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DERIVATIONS WITH INVERTIBLE VALUES
IN RINGS WITH INVOLUTION

A. GlAMBRUNO, P. MlSSO AND C. POLCINO MlLIES

Let R be a semiprime 2-torsion free ring with involution * and let
S = { x e R I x = x*} be the set of symmetric elements. We prove that
if R has a derivation d, non-zero on S, such that for all s e S either
d(s) = 0 or d(s) is invertible, then R must be one of the following: (1) a
division ring, (2) 2 X 2 matrices over a division ring, (3) the direct sum
of a division ring and its opposite with exchange involution, (4) the direct
sum of 2 X 2 matrices over a division ring and its opposite with exchange
involution, (5) 4 X 4 matrices over a field with symplectic involution.

Recently Bergen, Herstein and Lanski studied the structure of a ring

R with a derivation d Φ 0 such that, for each X E Λ , d(x) = 0 or d{x) is

invertible. They proved that, except for a special case which occurs when

27? = 0, such a ring must be either a division ring D or the ring D2 of

2 x 2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting

of rings with involution, namely: let R be a 2-torsion free semiprime ring

with involution and let S be the set of symmetric elements. If d Φ 0 is a

derivation of R such that the non-zero elements of d(S) are invertible,

what can we conclude about RΊ

We shall prove that R must be rather special. In fact we shall show

the following:

THEOREM. Let R be a 2-torsion free semiprime ring with involution. Let

d be a derivation of R such that d(S) Φ 0 and the non-zero elements ofd(S)

are invertible in R. Then R is either:

1. a division ring D, or

2. D2, the ring of 2 X 2 matrices over Z), or

3. D Θ Z)o p, the direct sum of a division ring and its opposite relative to

the exchange involution, or

4. D2 Θ D2

P with the exchange involution, or

5. JF4, the ring of 4 X 4 matrices over a field F with symplectic

involution.

In case R = F4 with * symplectic we shall prove that d is inner. As

Herstein has pointed out, an easy example of such a ring is given by
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taking F to be a field in which -1 is not a square and d the inner
derivation in F4 induced by (? 7 Q) where / is the identity matrix in F2.

Now, if R = D Θ D o p or i? = Z>2 Θ D2

op then S = £> or 5 s D 2

respectively. Thus both cases come naturally from [1].
We remark that if d(S) = 0 then d(S) = 0, where S is the subring

generated by S; hence, if R is semiprime, by [3, Theorem 2.1.5] either S

lies in the center of R (and R satisfies the standard identity of degree 4)
or d(J) = 0 for some non-zero ideal J oί R.

Let R be a ring with involution; we denote by Z the center of R and
by S and K the sets of symmetric and skew elements of R respectively.
Throughout this paper, unless otherwise stated, R will be a 2-torsion free

semiprime ring with an involution * and d will be a derivation of R such that

d(S) Φ 0 and the non-zero elements ofd(S) are invertible.

We begin with the following

LEMMA 1. If I = /* is a non-zero ideal of R then d(I Π S) Φ 0.

Proof. Suppose, by contradiction, that d(I Γ) S) = 0 and let t G S be

such that d{t) Φ 0. For all S e / Π S the elements tf s and st + ts lie in

/ Π S, hence

0 = d(stt) = Λ / ( 0 S

0 = d(st 4- to) = sd(0 + d(t)s

Multiplying the second equality from the left by 5, we obtain s2d(t) = 0.
Now, from our basic hypothesis on R, d(t) is invertible; hence s2 = 0,
for all s e / Π S.

Now let JC G i?, 5 G / Π £. Then the element sx + x*s lies in / Π S

and, so, it must be square-zero. Therefore, since s2 = 0,

0 = (sx + x*s)s.x = (sx) ,

that is, every element in the right ideal sR is nilpotent of index < 3. By
Levitski's Theorem [2, Lemma 1] we must have sR = 0 and, so, s = 0.
This proves that / Π S = 0.

For c G /, x + x * E / Π ί ; hence JC = -x* and X 2 G / Π S = 0.

This / is a nilideal of index < 2. This forces / = 0, a contradiction. D

At this stage we are able to prove our result in case 7? is not simple;
in fact we have

PROPOSITION 1. If R is not a simple ring then either R ~ D Θ D o p , D

a division ring, or R = D2 Θ D%p and * is the exchange involution.
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Proof. Let / Φ R be an ideal of R such that / = /*.
Since d(I2 Π S) c d(I2) c /, Lemma 1 shows that I2 = 0 and the

semiprimeness of R forces / = 0. We have proved that R does not
contain proper *-ideals.

If R is not simple, then there exists a proper ideal I Φ I*. Since
J + /* is a non-zero *-ideal of R, I + /* = JR. Also I n I* Φ R is a
*-ideal of R, hence / n /* = 0. Thus we have that R = I Θ /*. More-
over since I2 Φ I*2 we also get R = I2 Θ I*2 and, so, I = I2 and
/* = /* 2; hence, they are both invariant under d. Clearly S = {x + x* |
x G /} and so d(x) and J(x*) are both 0 or both units in / and /*
respectively.

By [1, Theorem 1] /, and hence also /*, is either a division ring D or
D2. If d(I) = 0, then d(I*) Φ 0 and the argument above leads to the
same conclusion. Clearly the involution in R is the exchange involution. D

If R is a prime ring we denote by C the extended centroid of R and
by Q = RC the central closure of R (see [3, pg. 22]). The next lemma
holds for arbitrary rings with involution, with a derivation d Φ 0.

LEMMA 2. Let R be a prime ring with involution, with a derivation
d Φ 0. Let x G Rbe such that for all s G S

xsx*d(R)xsx* = 0.

Then either x*d{R)x = 0 or Q = RC has a minimal right ideal.

Proof. For y G i? let u = x*d(y)x. Then if s G 5,
0; now, if r G /?, sw*r* + ms G £ and, so,

0 = vsu(su*r* 4- rus)u(su*r* -f- rus)u = usurusurusu.

This says that every element in the right ideal usuR is nilpotent of
index < 3. By Levitski's theorem [2, Lemma 1.1], usuR = 0 and so
usu = 0 for all s G S. By [5, Lemma 3], if w # 0, <2 = RC has a minimal
right ideal. D

In light of Proposition 1 we now make a first reduction: from now on,
unless otherwise stated, we will always assume that R is a simple ring with
1. In this case clearly R coincides with its own central closure.

The next lemmas give us some information about the nature of the
symmetric elements in the kernel of d.

LEMMA 3. Let a G £. If for all s G S we have that asa = \a, for some
λ = λ(s) G z, then R has a minimal right ideal.
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Proof. Let x e R. Then a(x + x*)a = λa, for some A G Z , that is

ax*a = λa — UUOZ. Let μ G Z b e such that a(xax + x*αx*)tf = μα. Play-

ing these off against each other we get

0 = axaxa + αx*αjt*0 — μa = laxaxa - 2λaxa + (λ2 - μ)β.

Therefore 2(αx)3 - 2λ(αx)2 4- (λ2 - μ)αx = 0 and, since chari? Φ 2, ax

is algebraic over Z of degree at most 3. This proves that aR is an

algebraic algebra of bounded degree. Thus aR satisfies a polynomial

identity; hence R satisfies a generalized polynomial identity. Since R

coincides with its own central closure, by a theorem of Martindale [3,

Theorem 1.3.2.] R has a minimal right ideal. D

LEMMA 4. Suppose R does not contain minimal right ideals. If a e S is

such that d(a) = 0 then either a is inυertible or ad(R)a = 0.

Proof. Suppose a Φ 0 and a is not invertible. Since d(ά) = 0 then,

for all s <E S, d(asa) = ad(s)a and it is not invertible. Hence ad(s)a = 0.

Now let x G ί . Then ad(x + x*)a = 0 implies ad{x)a = -ad(x*)a.

Therefore for all s ^ S, recalling that d(a) = ad(s)a = 0 we get

asad(x)a = ad(sax)a = -ad(x*as)a = -ad(x*)asa = ad(x)asa.

We have proved that for all x e Λ, 5 e S,

(1) asad(x)a = ad(x)asa

Since d(α) = 0, d(aR) c αi?; moreover if ρΛ(α) is the left annihila-

tor of a in /?, d(pR(a)) c pR(a); this says that d induces a derivation

(which we will still denote by d) in the prime ring Rλ = aR/pR(a) Π αi?.

Moreover, for s e S, if as is the image of as in u 1 ? from (1) we get

asd(ax) = d(ax)as, for all ax e J?1.

By [4] since chari? =£ 2 either d = 0 in 7?x or as e Z(Rι), the center of

i?j. That is, either ad(R)a = 0 or αsαxα = αxαsα for all x e R.

If ad(R)a = 0 we are done; therefore we may assume that asaxa =

axasa, for all x e i?, 5 G S. But then, by [3, Lemma 1.3.2.], αsα = λα, for

some λ e Z and, by Lemma 3, i? has a minimal right ideal, a contradic-

tion. D

We remark that since R is simple with 1 then it must be a primitive

ring. Now, through a repeated application of the density theorem we will

be able to prove that R is artinian.
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PROPOSITION 2. R is a simple artinian ring.

Proof. Since R is primitive it is a dense ring of linear transformations
on a vector space Fover a division ring D. By [3, Lemma 1.1.2.] to prove
that R is artinian it is enough to prove that R has a minimal right ideal or
equivalently that R contains a non-zero transformation of finite rank.
Suppose, by contradiction, that this is not the case.

Let ί E S b e such that d(s) Φ 0 and suppose that there exist linearly
independent vectors v, w e V such that

vs = ws = 0.

Since d(s) is invertible, the vectors vd(s) and wd(s) are linearly indepen-
dent over D. Moreover, since R doesn't contain non-zero transformations
of finite rank, there exists a vector u e V such that us £ vd(s)D +
wd(s)D, i.e., us, vd(s), wd(s) are linearly independent over D:

By the density of the action of R on V, there exists x e 2? such that

0

W/(J)JC = 0

W(J)JC Φ 0.

Let / e S. Since υd(s)x = iλs = 0 then υd(sxtx*s) = 0; hence, since
sjcta;*s e S and d(sxtx*s) is not invertible, we must have d(sxtx*s) = 0.
Moreover s, and so sxtχ*s, is not invertible. Since R has no minimal right
ideals, by applying Lemma 4 to the element sxtx*sy we get
sxtx*sd(R)sxtx*s = 0, for all / e 5. Hence Lemma 2 implies ;c
= 0.

Now let y, z e i?. Since x*Λ ί/(7)5Λ: = 0 we have

0 =6 x*Mf(}tf.xz)£X = x*syd(sxz)sx.

Hence x*sRd(sxR)sx = 0 and, since x*s Φ 0, the primeness of 7? forces
d(sxR)sx = 0. If j> e i? we get

0 = cf(1s<xj;)jjc = i/(»y)xy5x + sd(xy)sx;

hence, since ws = 0, 0 = wd(sxy)sx = wd(s)xysx. But wd(s)x Φ 0, and,
by the density of the action of R on V9 wd(s)xR = V\ thus 0 -
W(5 )x/?5 χ = Kyx implying sx = 0, a contradiction.

We have proved that for every s e S with d(s) # 0, dimD kers < 1.
Now let W be a finite dimensional subspace of F such that

> 1 and let p = ρw = {x G i? | ŴJC = 0} p is a right ideal of i?.
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We claim that there exists s e p Π S such that s2 Φ 0. In fact,

suppose not and let x G p, 5 E p n S. Then, since (xs + sx*) ^ p Π S

and (xs + sx*)2 = S2 = 0; we get 0 = s(xs + sx*) 2 = ^(xs ) 2 , i.e., sp is

a right ideal nil of bounded index. By Levitski's theorem sp = 0; hence

(p Π S)p = 0. Now, since R has no minimal right ideals, by [3, Lemma

5.1.2.], for v £ W, there exists x e p such that x* e p, vx* = 0 and

£>(.*+ .**) = iλx£ W + Dυ. But then, by density, there exists j e p such

that v(x + x*) j ; =£ 0, contradicting the fact that (x + x*) j ; G ( ρ Π S)p

= 0. This establishes the claim.

Then set 5 G p Π S such that s2 Φ 0. Since p is a proper right ideal

of i?, s is not invertible; moreover, since dim^kers > d i m W > 1, d(s)

= 0. Hence, by Lemma 4, sd(R)s = 0.

Now, if Λ: G p then &x* + xs e p n 5 and d(s) = 0 implies 0 =

d(sx* + xs ) = sd(x*) + d(x)s. Since ^(x*)*? = 0, multiplying by s

from the right we get d(x)s2 = 0. Thus d(ρ)s2 = 0. Now, for x9 y e p,

0 = J(xy)^ 2 = J ( x ) ^ 5 2 forces d(p)ps2 = 0 and, since i? is prime and

s2 Φ 0, d(p)p = 0. Clearly d(p) Φ 0; so, let x e p be such that rf(x) # 0.

If vd(x) £ W for some v e F, then by density there exists r G p such

that υd{x)r Φ 0, contradicting the fact that rf(x)r G rf(p)p = 0. Thus

Vd{x) c W and J(x) is a tranformation of finite rank, a contradic-

tion. D

We are now in a position to prove the Theorem:

Proof of the Theorem. By Proposition 1 and Proposition 2 we may

assume that R is a simple artinian ring. Hence, R = Dn, the ring of ft X n

matrices over a division ring D.

Suppose first that * on Dn is of transpose type and assume n > 2. Let

etj be the usual matrix units. For ι = l, . . . ,/i eH = e* & S implies

</(£„) = eiιd(eιj) + d(eh)eu. Thus, since rank ez/ = 1, rankrf(e/ ) < 2 and,

being « > 2, d(e/7) cannot be invertible. Hence d(eh) = 0, i = 1,.. ., n.

Now, if i Φ j , for a suitable 0 Φ c e Z), e,y + ce^ = e/y + e* e 5.

Thus

^(^y + cejΊ) = d(eii{eij + cey/) +(β l 7 -I- c ^ )

= e,, <*(e,y + ^ ) + ^ ( ^ 7 + ceji)eu>

and so, rank d{eij + ce7/) < 2. It follows d(eιj + cey7) = 0 which implies

0 = J(β / /(e / / + cβ7/)) = ί/(e ί 7).
We have proved that d(eiJ) = 0 for /, j = 1, . . . , n. Now let x ^ D.
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If i Φ j \ S B xβ j + (xetJ)* = xetj 4- c1x*c2eJi for suitable cl9 c2 e
ΰ Π 5. We have:

rankί(i(jce/7 + c1x*c2^/)j = ranked (.x)e/y + j(e1x*c2)ey 7) < 2,

hence d(xeij + eιx*c1eJi)
 = 0' a n d, multiplying by ey/ from the right we

get d(x)eh = 0, for all i = 1,..., Λ. Thus </(*) = d(xl) = Σid(x)eii = 0,
i.e. d(D) = 0. In short d = 0 in /)„.

Now suppose that * is symplectic. In this case D = F is a field and
suppose n > 4. Let 7X = e n 4- e22; 7X

2 = /j ε S, so rankέ/^) =
rank(/^(^) + £/(/!)/!)< 4 implies ^(7^ = 0. Now, for / odd, α =
e\i + ^/+i,2 G ^! hence d(a) = d(Iλa + alλ) = Iλd(a) + d(a)Iλ has rank
< 4. It follows J(α) = 0 and, so, for i' Φ 1, 0 = ^(7^) = ί/(elf). On the

other hand, if / is even, eυ — et_l2 e S and by the same argument we get
d(eli) = 0 for / Φ 2. Moreover by looking at elt + e*λ as above, we obtain
d(en) = 0 for / Φ 1, 2. At this stage it easily follows d(elJ) = 0 for all /,
j = I9...9n. Since d(Iλ) = 0 implies ^(T7) = 0, then d = 0 in Fn and we
are done.

We are left with the case R = FΛ and * symplectic. We will prove that
in this case d must be inner. By a well known result on finite dimensional
simple algebras it is enough to prove that d(F) = 0. So, suppose by
contradiction that there exists a e F such that d(a) Φ 0 and let s ^ S,
s Φ 0, be such that d{s) = 0. Then, since d(a) e F, d(as) = d(a)s Φ 0
implying s invertible. Therefore, for every s e S, s Φ 0, d(s) = 0 implies
s invertible.

Now, if 7 is the identity matrix in F2, / = (Jf) G ί and, since / is not
invertible, d(t) Φ 0. Moreover it is easy to prove that d(t) = (°BQ ) where
A, B G jp2. Now let K be a 4-dimensional vector space over T7 and let {e1?
e2> e^ e4) ^ e ^ e standard basis for V. Then since d{t) is invertible,
eλd{t), e2d{t) are linearly independent over F; moreover eλd{t), e2d(t)

Clearly, there exists an element x £ f 4 such that eλd(t)x = e2d(t)x
= 0 and spanF{ exx, e2x) = spanF{e3, ^4}.Now writing

L 21 ^ 2 2

where X. e F2, we have that X21 is a unit and that (/xx*/)22 = ^21X2*
Φ 0, a contradiction. D
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