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DIRICHLET’S THEOREM FOR THE RING
OF POLYNOMIALS OVER GF(2)

DouGLASs HENSLEY

Let G denote the ring GF(2)[ x] of polynomials g(x) over the field
of integers mod 2. Let

I(k) = #{p € G:deg p = k and p is irreducible in G } .
It is well known that 7(k) = (1/k)L,, p(d)2*/“. Here we prove an
analog to Dirichlet’s Theorem on primes in arithmetic progressions. For
any m € G the p counted in I(k) are uniformly distributed among the

congruence classes (b)) mod m for which (b, m) = 1. The result is
especially sharp when m is square-free.

1. Introduction and notation. As in the abstract, G = GF(2)[x]. We
will suppress the variable and write, for instance, 1011 in place of
x3 + x + 1. We denote the set of irreducible p € G by I. The only part
of this work which does not seem to generalize easily to other GF(q)[x], ¢
a prime, is the special role of square-free moduli. Defining ¢: G — Z in
the natural way (¢(m) = #{a: dega = degm and (a, m) = 1}), we have
that

(1.1) ¢(m) is odd if and only if m is square-free.

Consequently, none of the “Dirichlet characters” on G/mG can have as
their range {-1,0,1}. The absence of this kind of Dirichlet character
permits sharper bounds. For fixed m € G, b € G with (b, g) =1, let
I,(n) denote the number of irreducible p € G of degree n such that
p = b mod m.

THEOREM. There exist positive effectively computable constants C; and
C, such that for all integers M, N > 1, for all square-free polynomials
m € G of degree M, and for all congruence classes (b) mod m relatively
prime to m,

exp(—CzNM‘g(log M)“3).
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That is,

2N
Ne(m)
uniformly in N, M, m and b.

Ib(N) =

(1 + 0(M¢(m)e‘CzNM'9(1°gM)-3))

The result, of course does not constitute any improvement on the
trivial bounds 0 < I,(N) < I(N) unless N is larger, roughly, than M°. It
differs from results of Uchiyama and Carlitz [1, 3, 4] in its generality and
uniformity with respect to the modulus, treating the ring G as fixed.
Basically they kept G variable and constrained m.

When m is not square-free, characters of the second kind intrude, and
we must settle for 2~ ™M -2 in place of M ~°(log M)~3 in Theorem 1.

2. Preliminaries. For much of its length our proof follows the path of
the classic proof of Dirichlet’s theorem. There are analogs to Dirichlet
characters, to L-functions, and product expansions valid in a half-plane.
The difference is that in this case the L-functions are essentially poly-
nomial functions on C. This simplifies the analysis. We can dispense with
contour integrations, and just compare coefficients in two expansions of

E 1 L,(S, X)
as series in ¢ = 27°. The reader who wants to see just what is different can
skip this section.

Let Na = 29 for a € G. Let
(2.1) ¢(m) = #{a: dega = degm and (a, m) = 1}.
Note that for p € G irreducible, ¢( p) = Np — 1 and is odd. Finally, the
usual proof that

(22) o(m) = (Nm) [T (1 - 3

plm

is valid in this setting too, so ¢(m) is multiplicative. Thus ¢(m) is odd if
and only if m is square-free.
A character mod m is a function x: G — C such that

(1) x(a)x(b)=x(ab) fora,bed.
(2.3) (i) x(a)=x(b) if a = b mod m
(i) x(a)=0 for (a,m) + 1.
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As with characters in the integers, x(1) = 1, and if (a, m) = 1 then
x(a) is a ¢(m)th root of 1. For every m except 1, 10, 11 and 110, there is
a character other than the trivial character x,, where

Xo(a)=1 for(a,m)=1, x,(a)=0 otherwise.

Further, with the same exceptions,

(2.4) Y., x(a)=0 forall x # x,
amod m
(2.5) Y, x(a)=0 forall a % 1 modm.
x mod m

(All irreducibles except the factors of m are = 1 mod m when m = 1, 10,
11 or 110, since only 1 mod m is relatively prime to m in these cases.
From now on, we assume m is not 1, 10, 11 or 110.)

(2.6) Zd x(1) = ¢(m)
and
(2.7) Zd Xo(a) = ¢(m).

Proof. The classical proofs go over word for word. See e.g. Landau [2].
We now define a power series £, (¢) corresponding to each x mod m.
With the substitution ¢ = 27° we get the analog of a Dirichlet L-series.

DEFINITION.

e 0= T x@e=T{ T xa)s

aeG j=0 ‘dega=j
and

L(s,x) = X x(a)(Na)™.

a€E
a#

Let Ci(X) = Xgega=;x(a). Then by (2.4), for x = x,, Ci(x) =0 for
j = degm.
Thus for x # x,, and with M = degm,

(29 A0 =T Glor

and is a polynomial over the complex numbers of degree < M — 1. We
note here that

(2.10) £0)=1, f(1)=0, and |C|<2
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If we forget temporarily that f, () is a polynomial, it is natural to ask
for a product expansion. Formally,

@) 7(1) = p( %) =,,IJ,(1 — x(p)r®sr)™,

and the product converges absolutely for [f| < 3 (Re(s) > 1). The func-
tion corresponding to the Riemann zeta fUl’lCthIl here is

(2.12) Z(t):= ) tdee= L ,
a#0 — 2t

and this has the product expansion

(2.13) ﬂ )7,

Finally, for x = x, mod m,

(2.14) L () =Z() [T — 1%22),
pim

The well known identity

(2.15) I(k) =+ Z p(d)2

d|k

now follows from a (much) simplified reprise of the proof of the prime
number theorem. We have Z'(¢t)/Z(t) = 2/(1 — 2t) on one hand, while
from (2.13) it is X¢_, kI(k)t*~! /(1 — t*). Expanding both sides as series
about ¢ = 0 and equating coefficients gives
(2.16) k=3 dI(d),
dlk

which is equivalent to (2.15).

The same ideas feature in the proof of Theorem 1: differentiate
log f,(2), use the product formula on one side, expand things as series in ¢
and equate coefficients.

3. Partial fractions. For x = Xo mod m,
(3.1) fult) = g 10 - 1)

for ¢+ # 1/2. With the notations Im(k) =#{pel pmanddegp =k},
e(r) = e?™", we have

folt) Mo
fxo(t) 1~2t kz=:1Z " (k) Z0 t—e(]/k)

(3.2)
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which has simple poles at 1 = 1/2 and at various roots of unity. In all,
there are 1 + X} kI, (k) poles of ( [/ (1), and for m square-free,
this is just M + 1. Now for any polynomial f(7) over C with zeros wy,

Wy, ...,w,; to multiplicity Ny, N,,..., N,

@) N,
33 = —.
G O
Thus for any character x # x, mod m,
L) N(w)

)y

fX(t) - WGSZX r—w ’
where @ is the set of zeros of f,(f) and N(w) the corresponding
multiplicity, for w & Q . By (2.11), f(¢) #0 for |t] <1/2, that is,
w = 1/2if w € Q. We now fix b mod m, (b, m) = 1, and consider

1 fi()
(3.4 L O L0

On one hand, this is equal to

1 N(w) 2
(3.5 +
) xngxlmX(b) wezth_w =2
X#Xo

(k) Z
1 t— e(]/ k)
We anticipate that for small ¢, the series expansion of this about zero
converges, and that the dominant contribution to the coefficient of ¢” for
large n comes from 2 /(1 — 2t).
On the other hand, (3.4) equals

x(p)(deg p)eder~?
(3.6) > (b) :Le:l 1— x(p)eder
& 1

= i:: kY X X —m(x(l)))’“t““)“1

Jj=0 pel x modm

[
TM:
|>—\

x mod m

I
s T
N

- 1 1
" 12 ;1— Z Z (b) (X(p))d-
n=1 d|n pel x mod m X

deg p=n/d
Thus the coefficient of "~ ! in the expansion of (3.6) about ¢ = 0 is

1 d
(3.7) ny, > > mx(l’) .

d|n pel x mod m
deg p=n/d

-
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In (3.7), the part due to d = 1 is predominant, as we shall see. This
part simplifies by (2.5) and (2.6) to
ne(m) Y 1=n¢(m)l,(n).

pel
deg p=n

The other terms may be estimated rather crudely. For any d,

1 d
T X = pum),
I s e
and I(d) < 2¢/d. Thus in (3.7) the part of the sum due to a particular d
has absolute value < (n/d)2%(m).

This gives
(3.8) X‘E,dm (1b) ];( ) g:l m){I;,(n) + 0(%2"/2)}“‘1.

The implicit constant is independent of b, m, and n.

In (3.5) the expansion of 2 /(1 — 2¢) is simple, and the coefficients of
t" arising from 1/(t — e(j/k)) are quite small by comparison. We just
need a bound on |w| for w € Q , x # x,. Here the distinction between
characters of the second kind (real valued and taking —1 as well as +1)
and third kind (not real) is important.

If x is a character of the second kind then following Landau’s
treatment in [2] one sees that f,(1/2) # 0. But then

M-1

£,/2) = Z " (1/2)’

and ¢, = X4,,-;x(a) is an integer here, so |f,(1/2)|=2"". More
sophisticated approaches led to no better an estimate. The estimate for
I,(n) when m is not square-free is done the same way as that for when m
is square-free, except at this point. Since the main interest attaches to the
uniformly good estimates to be had for square-free m, we shall not go into
this any more.

Assume now that m is square-free. Then there are no real characters
other than x,.

4. The zeros of f, () for characters of the third kind. By the familiar
device based on the inequality 3 + 4cosf + cos26 > 0 and the product
expansion (2.11), we have

(4.1) | £ fe(t)]| =1 for || < 1/2.
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Since x takes on non-real values, x2 # Xo, 50 | [ < M for [t] <1/2.
The factor involving x, is easily estimated:

1 1

1+—-), for |t|< =.

(14 5. forlel <3
It is well known that for integer n — oo, ¢(n) > n/log logn; the

worst case is when » is the product of the first & primes for some k.
Similarly here we have for degm = M, M — oo that

1
leO(‘)|S’m

(4.2) ¢(m) > 2M /log M, uniformly in m.
Since
1\t oM
et enfi- ) -2
ﬂn( Np|  pm\ Np ¢(m)
)
1+—|<logM,
plm( Np
and so
log M 1
(4.3) <7251 <3
Now from (4.1),

@.4) £ (0)|> M4 og M)t — 172" int]<1/2.
X

To estimate f(1)/f () we also need an upper bound for fi(¢)=
mo1jC/ 7L in |t < 1/2.

Jj=1 . .
Each |C)| < 27,50 |C,t/7!| < 2. Thus
(4.5) |fu(t)| < M? for|t]<1/2.

Since no polynomial can have a zero of fractional order, for fixed x,
|£,(£)] > 1in |¢] < 1/2. But for variable M, we need a lemma.

LemMMA. Uniformly in M > 1, in m with deg m = M, in x mod m of
the third kind, and in |t| < 1/2,
|£.(£)|> M "(log M)~
Proof. By (4.4), there exists C > 0 such that

£ () |2 CM/4(log M)t = 172",

Let 7y, 0 < ¢, < 1/2, be the unique solution of

“1/4
| 7

M?=3CMV4(log M) ™|t - 1 to=%~(3)'C*M*(log M)™".
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Then

| £/ 2 £ (1g) |- M*(1/2 = 1)
from (4.5), and this is > (3)’:C*M~"(log M)~ from (4.4). Now for
Iz — # < 163 — tol
11D ] 2| £ (1) | = ML = 15] = 3 (5 = &) C*M"(log M)~
For |t — 3| = 3¢, — 3|, though,
L34
3]

|fx(t)| > CMV*(log M)_3/4|t - by (4.4),

= (2)(3) " C*M (g M)~

Thus uniformly in M, m, x modm of the third kind, and for ¢,
7l < 1/2,

(4.6) £ (6)] = ;M "(log M)

The lemma follows by the continuity of the f, (7).
Now

t)(") Z C/]—'tj n

so [f ()] < 2M)" in |7 < 1/2. Thus for |v| < M~° and |T|=1/2
we have

(4.7) fx(T + v) =fx(T) +0 g JL [’(2M)/+1

(with the implicit constant = 1)
~ £(T) + O(Mo)).
Thus uniformly in M, m, and ¥,
(4.8) £(6)#0 inlt] <1/2+ C(M°(logM)™)

for some C, > 0.

5. Conclusions. We now expand (3.5) as a series in f, and estimate the
coefficient of "~ 1,
From x,, we get

- nyn—1 d 1_ g n—1 (n_ 1)]
G0 Tt XL L ¥ e(—————k )



DIRICHLET’S THEOREM IN GF(2) 101

so the coefficient of 1"~ ! is

(5.2) 2"+ 2 —1 2 (("_1) )

ko1 k j=0
Now [EXZje((n — 1)j/k)| < k, so the second term of (5.2) is
O(XM_,1,(k)). Now trivially this latter is O(M). (A little thought shows
it to be O( M /log M) but we have larger errors elsewhere.) Thus in (3.5)
the coefficient of "~ ! due to x,, is

(5.3) 2"+ 0(M).
The expansion of the rest of (3.5) works out to X%_, r,,t" !, where
~N(w)
(5.4 r, = ( )
) xn%dm (b) WEZQ w w
X# Xo
Nw) _,
= — ——w".
i X(0)
#*Xo

Now |w| > 1/2 + C,M~°(log M)~>. Thus
(5.5) |r,| < M¢(m)2"exp(—C3nM'9(log M)_3).
Now from (5.5), (5.3), and (3.8) we have
(5.6) ne(m)(1,(n) + 0(32"7))
= 2"+ O(M) + O( M (m)2"exp(-CynM ~*(log M) ”*)).
The theorem follows upon renumbering the constants.
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