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DIRICHLET'S THEOREM FOR THE RING
OF POLYNOMIALS OVER GF(2)

DOUGLAS HENSLEY

Let G denote the ring GF(2)[x] of polynomials g(x) over the field
of integers mod 2. Let

[(k) = #{/> £ G: deg p = k and p is irreducible in G }.

It is well known that I(k) = (l/k)Σd]kμ(d)2k/d. Here we prove an
analog to DiricWet's Theorem on primes in arithmetic progressions. For
any m e G the p counted in I(k) are uniformly distributed among the
congruence classes (b) modm for which (b, m) = 1. The result is
especially sharp when m is square-free.

1. Introduction and notation. As in the abstract, G = GF(2)[JC]. We

will suppress the variable and write, for instance, 1011 in place of

x 3 4- x + 1. We denote the set of irreducible p e G by /. The only part

of this work which does not seem to generalize easily to other GF(q)[x]9 q

a prime, is the special role of square-free moduli. Defining φ: G -> Z in

the natural way (φ(m) = #{a: dega = degm and (a9 m) = 1}), we have

that

(1.1) φ(m) is odd if and only if m is square-free.

Consequently, none of the "Dirichlet characters" on G/mG can have as

their range {-1,0,1}. The absence of this kind of Dirichlet character

permits sharper bounds. For fixed m e G, b e G with (Z>, g) = 1, let

Ih(n) denote the number of irreducible p e G of degree n such that

p ΞΞ b modm.

THEOREM. There exist positive effectively computable constants Cλ and

C2 such that for all integers M, N > 1, for all square-free polynomials

m e G of degree M, and for all congruence classes (b) modm relatively

prime to m,
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That is.

uniformly in N, M, m and b.

The result, of course does not constitute any improvement on the
trivial bounds 0 < Ih(N) < I(N) unless N is larger, roughly, than M9. It
differs from results of Uchiyama and Carlitz [1, 3, 4] in its generality and
uniformity with respect to the modulus, treating the ring G as fixed.
Basically they kept G variable and constrained m.

When m is not square-free, characters of the second kind intrude, and
we must settle for 2~MM~2 in place of M~9(logM)~3 in Theorem 1.

2. Preliminaries. For much of its length our proof follows the path of
the classic proof of Dirichlet's theorem. There are analogs to Dirichlet
characters, to L-functions, and product expansions valid in a half-plane.
The difference is that in this case the L-functions are essentially poly-
nomial functions on C. This simplifies the analysis. We can dispense with
contour integrations, and just compare coefficients in two expansions of

„ 1 L'(s,χ)

as series in t = 2 s. The reader who wants to see just what is different can
skip this section.

Let Na = 2deg", for a e G. Let

(2.1) φ(m) = #{α: degα = degm and (α, m) = 1).

Note that for p e G irreducible, φ(p) = Np - 1 and is odd. Finally, the
usual proof that

(2.2) ΦW-WΓl(l-i

is valid in this setting too, so φ(m) is multiplicative. Thus φ(m) is odd if
and only if m is square-free.

A character mod m is a function χ: G --> C such that

(i) x(a)x(b) = χ(ab) for a, b e G.

(2.3) (ii) χ(β) = χ(6) if α ^ έ mod m

(iii) χ(a) = 0 for (α, m) Φ 1.
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As with characters in the integers, χ ( l ) = 1, and if (α, m) = 1 then
χ(a) is a φ ( m ) t h root of 1. For every m except 1, 10, 11 and 110, there is
a character other than the trivial character χ 0 , where

χo(a) = 1 for (a, m) = 1, χo(
a) = 0 otherwise.

Further, with the same exceptions,

(2.4) Σ x(a) = 0 f o r a l l χ * χ 0

amodm

(2.5) Σ x(a) = ° for all a & 1 modm.
χmodm

(All irreducibles except the factors of m are = 1 mod m when m = 1,10,
11 or 110, since only 1 mod m is relatively prime to m in these cases.
From now on, we assume m is not 1,10,11 or 110.)

(2.6) Σ
χmodm

and

(2.7) Σ
a modm

Proof. The classical proofs go over word for word. See e.g. Landau [2].
We now define a power series fχ(t) corresponding to each x mod m.

With the substitution t = 2's we get the analog of a Dirichlet L-series.

DEFINITION.

(2-8) / X (/)- Σ x(a)rdegα= £ { Σ x(«)}*',
a&G y = 0 ^ degα=/ '

and

£(*,x)- Σ x(«)(^Γ

Let ς (χ) = Σ d e g α = yχ(α). Then by (2.4), for x = χ0, ς.(χ) = 0 for
7 > degm.

Thus for x Φ χ0, and with M = degm,
m - l

(2.9) / x(0= Σ ς(χ)/'

and is a polynomial over the complex numbers of degree < M - 1. We
note here that

(2.10) /J0) = l, Λ(l) = 0, and |C / |<2Λ
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If we forget temporarily that fχ(t) is a polynomial, it is natural to ask
for a product expansion. Formally,

(2.Π) fx(t) = Π (l - ^ 4 ) = Π (1 " x(p)t*"Y\
Λ (N) I

and the product converges absolutely for \t\ < \ (Re(ί) > 1). The func-
tion corresponding to the Riemann zeta function here is

(2.12) Z(/):= Σ t^^-^r-

and this has the product expansion

(2.i3) z(t) = π a - tkriw.

Finally, for χ = χ 0 mod m,

(2.14) / X o ω = Z ( 0 Π
p\m

The well known identity

(2.15)
* d\k

now follows from a (much) simplified reprise of the proof of the prime
number theorem. We have Z\t)/Z(t) = 2/(1 - It) on one hand, while
from (2.13) it is Σf=ιkl(k)tk~ι/(1 - tk). Expanding both sides as series
about t = 0 and equating coefficients gives

(2.16) 2k= Σdl(d),
d\k

which is equivalent to (2.15).
The same ideas feature in the proof of Theorem 1: differentiate

log/ χ(0, u s e the product formula on one side, expand things as series in t
and equate coefficients.

3. Partial fractions. For χ = χ 0 mod m,

1 — 2/ p\m

for / Φ 1/2. With the notations lm(k) = #{ p e /: p\m and deg/? = k}9

e(r) = e2πιr, we have
f (t) r, M Λ k~\ Λ

k = \ K j = 0 l e\J/κ)
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which has simple poles at t = 1/2 and at various roots of unity. In all,

there are 1 + Σ^=ιklm(k) poles of (/χo//X o)(O> a n d for m square-free,

this is just M + 1. Now for any polynomial / ( / ) over C with zeros wl9

w2,..., Wj to multiplicity Nl9 N2,..., NJ9

(33) 7ΰ)~k<-<
Thus for any character χ Φ χ 0 mod ra,

f ( t ) ^ t - w '

where Ωχ is the set of zeros of f (t) and N(w) the corresponding

multiplicity, for w G Ωχ. By (2.11), / χ(/) # 0 for \t\ < 1/2, that is,

|w| > 1/2 if w e Ωχ. We now fix b mod m, (b, m) = 1, and consider

(3.4) Σ "TMΦTTY

On one hand, this is equal to

(3.5) Σ -̂ ΓT Σ S + T^7

We anticipate that for small t, the series expansion of this about zero
converges, and that the dominant contribution to the coefficient of tn for
large n comes from 2/(1 - 2t).

On the other hand, (3.4) equals

(3 6) y J1 ' ̂  L
Σ Σ -rrr(χ{p))J+1t{J+l)k-1

k = l j = 0 pel x moάm X\D)

= Σ nt-'Σ \ Σ Σ 7i
n = l d\n p(Ξl χ mod m X

deg p = n/d

Thus the coefficient of tn~ι in the expansion of (3.6) about t = 0 is

(3.7) nΣ\ Σ Σ -7Γ
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In (3.7), the part due to d = 1 is predominant, as we shall see. This
part simplifies by (2.5) and (2.6) to

nφ(m) £ 1 = nφ(m)lh(n).

The other terms may be estimated rather crudely. For any d,

X modra

and I(d) < 2d/d. Thus in (3.7) the part of the sum due to a particular d
has absolute value < (n/d)2dφ(m).

This gives

Xmodm

The implicit constant is independent of b, m, and n.
In (3.5) the expansion of 2/(1 — 2t) is simple, and the coefficients of

tn arising from l/(t — e(j/k)) are quite small by comparison. We just
need a bound on \w\ for w e Ωχ> χ ¥= χ 0. Here the distinction between
characters of the second kind (real valued and taking -1 as well as +1)
and third kind (not real) is important.

If X is a character of the second kind then following Landau's
treatment in [2] one sees that /x(l/2) Φ 0. But then

Λ f - l

/x(l/2)= Σ ς(V2)J

7 = 0

and Cj = Σ d e g α = 7 χ(β) is an integer here, so |/ χ(l/2)| > 2"M. More
sophisticated approaches led to no better an estimate. The estimate for
Ih{n) when m is not square-free is done the same way as that for when m
is square-free, except at this point. Since the main interest attaches to the
uniformly good estimates to be had for square-free m, we shall not go into
this any more.

Assume now that m is square-free. Then there are no real characters
other than χ 0 .

4. The zeros of fχ(t) for characters of the third kind. By the familiar
device based on the inequality 3 + 4cos0 4- cos 2Θ > 0 and the product
expansion (2.11), we have

(4-1) | / x

3

o ( O / x

4 ( O / x ; ( O | ^ l for | f | < 1/2.
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Since χ takes on non-real values, χ 2 Φ χ 0, so \fχi{t)\ < M for \t\ < 1/2.
The factor involving χ 0 is easily estimated:

It is well known that for integer n -> oo, φ(n) » «/log log/2; the
worst case is when n is the product of the first k primes for some k.

Similarly here we have for deg m = M, M -> oo that

(4.2) φ(m) » 2M/log M, uniformly in m.

Since

Ai

and so

(4.3)

Now from (4.1),

(4.4) |j

logM

1 - 2/ 2 '

- 1/2|3/4 in 1/2.

To estimate f^(t)/fx(t) we also need an upper bound for f^(t) =

Each \Cj\ < V, so \CjtJ-ι\ < 2. Thus

(4.5) \φ)\<M2 for | ί | < 1/2.

Since no polynomial can have a zero of fractional order, for fixed χ,
l/χ(OI ^ 1 i n 1*1 < 1/2- But for variable M, we need a lemma.

LEMMA. Uniformly in M > 1, m m w/YΛ deg m = M, />z χ mod m of
the third kind, and in \t\ < 1/2,

|/χ(0|»M-7(logMΓ3.

Proof. By (4.4), there exists C > 0 such that

Let /0, 0 < /0 < 1/2, be the unique solution of

M2 = l /0 = $-
9(logM)-
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Then

from (4.5), and this is > (D^C^ΛT 7(logM)"3 from (4.4). Now for

\\-t\< u-2 - α

| / x ( 0 | | / x ( o ) | τoψ2 - to\ > ( | ) 3 ( i - ^ ) C 4 M

For \t - \\ > &\t0 - H though,

| / x ( / ) | ^ C M - ^ O o g M ) " 3 7 4 ! / - i | V 4 by (4.4),

Thus uniformly in M, m, χ mod m of the third kind, and for t,
< 1/2,

(4.6)

The lemma follows by the continuity of the / x (0
Now

M - lM - l i

/x(/)(e)- Σ ς^/^-,

so \fx(t)(n)\ < (2M)n + ι in |/| < 1/2. Thus for |ϋ| < M'9 and |Γ| = 1/2
we have

(4.7) fx(T + v) = fχ(T) + 0\ Σ -jϊ\vf(2M)J + ι\
\ y = i J ' I

(wi th t h e impl ic i t c o n s t a n t = 1 )

= fx(T) + 0{M2\υ\).

Thus uniformly in M, m, and χ,

(4.8) / χ ( 0 ^ 0 in |r | < 1/2 + C2(M~9(logM)~3)

for some C2 > 0.

5. Conclusions. We now expand (3.5) as a series in /, and estimate the
coefficient of tn~ι.

From χ 0, we get
oo A/ 1 k — \ oo

Σ Σ ί-ί
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so the coefficient of tn'x is

M Λ k~\

(5.2) 2" + Σ hjk) Σ el
* - l K ./=0 V

(n ~ 1)7

Now | Σ * I 0 M ( " ~ 1)7'A)I ^ *, so the second term of (5.2) is
0(Σf= 1/w(λ:)). Now trivially this latter is O(M). (A little thought shows
it to be 0(M/logM) but we have larger errors elsewhere.) Thus in (3.5)
the coefficient of tn~ι due to χ 0 is

(5.3) 2" + O(M).

The expansion of the rest of (3.5) works out to Σ^xrnt
n~ι

9 where

X mod w
X^Xo

X mod m
X^Xo

Now |w| > 1/2 + C2M"9(log M)- 3 . Thus

(5.5) \rn\ < Mφ(m)2nQxp(-C3nM-9(logM)~3).

Now from (5.5), (5.3), and (3.8) we have

(5.6) nφ(m){lb(n) + Oifr"2))

= 2n + O(M) + θ(Mφ(rn)2"exp(-C3nM-9(logM)~3)).

The theorem follows upon renumbering the constants.
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