DIRICHLET'S THEOREM FOR THE RING OF POLYNOMIALS OVER GF(2)

Douglas Hensley

Abstract

Let G denote the ring $\operatorname{GF}(2)[x]$ of polynomials $g(x)$ over the field of integers mod 2. Let $$
I(k)=\#\{p \in G: \operatorname{deg} p=k \text { and } p \text { is irreducible in } G\} .
$$

It is well known that $I(k)=(1 / k) \sum_{d \mid k} \mu(d) 2^{k / d}$. Here we prove an analog to Dirichlet's Theorem on primes in arithmetic progressions. For any $m \in G$ the p counted in $I(k)$ are uniformly distributed among the congruence classes $(b) \bmod m$ for which $(b, m)=1$. The result is especially sharp when m is square-free.

1. Introduction and notation. As in the abstract, $G=\mathrm{GF}(2)[x]$. We will suppress the variable and write, for instance, 1011 in place of $x^{3}+x+1$. We denote the set of irreducible $p \in G$ by I. The only part of this work which does not seem to generalize easily to other $\operatorname{GF}(q)[x], q$ a prime, is the special role of square-free moduli. Defining $\phi: G \rightarrow Z$ in the natural way $(\phi(m)=\#\{a: \operatorname{deg} a=\operatorname{deg} m$ and $(a, m)=1\})$, we have that

$$
\begin{equation*}
\phi(m) \text { is odd if and only if } m \text { is square-free. } \tag{1.1}
\end{equation*}
$$

Consequently, none of the "Dirichlet characters" on $G / m G$ can have as their range $\{-1,0,1\}$. The absence of this kind of Dirichlet character permits sharper bounds. For fixed $m \in G, b \in G$ with $(b, g)=1$, let $I_{b}(n)$ denote the number of irreducible $p \in G$ of degree n such that $p \equiv b \bmod m$.

Theorem. There exist positive effectively computable constants C_{1} and C_{2} such that for all integers $M, N \geq 1$, for all square-free polynomials $m \in G$ of degree M, and for all congruence classes $(b) \bmod m$ relatively prime to m,

$$
\left|I_{b}(N)-\frac{2^{N}}{N \phi(m)}\right| \leq \frac{C_{1} M 2^{N}}{N} \exp \left(-C_{2} N M^{-9}(\log M)^{-3}\right) .
$$

That is,

$$
I_{b}(N)=\frac{2^{N}}{N \phi(m)}\left(1+O\left(M \phi(m) e^{-C_{2} N M^{-9}(\log M)^{-3}}\right)\right)
$$

uniformly in N, M, m and b.
The result, of course does not constitute any improvement on the trivial bounds $0 \leq I_{b}(N) \leq I(N)$ unless N is larger, roughly, than M^{9}. It differs from results of Uchiyama and Carlitz $[1,3,4]$ in its generality and uniformity with respect to the modulus, treating the ring G as fixed. Basically they kept G variable and constrained m.

When m is not square-free, characters of the second kind intrude, and we must settle for $2^{-M} M^{-2}$ in place of $M^{-9}(\log M)^{-3}$ in Theorem 1.
2. Preliminaries. For much of its length our proof follows the path of the classic proof of Dirichlet's theorem. There are analogs to Dirichlet characters, to L-functions, and product expansions valid in a half-plane. The difference is that in this case the L-functions are essentially polynomial functions on \mathbf{C}. This simplifies the analysis. We can dispense with contour integrations, and just compare coefficients in two expansions of

$$
\sum_{\chi \bmod m} \frac{1}{\chi(b)} \frac{L^{\prime}(s, \chi)}{L(s, \chi)}
$$

as series in $t=2^{-s}$. The reader who wants to see just what is different can skip this section.

Let $N a=2^{\operatorname{deg} a}$, for $a \in G$. Let

$$
\begin{equation*}
\phi(m)=\#\{a: \operatorname{deg} a=\operatorname{deg} m \text { and }(a, m)=1\} . \tag{2.1}
\end{equation*}
$$

Note that for $p \in G$ irreducible, $\phi(p)=N p-1$ and is odd. Finally, the usual proof that

$$
\begin{equation*}
\phi(m)=(N m) \prod_{p \mid m}\left(1-\frac{1}{N p}\right) \tag{2.2}
\end{equation*}
$$

is valid in this setting too, so $\phi(m)$ is multiplicative. Thus $\phi(m)$ is odd if and only if m is square-free.

A character $\bmod m$ is a function $\chi: G \rightarrow C$ such that
(i) $\chi(a) \chi(b)=\chi(a b) \quad$ for $a, b \in G$.
(ii) $\chi(a)=\chi(b) \quad$ if $a \equiv b \bmod m$
(iii) $\quad \chi(a)=0 \quad$ for $(a, m) \neq 1$.

As with characters in the integers, $\chi(1)=1$, and if $(a, m)=1$ then $\chi(a)$ is a $\phi(m)$ th root of 1 . For every m except $1,10,11$ and 110 , there is a character other than the trivial character χ_{0}, where

$$
\chi_{0}(a)=1 \quad \text { for }(a, m)=1, \quad \chi_{0}(a)=0 \quad \text { otherwise }
$$

Further, with the same exceptions,

$$
\begin{gather*}
\sum_{a \bmod m} \chi(a)=0 \quad \text { for all } \chi \neq \chi_{0} \tag{2.4}\\
\sum_{\chi \bmod m} \chi(a)=0 \quad \text { for all } a \not \equiv 1 \bmod m .
\end{gather*}
$$

(All irreducibles except the factors of m are $\equiv 1 \bmod m$ when $m=1,10$, 11 or 110 , since only $1 \bmod m$ is relatively prime to m in these cases. From now on, we assume m is not $1,10,11$ or 110.)

$$
\begin{equation*}
\sum_{\chi \bmod m} \chi(1)=\phi(m) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{a \bmod m} \chi_{0}(a)=\phi(m) \tag{2.7}
\end{equation*}
$$

Proof. The classical proofs go over word for word. See e.g. Landau [2].
We now define a power series $f_{\chi}(t)$ corresponding to each $\chi \bmod m$. With the substitution $t=2^{-s}$ we get the analog of a Dirichlet L-series.

Definition.

$$
\begin{equation*}
f_{\chi}(t)=\sum_{a \in G} \chi(a) t^{\operatorname{deg} a}=\sum_{j=0}^{\infty}\left\{\sum_{\operatorname{deg} a=j} \chi(a)\right\} t^{j} \tag{2.8}
\end{equation*}
$$

and

$$
L(s, \chi)=\sum_{\substack{a \in G \\ a \neq 0}} \chi(a)(N a)^{-s}
$$

Let $C_{j}(\chi)=\sum_{\operatorname{deg} a=j} \chi(a)$. Then by (2.4), for $\chi=\chi_{0}, C_{j}(\chi)=0$ for $j \geq \operatorname{deg} m$.

Thus for $\chi \neq \chi_{0}$, and with $M=\operatorname{deg} m$,

$$
\begin{equation*}
f_{\chi}(t)=\sum_{j=0}^{m-1} C_{j}(\chi) t^{j} \tag{2.9}
\end{equation*}
$$

and is a polynomial over the complex numbers of degree $\leq M-1$. We note here that

$$
\begin{equation*}
f_{\chi}(0)=1, \quad f_{\chi}(1)=0, \quad \text { and } \quad\left|C_{j}\right| \leq 2^{j} \tag{2.10}
\end{equation*}
$$

If we forget temporarily that $f_{\chi}(t)$ is a polynomial, it is natural to ask for a product expansion. Formally,

$$
\begin{equation*}
f_{\chi}(t)=\prod_{p \in I}\left(1-\frac{\chi(p)}{(N p)^{s}}\right)^{-1}=\prod_{p \in I}\left(1-\chi(p) t^{\operatorname{deg} p}\right)^{-1} \tag{2.11}
\end{equation*}
$$

and the product converges absolutely for $|t|<\frac{1}{2} \quad(\operatorname{Re}(s)>1)$. The function corresponding to the Riemann zeta function here is

$$
\begin{equation*}
Z(t):=\sum_{a \neq 0} t^{\operatorname{deg} a}=\frac{1}{1-2 t}, \tag{2.12}
\end{equation*}
$$

and this has the product expansion

$$
\begin{equation*}
Z(t)=\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{-I(k)} \tag{2.13}
\end{equation*}
$$

Finally, for $\chi=\chi_{0} \bmod m$,

$$
\begin{equation*}
f_{\chi_{0}}(t)=Z(t) \prod_{p \mid m}\left(1-t^{\operatorname{deg} p}\right) \tag{2.14}
\end{equation*}
$$

The well known identity

$$
\begin{equation*}
I(k)=\frac{1}{k} \sum_{d \mid k} \mu(d) 2^{k / d} \tag{2.15}
\end{equation*}
$$

now follows from a (much) simplified reprise of the proof of the prime number theorem. We have $Z^{\prime}(t) / Z(t)=2 /(1-2 t)$ on one hand, while from (2.13) it is $\sum_{k=1}^{\infty} k I(k) t^{k-1} /\left(1-t^{k}\right)$. Expanding both sides as series about $t=0$ and equating coefficients gives

$$
\begin{equation*}
2^{k}=\sum_{d \mid k} d I(d) \tag{2.16}
\end{equation*}
$$

which is equivalent to (2.15).
The same ideas feature in the proof of Theorem 1: differentiate $\log f_{\chi}(t)$, use the product formula on one side, expand things as series in t and equate coefficients.
3. Partial fractions. For $\chi=\chi_{0} \bmod m$,

$$
\begin{equation*}
f_{\chi_{0}}(t)=\frac{1}{1-2 t} \prod_{p \mid m}\left(1-t^{\operatorname{deg} p}\right) \tag{3.1}
\end{equation*}
$$

for $t \neq 1 / 2$. With the notations $I_{m}(k)=\#\{p \in I: p \mid m$ and $\operatorname{deg} p=k\}$, $e(r)=e^{2 \pi i r}$, we have

$$
\begin{equation*}
\frac{f_{\chi_{0}}^{\prime}(t)}{f_{\chi_{0}}(t)}=\frac{2}{1-2 t} \sum_{k=1}^{M} \frac{1}{k} I_{m}(k) \sum_{j=0}^{k-1} \frac{1}{t-e(j / k)} \tag{3.2}
\end{equation*}
$$

which has simple poles at $t=1 / 2$ and at various roots of unity. In all, there are $1+\sum_{k=1}^{M} k I_{m}(k)$ poles of $\left(f_{\chi_{0}}^{\prime} / f_{\chi_{0}}\right)(t)$, and for m square-free, this is just $M+1$. Now for any polynomial $f(t)$ over \mathbf{C} with zeros w_{1}, w_{2}, \ldots, w_{j} to multiplicity $N_{1}, N_{2}, \ldots, N_{j}$,

$$
\begin{equation*}
\frac{f^{\prime}(t)}{f(t)}=\sum_{t=1}^{j} \frac{N_{i}}{t-w_{t}} \tag{3.3}
\end{equation*}
$$

Thus for any character $\chi \neq \chi_{0} \bmod m$,

$$
\frac{f_{\chi}^{\prime}(t)}{f_{\chi}(t)}=\sum_{w \in \Omega_{\chi}} \frac{N(w)}{t-w}
$$

where Ω_{χ} is the set of zeros of $f_{\chi}(t)$ and $N(w)$ the corresponding multiplicity, for $w \in \Omega_{\chi}$. By (2.11), $f_{\chi}(t) \neq 0$ for $|t|<1 / 2$, that is, $|w| \geq 1 / 2$ if $w \in \Omega_{\chi}$. We now fix $b \bmod m,(b, m)=1$, and consider

$$
\begin{equation*}
\sum_{\chi \bmod m} \frac{1}{\chi(b)} \frac{f_{\chi}^{\prime}(t)}{f_{\chi}(t)} \tag{3.4}
\end{equation*}
$$

On one hand, this is equal to

$$
\begin{align*}
& \sum_{\substack{\chi \bmod _{\chi} m \\
\neq \chi_{0}}} \frac{1}{\chi(b)} \sum_{w \in W_{\chi}} \frac{N(w)}{t-w}+\frac{2}{1-2 t} \tag{3.5}\\
& \quad-\sum_{k=1}^{M} \frac{1}{k} I_{m}(k) \sum_{j=0}^{k-1} \frac{1}{t-e(j / k)} .
\end{align*}
$$

We anticipate that for small t, the series expansion of this about zero converges, and that the dominant contribution to the coefficient of t^{n} for large n comes from $2 /(1-2 t)$.

On the other hand, (3.4) equals

$$
\begin{align*}
\sum_{\chi \bmod m} \frac{1}{\chi(b)} & \sum_{p \in I} \frac{\chi(p)(\operatorname{deg} p) t^{\operatorname{deg} p-1}}{1-\chi(p) t^{\operatorname{deg} p}} \tag{3.6}\\
& =\sum_{k=1}^{\infty} k \sum_{j=0}^{\infty} \sum_{p \in I} \sum_{\chi \bmod m} \frac{1}{\chi(b)}(\chi(p))^{J+1} t^{(\jmath+1) k-1} \\
& =\sum_{n=1}^{\infty} n t^{n-1} \sum_{d \mid n} \frac{1}{d} \sum_{\substack{p \in I \\
\operatorname{deg} p=n / d}} \sum_{\chi \bmod m} \frac{1}{\chi(b)}(\chi(p))^{d} .
\end{align*}
$$

Thus the coefficient of t^{n-1} in the expansion of (3.6) about $t=0$ is

$$
\begin{equation*}
n \sum_{d \mid n} \frac{1}{d} \sum_{\substack{p \in I \\ \operatorname{deg} p=n / d}} \sum_{\chi \bmod m} \frac{1}{\chi(b)} \chi(p)^{d} \tag{3.7}
\end{equation*}
$$

In (3.7), the part due to $d=1$ is predominant, as we shall see. This part simplifies by (2.5) and (2.6) to

$$
n \phi(m) \sum_{\substack{p \in I \\ \operatorname{deg} p=n}} 1=n \phi(m) I_{b}(n)
$$

The other terms may be estimated rather crudely. For any d,

$$
\left|\sum_{\chi \bmod m} \frac{1}{\chi(b)} \chi(p)^{d}\right| \leq \varphi(m)
$$

and $I(d) \leq 2^{d} / d$. Thus in (3.7) the part of the sum due to a particular d has absolute value $\leq(n / d) 2^{d} \phi(m)$.

This gives

$$
\begin{equation*}
\sum_{\chi \bmod m} \frac{1}{\chi(b)} \frac{f_{\chi}^{\prime}(t)}{f_{\chi}(t)}=\sum_{n=1}^{\infty} n \phi(m)\left\{I_{b}(n)+O\left(\frac{1}{n} 2^{n / 2}\right)\right\} t^{n-1} \tag{3.8}
\end{equation*}
$$

The implicit constant is independent of b, m, and n.
In (3.5) the expansion of $2 /(1-2 t)$ is simple, and the coefficients of t^{n} arising from $1 /(t-e(j / k))$ are quite small by comparison. We just need a bound on $|w|$ for $w \in \Omega_{\chi}, \chi \neq \chi_{0}$. Here the distinction between characters of the second kind (real valued and taking -1 as well as +1) and third kind (not real) is important.

If χ is a character of the second kind then following Landau's treatment in [2] one sees that $f_{\chi}(1 / 2) \neq 0$. But then

$$
f_{\chi}(1 / 2)=\sum_{j=0}^{M-1} C_{j}(1 / 2)^{j}
$$

and $c_{j}=\sum_{\operatorname{deg} a=j} \chi(a)$ is an integer here, so $\left|f_{\chi}(1 / 2)\right| \geq 2^{-M}$. More sophisticated approaches led to no better an estimate. The estimate for $I_{b}(n)$ when m is not square-free is done the same way as that for when m is square-free, except at this point. Since the main interest attaches to the uniformly good estimates to be had for square-free m, we shall not go into this any more.

Assume now that m is square-free. Then there are no real characters other than χ_{0}.
4. The zeros of $f_{\chi}(t)$ for characters of the third kind. By the familiar device based on the inequality $3+4 \cos \theta+\cos 2 \theta \geq 0$ and the product expansion (2.11), we have

$$
\begin{equation*}
\left|f_{\chi_{0}}^{3}(t) f_{\chi}^{4}(t) f_{\chi^{2}}(t)\right| \geq 1 \quad \text { for }|t|<1 / 2 \tag{4.1}
\end{equation*}
$$

Since χ takes on non-real values, $\chi^{2} \neq \chi_{0}$, so $\left|f_{\chi^{2}}(t)\right| \leq M$ for $|t| \leq 1 / 2$. The factor involving χ_{0} is easily estimated:

$$
\left|f_{\chi_{0}}(t)\right| \leq\left|\frac{1}{1-2 t}\right| \prod_{p \mid m}\left(1+\frac{1}{N p}\right), \quad \text { for }|t|<\frac{1}{2}
$$

It is well known that for integer $n \rightarrow \infty, \phi(n) \gg n / \log \log n$; the worst case is when n is the product of the first k primes for some k.

Similarly here we have for $\operatorname{deg} m=M, M \rightarrow \infty$ that

$$
\begin{equation*}
\phi(m) \gg 2^{M} / \log M, \quad \text { uniformly in } m \tag{4.2}
\end{equation*}
$$

Since

$$
\begin{gathered}
\prod_{p \mid m}\left(1+\frac{1}{N p}\right)<\prod_{p \mid m}\left(1-\frac{1}{N p}\right)^{-1}=\frac{2^{M}}{\phi(m)} \\
\prod_{p \mid m}\left(1+\frac{1}{N p}\right) \ll \log M
\end{gathered}
$$

and so

$$
\begin{equation*}
\left|f_{\chi_{0}}(t)\right| \ll\left|\frac{\log M}{1-2 t}\right|, \quad|t|<\frac{1}{2} . \tag{4.3}
\end{equation*}
$$

Now from (4.1),

$$
\begin{equation*}
\left|f_{\chi}(t)\right| \gg M^{-1 / 4}(\log M)^{-3 / 4}|t-1 / 2|^{3 / 4} \quad \text { in }|t|<1 / 2 \tag{4.4}
\end{equation*}
$$

To estimate $f_{\chi}^{\prime}(t) / f_{\chi}(t)$ we also need an upper bound for $f_{\chi}^{\prime}(t)=$ $\sum_{j=1}^{m-1} j C_{j} t^{t^{-1}}$, in $|t|<1 / 2$.

Each $\left|C_{j}\right| \leq 2^{j}$, so $\left|C_{j} t^{j-1}\right| \leq 2$. Thus

$$
\begin{equation*}
\left|f_{\chi}^{\prime}(t)\right| \leq M^{2} \quad \text { for }|t| \leq 1 / 2 \tag{4.5}
\end{equation*}
$$

Since no polynomial can have a zero of fractional order, for fixed χ, $\left|f_{\chi}(t)\right| \gg 1$ in $|t|<1 / 2$. But for variable M, we need a lemma.

Lemma. Uniformly in $M \geq 1$, in m with $\operatorname{deg} m=M$, in $\chi \bmod m$ of the third kind, and in $|t| \leq 1 / 2$,

$$
\left|f_{\chi}(t)\right| \gg M^{-7}(\log M)^{-3}
$$

Proof. By (4.4), there exists $C>0$ such that

$$
\left|f_{\chi}(t)\right| \geq C M^{-1 / 4}(\log M)^{-3 / 4}|t-1 / 2|^{3 / 4}
$$

Let $t_{0}, 0<t_{0}<1 / 2$, be the unique solution of

$$
M^{2}=\frac{3}{4} C M^{-1 / 4}(\log M)^{-3 / 4}\left|t-\frac{1}{2}\right|^{-1 / 4}: \quad t_{0}=\frac{1}{2}-\left(\frac{3}{4}\right)^{4} C^{4} M^{-9}(\log M)^{-3}
$$

Then

$$
\left|f_{\chi}(1 / 2)\right| \geq\left|f_{\chi}\left(t_{0}\right)\right|-M^{2}\left(1 / 2-t_{0}\right)
$$

from (4.5), and this is $\geq\left(\frac{3}{4}\right)^{3} \frac{1}{4} C^{4} M^{-7}(\log M)^{-3}$ from (4.4). Now for $\left|\frac{1}{2}-t\right|<\frac{1}{10}\left|\frac{1}{2}-t_{0}\right|$,

$$
\left|f_{\chi}(t)\right| \geq\left|f_{\chi}\left(t_{0}\right)\right|-\frac{1}{10} M^{2}\left|\frac{1}{2}-t_{0}\right| \geq\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}-\frac{1}{10}\right) C^{4} M^{-7}(\log M)^{-3}
$$

For $\left|t-\frac{1}{2}\right| \geq \frac{1}{10}\left|t_{0}-\frac{1}{2}\right|$, though,

$$
\begin{aligned}
\left|f_{\chi}(t)\right| & \geq C M^{-1 / 4}(\log M)^{-3 / 4}\left|t-\frac{1}{2}\right|^{3 / 4} \quad \text { by }(4.4) \\
& \geq\left(\frac{3}{4}\right)^{3}\left(\frac{1}{10}\right)^{3 / 4} C^{4} M^{-7}(\log M)^{-3}
\end{aligned}
$$

Thus uniformly in $M, m, \chi \bmod m$ of the third kind, and for t, $|t|<1 / 2$,

$$
\begin{equation*}
\left|f_{\chi}(t)\right| \geq C_{1} M^{-7}(\log M)^{-3} \tag{4.6}
\end{equation*}
$$

The lemma follows by the continuity of the $f_{\chi}(t)$.
Now

$$
f_{\chi}(t)^{(n)}=\sum_{j=n}^{M-1} C, \frac{n!}{j!} t^{j-n},
$$

so $\left|f_{\chi}(t)^{(n)}\right| \leq(2 M)^{n+1}$ in $|t| \leq 1 / 2$. Thus for $|v| \leq M^{-9}$ and $|T|=1 / 2$ we have

$$
\begin{align*}
f_{\chi}(T+v)= & f_{\chi}(T)+O\left(\sum_{j=1}^{M-1} \frac{1}{j!}|v|^{j}(2 M)^{j+1}\right) \tag{4.7}\\
& \quad(\text { with the implicit constant }=1) \\
= & f_{\chi}(T)+O\left(M^{2}|v|\right)
\end{align*}
$$

Thus uniformly in M, m, and χ,

$$
\begin{equation*}
f_{\chi}(t) \neq 0 \quad \text { in }|t| \leq 1 / 2+C_{2}\left(M^{-9}(\log M)^{-3}\right) \tag{4.8}
\end{equation*}
$$

for some $C_{2}>0$.
5. Conclusions. We now expand (3.5) as a series in t, and estimate the coefficient of t^{n-1}.

From χ_{0}, we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} 2^{n} t^{n-1}+\sum_{k=1}^{M} \frac{1}{k} I_{m}(k) \sum_{J=0}^{k-1} \sum_{n=1}^{\infty} t^{n-1} e\left(\frac{(n-1) j}{k}\right) \tag{5.1}
\end{equation*}
$$

so the coefficient of t^{n-1} is

$$
\begin{equation*}
2^{n}+\sum_{k=1}^{M} \frac{1}{k} I_{m}(k) \sum_{j=0}^{k-1} e\left(\frac{(n-1) j}{k}\right) \tag{5.2}
\end{equation*}
$$

Now $\left|\sum_{j=0}^{k-1} e((n-1) j / k)\right| \leq k$, so the second term of (5.2) is $O\left(\sum_{k=1}^{M} I_{m}(k)\right)$. Now trivially this latter is $O(M)$. (A little thought shows it to be $O(M / \log M)$ but we have larger errors elsewhere.) Thus in (3.5) the coefficient of t^{n-1} due to χ_{0} is

$$
\begin{equation*}
2^{n}+O(M) \tag{5.3}
\end{equation*}
$$

The expansion of the rest of (3.5) works out to $\sum_{n=1}^{\infty} r_{n} t^{n-1}$, where

$$
\begin{align*}
r_{n} & =\sum_{\substack{\chi \bmod _{\chi \neq \chi_{0}}}} \frac{1}{\chi(b)} \sum_{w \in \Omega_{\chi}} \frac{-N(w)}{w}\left(\frac{1}{w}\right)^{n-1} \tag{5.4}\\
& =-\sum_{\substack{\bmod _{\chi \neq \chi_{0}}}} \frac{N(w)}{\chi(b)} w^{-n} .
\end{align*}
$$

Now $|w| \geq 1 / 2+C_{2} M^{-9}(\log M)^{-3}$. Thus

$$
\begin{equation*}
\left|r_{n}\right| \leq M \phi(m) 2^{n} \exp \left(-C_{3} n M^{-9}(\log M)^{-3}\right) \tag{5.5}
\end{equation*}
$$

Now from (5.5), (5.3), and (3.8) we have

$$
\begin{align*}
& n \phi(m)\left(I_{b}(n)+O\left(\frac{1}{n} 2^{n / 2}\right)\right) \tag{5.6}\\
& \quad=2^{n}+O(M)+O\left(M \phi(m) 2^{n} \exp \left(-C_{3} n M^{-9}(\log M)^{-3}\right)\right)
\end{align*}
$$

The theorem follows upon renumbering the constants.

References

[1] L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Am. Math. Soc., 3 (1952), 693-700.
[2] E. Landau, Elementary Number Theory, Chelsea, NY, 1966.
[3] Saburô Uchiyama, Sur les polynomes irréductibles dans un corps fini I, Proc. Japan Acad., 30 (1954), 523-527.
[4] \qquad , II, Proc. Japan Acad., 31 (1955), 267-269.

Received December 28, 1984.

