coefficients of t^n arising from 1/(t - e(j/k)) are quite small by comparison. We just need a bound on |w| for $w \in \Omega_{\chi}$, $\chi \neq \chi_0$. Here the distinction between characters of the *second kind* (real valued and taking -1 as well as +1) and *third kind* (not real) is important.

If χ is a character of the second kind then following Landau's treatment in [2] one sees that $f_{\chi}(1/2) \neq 0$. But then

$$f_{\chi}(1/2) = \sum_{j=0}^{M-1} C_j (1/2)^j$$

and $c_j = \sum_{\deg a=j} \chi(a)$ is an integer here, so $|f_{\chi}(1/2)| \ge 2^{-M}$. More sophisticated approaches led to no better an estimate. The estimate for $I_b(n)$ when *m* is not square-free is done the same way as that for when *m* is square-free, except at this point. Since the main interest attaches to the uniformly good estimates to be had for square-free *m*, we shall not go into this any more.

Assume now that *m* is square-free. Then there are no real characters other than χ_0 .

4. The zeros of $f_{\chi}(t)$ for characters of the third kind. By the familiar device based on the inequality $3 + 4\cos\theta + \cos 2\theta \ge 0$ and the product expansion (2.11), we have

(4.1)
$$\left| f_{\chi_0}^3(t) f_{\chi}^4(t) f_{\chi^2}(t) \right| \ge 1 \quad \text{for } |t| < 1/2.$$

Since χ takes on non-real values, $\chi^2 \neq \chi_0$, so $|f_{\chi^2}(t)| \leq M$ for $|t| \leq 1/2$. The factor involving χ_0 is easily estimated:

$$|f_{\chi_0}(t)| \le \left|\frac{1}{1-2t}\right| \prod_{p|m} \left(1+\frac{1}{Np}\right), \text{ for } |t| < \frac{1}{2}.$$

It is well known that for integer $n \to \infty$, $\phi(n) \gg n/\log \log n$; the worst case is when n is the product of the first k primes for some k.

Similarly here we have for deg $m = M, M \rightarrow \infty$ that

(4.2)
$$\phi(m) \gg 2^M / \log M$$
, uniformly in m.

Since

$$\prod_{p|m} \left(1 + \frac{1}{Np}\right) < \prod_{p|m} \left(1 - \frac{1}{Np}\right)^{-1} = \frac{2^M}{\phi(m)},$$
$$\prod_{p|m} \left(1 + \frac{1}{Np}\right) \ll \log M,$$

and so

(4.3)
$$|f_{\chi_0}(t)| \ll \left|\frac{\log M}{1-2t}\right|, \quad |t| < \frac{1}{2}.$$

Now from (4.1),

(4.4)
$$|f_{\chi}(t)| \gg M^{-1/4} (\log M)^{-3/4} |t - 1/2|^{3/4}$$
 in $|t| < 1/2$.

To estimate $f'_{\chi}(t)/f_{\chi}(t)$ we also need an upper bound for $f'_{\chi}(t) = \sum_{j=1}^{m-1} jC_j t^{j-1}$, in |t| < 1/2.

Each $|C_j| \leq 2^j$, so $|C_j t^{j-1}| \leq 2$. Thus

(4.5)
$$|f'_{\chi}(t)| \le M^2 \text{ for } |t| \le 1/2.$$

Since no polynomial can have a zero of fractional order, for fixed χ , $|f_{\chi}(t)| \gg 1$ in |t| < 1/2. But for variable *M*, we need a lemma.

LEMMA. Uniformly in $M \ge 1$, in m with deg m = M, in $\chi \mod m$ of the third kind, and in $|t| \le 1/2$,

$$|f_{\chi}(t)| \gg M^{-7}(\log M)^{-3}.$$

Proof. By (4.4), there exists C > 0 such that

$$|f_{\chi}(t)| \ge CM^{-1/4} (\log M)^{-3/4} |t - 1/2|^{3/4}.$$

Let t_0 , $0 < t_0 < 1/2$, be the unique solution of

$$M^{2} = \frac{3}{4}CM^{-1/4}(\log M)^{-3/4}|t - \frac{1}{2}|^{-1/4}: \quad t_{0} = \frac{1}{2} - \left(\frac{3}{4}\right)^{4}C^{4}M^{-9}(\log M)^{-3}.$$

Then

$$f_{\chi}(1/2) | \ge |f_{\chi}(t_0)| - M^2(1/2 - t_0)$$

from (4.5), and this is $\geq (\frac{3}{4})^{3\frac{1}{4}}C^{4}M^{-7}(\log M)^{-3}$ from (4.4). Now for $|\frac{1}{2} - t| < \frac{1}{10}|\frac{1}{2} - t_{0}|$,

$$|f_{\chi}(t)| \ge |f_{\chi}(t_0)| - \frac{1}{10}M^2|\frac{1}{2} - t_0| \ge (\frac{3}{4})^3(\frac{1}{4} - \frac{1}{10})C^4M^{-7}(\log M)^{-3}.$$

For $|t - \frac{1}{2}| \ge \frac{1}{10}|t_0 - \frac{1}{2}|$, though,

$$|f_{\chi}(t)| \ge CM^{-1/4} (\log M)^{-3/4} |t - \frac{1}{2}|^{3/4}$$
 by (4.4),
 $\ge (\frac{3}{4})^3 (\frac{1}{10})^{3/4} C^4 M^{-7} (\log M)^{-3}.$

Thus uniformly in M, m, $\chi \mod m$ of the third kind, and for t, |t| < 1/2,

(4.6)
$$|f_{\chi}(t)| \geq C_1 M^{-7} (\log M)^{-3}.$$

The lemma follows by the continuity of the $f_x(t)$.

Now

$$f_{\chi}(t)^{(n)} = \sum_{j=n}^{M-1} C_j \frac{n!}{j!} t^{j-n},$$

so $|f_{\chi}(t)^{(n)}| \le (2M)^{n+1}$ in $|t| \le 1/2$. Thus for $|v| \le M^{-9}$ and |T| = 1/2 we have

(4.7)
$$f_{\chi}(T+v) = f_{\chi}(T) + O\left(\sum_{j=1}^{M-1} \frac{1}{j!} |v|^{j} (2M)^{j+1}\right)$$

(with the implicit constant = 1)

$$= f_{\chi}(T) + O(M^2|v|).$$

Thus uniformly in M, m, and χ ,

(4.8)
$$f_{\chi}(t) \neq 0$$
 in $|t| \leq 1/2 + C_2 (M^{-9} (\log M)^{-3})$

for some $C_2 > 0$.

5. Conclusions. We now expand (3.5) as a series in t, and estimate the coefficient of t^{n-1} .

From χ_0 , we get

(5.1)
$$\sum_{n=1}^{\infty} 2^n t^{n-1} + \sum_{k=1}^{M} \frac{1}{k} I_m(k) \sum_{j=0}^{k-1} \sum_{n=1}^{\infty} t^{n-1} e\left(\frac{(n-1)j}{k}\right),$$

100

so the coefficient of t^{n-1} is

(5.2)
$$2^{n} + \sum_{k=1}^{M} \frac{1}{k} I_{m}(k) \sum_{j=0}^{k-1} e\left(\frac{(n-1)j}{k}\right).$$

Now $|\sum_{j=0}^{k-1} e((n-1)j/k)| \le k$, so the second term of (5.2) is $O(\sum_{k=1}^{M} I_m(k))$. Now trivially this latter is O(M). (A little thought shows it to be $O(M/\log M)$ but we have larger errors elsewhere.) Thus in (3.5) the coefficient of t^{n-1} due to χ_0 is

(5.3)
$$2^n + O(M).$$

The expansion of the rest of (3.5) works out to $\sum_{n=1}^{\infty} r_n t^{n-1}$, where

(5.4)
$$r_{n} = \sum_{\substack{\chi \mod m \\ \chi \neq \chi_{0}}} \frac{1}{\chi(b)} \sum_{w \in \Omega_{\chi}} \frac{-N(w)}{w} \left(\frac{1}{w}\right)^{n-1}$$
$$= -\sum_{\substack{\chi \mod m \\ \chi \neq \chi_{0}}} \frac{N(w)}{\chi(b)} w^{-n}.$$

Now $|w| \ge 1/2 + C_2 M^{-9} (\log M)^{-3}$. Thus

(5.5)
$$|r_n| \leq M\phi(m)2^n \exp(-C_3 n M^{-9} (\log M)^{-3}).$$

Now from (5.5), (5.3), and (3.8) we have

(5.6)
$$n\phi(m)(I_b(n) + O(\frac{1}{n}2^{n/2}))$$

= $2^n + O(M) + O(M\phi(m)2^n \exp(-C_3 n M^{-9} (\log M)^{-3})).$

The theorem follows upon renumbering the constants.

References

- [1] L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Am. Math. Soc., 3 (1952), 693-700.
- [2] E. Landau, *Elementary Number Theory*, Chelsea, NY, 1966.
- [3] Saburô Uchiyama, Sur les polynomes irréductibles dans un corps fini I, Proc. Japan Acad., 30 (1954), 523-527.
- [4] _____, II, Proc. Japan Acad., 31 (1955), 267–269.

Received December 28, 1984.

TEXAS A & M UNIVERSITY College Station, TX 77843-3368