DERIVATIONS WITH INVERTIBLE VALUES IN RINGS WITH INVOLUTION

A. GIAMBRUNO, P. MISSO AND C. POLCINO MILIES

Let R be a semiprime 2-torsion free ring with involution * and let $S = \{x \in R | x = x^*\}$ be the set of symmetric elements. We prove that if R has a derivation d, non-zero on S, such that for all $s \in S$ either d(s) = 0 or d(s) is invertible, then R must be one of the following: (1) a division ring, (2) 2×2 matrices over a division ring, (3) the direct sum of a division ring and its opposite with exchange involution, (4) the direct sum of 2×2 matrices over a division ring and its opposite with exchange involution, (5) 4×4 matrices over a field with symplectic involution.

Recently Bergen, Herstein and Lanski studied the structure of a ring R with a derivation $d \neq 0$ such that, for each $x \in R$, d(x) = 0 or d(x) is invertible. They proved that, except for a special case which occurs when 2R = 0, such a ring must be either a division ring D or the ring D_2 of 2×2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting of rings with involution, namely: let R be a 2-torsion free semiprime ring with involution and let S be the set of symmetric elements. If $d \neq 0$ is a derivation of R such that the non-zero elements of d(S) are invertible, what can we conclude about R?

We shall prove that R must be rather special. In fact we shall show the following:

THEOREM. Let R be a 2-torsion free semiprime ring with involution. Let d be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of d(S) are invertible in R. Then R is either:

1. a division ring D, or

2. D_2 , the ring of 2×2 matrices over D, or

3. $D \oplus D^{\text{op}}$, the direct sum of a division ring and its opposite relative to the exchange involution, or

4. $D_2 \oplus D_2^{op}$ with the exchange involution, or

5. F_4 , the ring of 4×4 matrices over a field F with symplectic involution.

In case $R = F_4$ with * symplectic we shall prove that d is inner. As Herstein has pointed out, an easy example of such a ring is given by taking F to be a field in which -1 is not a square and d the inner derivation in F_4 induced by $\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ where I is the identity matrix in F_2 .

Now, if $R = D \oplus D^{op}$ or $R = D_2 \oplus D_2^{op}$ then $S \cong D$ or $S \cong D_2$ respectively. Thus both cases come naturally from [1].

We remark that if d(S) = 0 then $d(\overline{S}) = 0$, where \overline{S} is the subring generated by S; hence, if R is semiprime, by [3, Theorem 2.1.5] either S lies in the center of R (and R satisfies the standard identity of degree 4) or d(J) = 0 for some non-zero ideal J of R.

Let R be a ring with involution; we denote by Z the center of R and by S and K the sets of symmetric and skew elements of R respectively. Throughout this paper, unless otherwise stated, R will be a 2-torsion free semiprime ring with an involution * and d will be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of d(S) are invertible.

We begin with the following

LEMMA 1. If
$$I = I^*$$
 is a non-zero ideal of R then $d(I \cap S) \neq 0$.

Proof. Suppose, by contradiction, that $d(I \cap S) = 0$ and let $t \in S$ be such that $d(t) \neq 0$. For all $S \in I \cap S$ the elements *sts* and *st* + *ts* lie in $I \cap S$, hence

$$0 = d(sts) = sd(t)s$$

$$0 = d(st + ts) = sd(t) + d(t)s$$

Multiplying the second equality from the left by s, we obtain $s^2d(t) = 0$. Now, from our basic hypothesis on R, d(t) is invertible; hence $s^2 = 0$, for all $s \in I \cap S$.

Now let $x \in R$, $s \in I \cap S$. Then the element $sx + x^*s$ lies in $I \cap S$ and, so, it must be square-zero. Therefore, since $s^2 = 0$,

$$0 = (sx + x^*s)sx = (sx)^3,$$

that is, every element in the right ideal sR is nilpotent of index ≤ 3 . By Levitski's Theorem [2, Lemma 1] we must have sR = 0 and, so, s = 0. This proves that $I \cap S = 0$.

For $x \in I$, $x + x^* \in I \cap S$; hence $x = -x^*$ and $x^2 \in I \cap S = 0$. This I is a nilideal of index ≤ 2 . This forces I = 0, a contradiction.

At this stage we are able to prove our result in case R is not simple; in fact we have

PROPOSITION 1. If R is not a simple ring then either $R \cong D \oplus D^{\text{op}}$, D a division ring, or $R \cong D_2 \oplus D_2^{\text{op}}$ and * is the exchange involution.

Proof. Let $I \neq R$ be an ideal of R such that $I = I^*$.

Since $d(I^2 \cap S) \subset d(I^2) \subset I$, Lemma 1 shows that $I^2 = 0$ and the semiprimeness of R forces I = 0. We have proved that R does not contain proper *-ideals.

If R is not simple, then there exists a proper ideal $I \neq I^*$. Since $I + I^*$ is a non-zero *-ideal of R, $I + I^* = R$. Also $I \cap I^* \neq R$ is a *-ideal of R, hence $I \cap I^* = 0$. Thus we have that $R = I \oplus I^*$. Moreover since $I^2 \neq I^{*2}$ we also get $R = I^2 \oplus I^{*2}$ and, so, $I = I^2$ and $I^* = I^{*2}$; hence, they are both invariant under d. Clearly $S = \{x + x^* | x \in I\}$ and so d(x) and $d(x^*)$ are both 0 or both units in I and I^* respectively.

By [1, Theorem 1] *I*, and hence also I^* , is either a division ring *D* or D_2 . If d(I) = 0, then $d(I^*) \neq 0$ and the argument above leads to the same conclusion. Clearly the involution in *R* is the exchange involution. \Box

If R is a prime ring we denote by C the extended centroid of R and by Q = RC the central closure of R (see [3, pg. 22]). The next lemma holds for arbitrary rings with involution, with a derivation $d \neq 0$.

LEMMA 2. Let R be a prime ring with involution, with a derivation $d \neq 0$. Let $x \in R$ be such that for all $s \in S$

$$xsx^*d(R)xsx^*=0.$$

Then either $x^*d(R)x = 0$ or Q = RC has a minimal right ideal.

Proof. For $y \in R$ let $u = x^*d(y)x$. Then if $s \in S$, $ususu = ususu^* = 0$; now, if $r \in R$, $su^*r^* + rus \in S$ and, so,

 $0 = vsu(su^*r^* + rus)u(su^*r^* + rus)u = usurusurusu.$

This says that every element in the right ideal usuR is nilpotent of index ≤ 3 . By Levitski's theorem [2, Lemma 1.1], usuR = 0 and so usu = 0 for all $s \in S$. By [5, Lemma 3], if $u \neq 0$, Q = RC has a minimal right ideal.

In light of Proposition 1 we now make a first reduction: from now on, unless otherwise stated, we will always assume that R is a simple ring with 1. In this case clearly R coincides with its own central closure.

The next lemmas give us some information about the nature of the symmetric elements in the kernel of d.

LEMMA 3. Let $a \in S$. If for all $s \in S$ we have that $asa = \lambda a$, for some $\lambda = \lambda(s) \in z$, then R has a minimal right ideal.

Proof. Let $x \in R$. Then $a(x + x^*)a = \lambda a$, for some $\lambda \in Z$, that is $ax^*a = \lambda a - axa$. Let $\mu \in Z$ be such that $a(xax + x^*ax^*)a = \mu a$. Playing these off against each other we get

$$0 = axaxa + ax^*ax^*a - \mu a = 2axaxa - 2\lambda axa + (\lambda^2 - \mu)a.$$

Therefore $2(ax)^3 - 2\lambda(ax)^2 + (\lambda^2 - \mu)ax = 0$ and, since char $R \neq 2$, ax is algebraic over Z of degree at most 3. This proves that aR is an algebraic algebra of bounded degree. Thus aR satisfies a polynomial identity; hence R satisfies a generalized polynomial identity. Since R coincides with its own central closure, by a theorem of Martindale [3, Theorem 1.3.2.] R has a minimal right ideal.

LEMMA 4. Suppose R does not contain minimal right ideals. If $a \in S$ is such that d(a) = 0 then either a is invertible or ad(R)a = 0.

Proof. Suppose $a \neq 0$ and a is not invertible. Since d(a) = 0 then, for all $s \in S$, d(asa) = ad(s)a and it is not invertible. Hence ad(s)a = 0.

Now let $x \in R$. Then $ad(x + x^*)a = 0$ implies $ad(x)a = -ad(x^*)a$. Therefore for all $s \in S$, recalling that d(a) = ad(s)a = 0 we get

 $asad(x)a = ad(sax)a = -ad(x^*as)a = -ad(x^*)asa = ad(x)asa.$

We have proved that for all $x \in R$, $s \in S$,

(1)
$$asa d(x)a = ad(x)asa$$

Since d(a) = 0, $d(aR) \subset aR$; moreover if $\rho_R(a)$ is the left annihilator of a in R, $d(\rho_R(a)) \subset \rho_R(a)$; this says that d induces a derivation (which we will still denote by d) in the prime ring $R_1 = aR/\rho_R(a) \cap aR$. Moreover, for $s \in S$, if \overline{as} is the image of as in R_1 , from (1) we get

$$\overline{as} d(\overline{ax}) = d(\overline{ax})\overline{as}$$
, for all $\overline{ax} \in R_1$.

By [4] since char $R \neq 2$ either d = 0 in R_1 or $as \in Z(R_1)$, the center of R_1 . That is, either ad(R)a = 0 or asaxa = axasa for all $x \in R$.

If ad(R)a = 0 we are done; therefore we may assume that asaxa = axasa, for all $x \in R$, $s \in S$. But then, by [3, Lemma 1.3.2.], $asa = \lambda a$, for some $\lambda \in Z$ and, by Lemma 3, R has a minimal right ideal, a contradiction.

We remark that since R is simple with 1 then it must be a primitive ring. Now, through a repeated application of the density theorem we will be able to prove that R is artinian.

PROPOSITION 2. *R* is a simple artinian ring.

Proof. Since R is primitive it is a dense ring of linear transformations on a vector space V over a division ring D. By [3, Lemma 1.1.2.] to prove that R is artinian it is enough to prove that R has a minimal right ideal or equivalently that R contains a non-zero transformation of finite rank. Suppose, by contradiction, that this is not the case.

Let $s \in S$ be such that $d(s) \neq 0$ and suppose that there exist linearly independent vectors $v, w \in V$ such that

$$vs = ws = 0.$$

Since d(s) is invertible, the vectors vd(s) and wd(s) are linearly independent over D. Moreover, since R doesn't contain non-zero transformations of finite rank, there exists a vector $u \in V$ such that $us \notin vd(s)D + wd(s)D$, i.e., us, vd(s), wd(s) are linearly independent over D.

By the density of the action of R on V, there exists $x \in R$ such that

$$usx \neq 0$$
$$vd(s)x = 0$$
$$wd(s)x \neq 0.$$

Let $t \in S$. Since vd(s)x = vs = 0 then vd(sxtx*s) = 0; hence, since $sxtx*s \in S$ and d(sxtx*s) is not invertible, we must have d(sxtx*s) = 0. Moreover s, and so sxtx*s, is not invertible. Since R has no minimal right ideals, by applying Lemma 4 to the element sxtx*s, we get sxtx*sd(R)sxtx*s = 0, for all $t \in S$. Hence Lemma 2 implies x*sd(R)sx = 0.

Now let $y, z \in R$. Since $x^*sd(y)sx = 0$ we have

$$0 = x^* sd(ysxz)sx = x^* syd(sxz)sx.$$

Hence $x^*sRd(sxR)sx = 0$ and, since $x^*s \neq 0$, the primeness of R forces d(sxR)sx = 0. If $y \in R$ we get

$$0 = d(sxy)sx = d(s)xysx + sd(xy)sx;$$

hence, since ws = 0, 0 = wd(sxy)sx = wd(s)xysx. But $wd(s)x \neq 0$, and, by the density of the action of R on V, wd(s)xR = V; thus 0 = wd(s)xRsx = Vsx implying sx = 0, a contradiction.

We have proved that for every $s \in S$ with $d(s) \neq 0$, dim_p ker $s \leq 1$.

Now let W be a finite dimensional subspace of V such that $\dim_D W > 1$ and let $\rho = \rho_w = \{x \in R | Wx = 0\}$; ρ is a right ideal of R.

We claim that there exists $s \in \rho \cap S$ such that $s^2 \neq 0$. In fact, suppose not and let $x \in \rho$, $s \in \rho \cap S$. Then, since $(xs + sx^*) \in \rho \cap S$ and $(xs + sx^*)^2 = S^2 = 0$; we get $0 = s(xs + sx^*)^2 = s(xs)^2$, i.e., $s\rho$ is a right ideal nil of bounded index. By Levitski's theorem $s\rho = 0$; hence $(\rho \cap S)\rho = 0$. Now, since R has no minimal right ideals, by [3, Lemma 5.1.2.], for $v \notin W$, there exists $x \in \rho$ such that $x^* \in \rho$, $vx^* = 0$ and $v(x + x^*) = vx \notin W + Dv$. But then, by density, there exists $y \in \rho$ such that $v(x + x^*)y \neq 0$, contradicting the fact that $(x + x^*)y \in (\rho \cap S)\rho$ = 0. This establishes the claim.

Then set $s \in \rho \cap S$ such that $s^2 \neq 0$. Since ρ is a proper right ideal of R, s is not invertible; moreover, since $\dim_D \ker s \geq \dim W > 1$, d(s) = 0. Hence, by Lemma 4, sd(R)s = 0.

Now, if $x \in \rho$ then $sx^* + xs \in \rho \cap S$ and d(s) = 0 implies $0 = d(sx^* + xs) = sd(x^*) + d(x)s$. Since $sd(x^*)s = 0$, multiplying by s from the right we get $d(x)s^2 = 0$. Thus $d(\rho)s^2 = 0$. Now, for $x, y \in \rho$, $0 = d(xy)s^2 = d(x)ys^2$ forces $d(\rho)\rho s^2 = 0$ and, since R is prime and $s^2 \neq 0$, $d(\rho)\rho = 0$. Clearly $d(\rho) \neq 0$; so, let $x \in \rho$ be such that $d(x) \neq 0$. If $vd(x) \notin W$ for some $v \in V$, then by density there exists $r \in \rho$ such that $vd(x)r \neq 0$, contradicting the fact that $d(x)r \in d(\rho)\rho = 0$. Thus $Vd(x) \subset W$ and d(x) is a tranformation of finite rank, a contradiction.

We are now in a position to prove the Theorem:

Proof of the Theorem. By Proposition 1 and Proposition 2 we may assume that R is a simple artinian ring. Hence, $R = D_n$, the ring of $n \times n$ matrices over a division ring D.

Suppose first that * on D_n is of transpose type and assume n > 2. Let e_{ij} be the usual matrix units. For i = 1, ..., n $e_{ii} = e_{ii}^* \in S$ implies $d(e_{ii}) = e_{ii}d(e_{ii}) + d(e_{ii})e_{ii}$. Thus, since rank $e_{ii} = 1$, rank $d(e_{ii}) \le 2$ and, being n > 2, $d(e_{ii})$ cannot be invertible. Hence $d(e_{ii}) = 0$, i = 1, ..., n.

Now, if $i \neq j$, for a suitable $0 \neq c \in D$, $e_{ij} + ce_{ji} = e_{ij} + e_{ij}^* \in S$. Thus

$$d(e_{ij} + ce_{ji}) = d(e_{ii}(e_{ij} + ce_{ji}) + (e_{ij} + ce_{ji})e_{ii})$$

= $e_{ii}d(e_{ij} + ce_{ji}) + d(e_{ij} + ce_{ji})e_{ii};$

and so, rank $d(e_{ij} + ce_{ji}) \le 2$. It follows $d(e_{ij} + ce_{ji}) = 0$ which implies $0 = d(e_{ii}(e_{ij} + ce_{ji})) = d(e_{ij})$.

We have proved that $d(e_{ij}) = 0$ for i, j = 1, ..., n. Now let $x \in D$.

If $i \neq j$, $S \ni xe_{ij} + (xe_{ij})^* = xe_{ij} + c_1 x^* c_2 e_{ji}$ for suitable $c_1, c_2 \in D \cap S$. We have:

 $\operatorname{rank}\left(d\left(xe_{ij}+c_{1}x^{*}c_{2}e_{ji}\right)\right)=\operatorname{rank}\left(d\left(x\right)e_{ij}+d\left(e_{1}x^{*}c_{2}\right)e_{ji}\right)\leq 2,$

hence $d(xe_{ij} + e_1x^*c_2e_{ji}) = 0$, and, multiplying by e_{ji} from the right we get $d(x)e_{ii} = 0$, for all i = 1, ..., n. Thus $d(x) = d(xI) = \sum_i d(x)e_{ii} = 0$, i.e. d(D) = 0. In short d = 0 in D_n .

Now suppose that * is symplectic. In this case D = F is a field and suppose n > 4. Let $I_1 = e_{11} + e_{22}$; $I_1^2 = I_1 \in S$, so rank $d(I_1) =$ rank $(I_1d(I_1) + d(I_1)I_1) \le 4$ implies $d(I_1) = 0$. Now, for *i* odd, a = $e_{1i} + e_{i+1,2} \in S$; hence $d(a) = d(I_1a + aI_1) = I_1d(a) + d(a)I_1$ has rank ≤ 4 . It follows d(a) = 0 and, so, for $i \ne 1, 0 = d(I_1a) = d(e_{1i})$. On the other hand, if *i* is even, $e_{1i} - e_{i-1,2} \in S$ and by the same argument we get $d(e_{1i}) = 0$ for $i \ne 2$. Moreover by looking at $e_{1i} + e_{i1}^*$ as above, we obtain $d(e_{i1}) = 0$ for $i \ne 1, 2$. At this stage it easily follows $d(e_{ij}) = 0$ for all *i*, $j = 1, \ldots, n$. Since $d(I_1) = 0$ implies d(F) = 0, then d = 0 in F_n and we are done.

We are left with the case $R = F_4$ and * symplectic. We will prove that in this case d must be inner. By a well known result on finite dimensional simple algebras it is enough to prove that d(F) = 0. So, suppose by contradiction that there exists $\alpha \in F$ such that $d(\alpha) \neq 0$ and let $s \in S$, $s \neq 0$, be such that d(s) = 0. Then, since $d(\alpha) \in F$, $d(\alpha s) = d(\alpha)s \neq 0$ implying s invertible. Therefore, for every $s \in S$, $s \neq 0$, d(s) = 0 implies s invertible.

Now, if I is the identity matrix in F_2 , $t = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \in S$ and, since t is not invertible, $d(t) \neq 0$. Moreover it is easy to prove that $d(t) = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ where A, $B \in F_2$. Now let V be a 4-dimensional vector space over F and let $\{e_1, e_2, e_3, e_4\}$ be the standard basis for V. Then since d(t) is invertible, $e_1d(t)$, $e_2d(t)$ are linearly independent over F; moreover $e_1d(t)$, $e_2d(t) \in \text{Span}_F\{e_3, e_4\}$.

Clearly, there exists an element $x \in F_4$ such that $e_1d(t)x = e_2d(t)x = 0$ and span_F{ e_1x, e_2x } = span_F{ e_3, e_4 }.Now writing

$$\mathbf{x} = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$$

where $X_{i_1} \in F_2$, we have that X_{21} is a unit and that $(txx^*t)_{2,2} = X_{21}X_{21}^* \neq 0$, a contradiction.

References

 J. Bergen, I. N. Herstein and C. Lanski, *Derivations with invertible values*, Canad. J. Math., 35, 2 (1983), 300-310.

A. GIAMBRUNO, P. MISSO AND C. POLCINO MILIES

- [2] I. N. Herstein, Topics in Ring Theorey, Univ. of Chicago Press, Chicago, 1969.
- [3] _____, Rings With Involution, Univ. of Chicago Press, Chicago, 1976.
- [4] _____, A note on derivations II, Canad. Math. Bull., 22 (1979), 509-511.
- [5] ____, A theorem on derivations of prime rings with involution, Canad. J. Math., 34, 2 (1982), 356–369.

Received March 6, 1984 and in revised form July 5, 1984. This work was supported by RS 60% (Italy) and FAPESP (Brazil).

UNIVERSITÀ DI PALERMO VIA ARCHINAFI 34 90 123 PALERMO, ITALY

AND

54

Universidade de São Paulo Caixa Postal 20.570 Ag. Iguatemi São Paulo, Brasil