DERIVATIONS WITH INVERTIBLE VALUES IN RINGS WITH INVOLUTION

A. Giambruno, P. Misso and C. Polcino Milies

Let R be a semiprime 2 -torsion free ring with involution * and let $S=\left\{x \in R \mid x=x^{*}\right\}$ be the set of symmetric elements. We prove that if R has a derivation d, non-zero on S, such that for all $s \in S$ either $d(s)=0$ or $d(s)$ is invertible, then R must be one of the following: (1) a division ring, (2) 2×2 matrices over a division ring, (3) the direct sum of a division ring and its opposite with exchange involution, (4) the direct sum of 2×2 matrices over a division ring and its opposite with exchange involution, (5) 4×4 matrices over a field with symplectic involution.

Recently Bergen, Herstein and Lanski studied the structure of a ring R with a derivation $d \neq 0$ such that, for each $x \in R, d(x)=0$ or $d(x)$ is invertible. They proved that, except for a special case which occurs when $2 R=0$, such a ring must be either a division ring D or the ring D_{2} of 2×2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting of rings with involution, namely: let R be a 2 -torsion free semiprime ring with involution and let S be the set of symmetric elements. If $d \neq 0$ is a derivation of R such that the non-zero elements of $d(S)$ are invertible, what can we conclude about R ?

We shall prove that R must be rather special. In fact we shall show the following:

Theorem. Let R be a 2 -torsion free semiprime ring with involution. Let d be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of $d(S)$ are invertible in R. Then R is either:

1. a division ring D, or
2. D_{2}, the ring of 2×2 matrices over D, or
3. $D \oplus D^{\text {op }}$, the direct sum of a division ring and its opposite relative to the exchange involution, or
4. $D_{2} \oplus D_{2}^{\text {op }}$ with the exchange involution, or
5. F_{4}, the ring of 4×4 matrices over a field F with symplectic involution.

In case $R=F_{4}$ with * symplectic we shall prove that d is inner. As Herstein has pointed out, an easy example of such a ring is given by
taking F to be a field in which -1 is not a square and d the inner derivation in F_{4} induced by $\left(\begin{array}{cc}0 & I \\ -1 & 0\end{array}\right)$ where I is the identity matrix in F_{2}.

Now, if $R=D \oplus D^{\text {op }}$ or $R=D_{2} \oplus D_{2}^{\text {op }}$ then $S \cong D$ or $S \cong D_{2}$ respectively. Thus both cases come naturally from [1].

We remark that if $d(S)=0$ then $d(\bar{S})=0$, where \bar{S} is the subring generated by S; hence, if R is semiprime, by [3, Theorem 2.1.5] either S lies in the center of R (and R satisfies the standard identity of degree 4) or $d(J)=0$ for some non-zero ideal J of R.

Let R be a ring with involution; we denote by Z the center of R and by S and K the sets of symmetric and skew elements of R respectively. Throughout this paper, unless otherwise stated, R will be a 2-torsion free semiprime ring with an involution * and d will be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of $d(S)$ are invertible.

We begin with the following
Lemma 1. If $I=I^{*}$ is a non-zero ideal of R then $d(I \cap S) \neq 0$.
Proof. Suppose, by contradiction, that $d(I \cap S)=0$ and let $t \in S$ be such that $d(t) \neq 0$. For all $S \in I \cap S$ the elements $s t s$ and $s t+t s$ lie in $I \cap S$, hence

$$
\begin{aligned}
& 0=d(s t s)=s d(t) s \\
& 0=d(s t+t s)=s d(t)+d(t) s
\end{aligned}
$$

Multiplying the second equality from the left by s, we obtain $s^{2} d(t)=0$. Now, from our basic hypothesis on $R, d(t)$ is invertible; hence $s^{2}=0$, for all $s \in I \cap S$.

Now let $x \in R, s \in I \cap S$. Then the element $s x+x^{*} s$ lies in $I \cap S$ and, so, it must be square-zero. Therefore, since $s^{2}=0$,

$$
0=\left(s x+x^{*} s\right) s x=(s x)^{3}
$$

that is, every element in the right ideal $s R$ is nilpotent of index ≤ 3. By Levitski's Theorem [2, Lemma 1] we must have $s R=0$ and, so, $s=0$. This proves that $I \cap S=0$.

For $x \in I, x+x^{*} \in I \cap S$; hence $x=-x^{*}$ and $x^{2} \in I \cap S=0$. This I is a nilideal of index ≤ 2. This forces $I=0$, a contradiction.

At this stage we are able to prove our result in case R is not simple; in fact we have

Proposition 1. If R is not a simple ring then either $R \cong D \oplus D^{\text {op }}, D$ a division ring, or $R \cong D_{2} \oplus D_{2}^{\text {op }}$ and ${ }^{*}$ is the exchange involution.

Proof. Let $I \neq R$ be an ideal of R such that $I=I^{*}$.
Since $d\left(I^{2} \cap S\right) \subset d\left(I^{2}\right) \subset I$, Lemma 1 shows that $I^{2}=0$ and the semiprimeness of R forces $I=0$. We have proved that R does not contain proper *-ideals.

If R is not simple, then there exists a proper ideal $I \neq I^{*}$. Since $I+I^{*}$ is a non-zero ${ }^{*}$-ideal of $R, I+I^{*}=R$. Also $I \cap I^{*} \neq R$ is a *-ideal of R, hence $I \cap I^{*}=0$. Thus we have that $R=I \oplus I^{*}$. Moreover since $I^{2} \neq I^{* 2}$ we also get $R=I^{2} \oplus I^{* 2}$ and, so, $I=I^{2}$ and $I^{*}=I^{* 2}$; hence, they are both invariant under d. Clearly $S=\left\{x+x^{*} \mid\right.$ $x \in I\}$ and so $d(x)$ and $d\left(x^{*}\right)$ are both 0 or both units in I and I^{*} respectively.

By [1, Theorem 1] I, and hence also I^{*}, is either a division ring D or D_{2}. If $d(I)=0$, then $d\left(I^{*}\right) \neq 0$ and the argument above leads to the same conclusion. Clearly the involution in R is the exchange involution.

If R is a prime ring we denote by C the extended centroid of R and by $Q=R C$ the central closure of R (see [3, pg. 22]). The next lemma holds for arbitrary rings with involution, with a derivation $d \neq 0$.

Lemma 2. Let R be a prime ring with involution, with a derivation $d \neq 0$. Let $x \in R$ be such that for all $s \in S$

$$
x s x^{*} d(R) x s x^{*}=0
$$

Then either $x^{*} d(R) x=0$ or $Q=R C$ has a minimal right ideal.
Proof. For $y \in R$ let $u=x^{*} d(y) x$. Then if $s \in S$, ususu $=u s u s u^{*}=$ 0 ; now, if $r \in R, s u^{*} r^{*}+r u s \in S$ and, so,

$$
0=v s u\left(s u^{*} r^{*}+r u s\right) u\left(s u^{*} r^{*}+r u s\right) u=u s u r u s u r u s u
$$

This says that every element in the right ideal usuR is nilpotent of index ≤ 3. By Levitski's theorem [2, Lemma 1.1], usuR $=0$ and so $u s u=0$ for all $s \in S$. By [5, Lemma 3], if $u \neq 0, Q=R C$ has a minimal right ideal.

In light of Proposition 1 we now make a first reduction: from now on, unless otherwise stated, we will always assume that R is a simple ring with 1. In this case clearly R coincides with its own central closure.

The next lemmas give us some information about the nature of the symmetric elements in the kernel of d.

Lemma 3. Let $a \in S$. If for all $s \in S$ we have that asa $=\lambda a$, for some $\lambda=\lambda(s) \in z$, then R has a minimal right ideal.

Proof. Let $x \in R$. Then $a\left(x+x^{*}\right) a=\lambda a$, for some $\lambda \in Z$, that is $a x^{*} a=\lambda a-a x a$. Let $\mu \in Z$ be such that $a\left(x a x+x^{*} a x^{*}\right) a=\mu a$. Playing these off against each other we get

$$
0=a x a x a+a x^{*} a x^{*} a-\mu a=2 \operatorname{axaxa}-2 \lambda a x a+\left(\lambda^{2}-\mu\right) a
$$

Therefore $2(a x)^{3}-2 \lambda(a x)^{2}+\left(\lambda^{2}-\mu\right) a x=0$ and, since char $R \neq 2$, $a x$ is algebraic over Z of degree at most 3 . This proves that $a R$ is an algebraic algebra of bounded degree. Thus $a R$ satisfies a polynomial identity; hence R satisfies a generalized polynomial identity. Since R coincides with its own central closure, by a theorem of Martindale [3, Theorem 1.3.2.] R has a minimal right ideal.

Lemma 4. Suppose R does not contain minimal right ideals. If $a \in S$ is such that $d(a)=0$ then either a is invertible or $\operatorname{ad}(R) a=0$.

Proof. Suppose $a \neq 0$ and a is not invertible. Since $d(a)=0$ then, for all $s \in S, d($ asa $)=a d(s) a$ and it is not invertible. Hence $a d(s) a=0$.

Now let $x \in R$. Then $a d\left(x+x^{*}\right) a=0$ implies $a d(x) a=-a d\left(x^{*}\right) a$. Therefore for all $s \in S$, recalling that $d(a)=a d(s) a=0$ we get

$$
\operatorname{asad}(x) a=a d(\operatorname{sax}) a=-a d\left(x^{*} a s\right) a=-a d\left(x^{*}\right) a s a=a d(x) a s a .
$$

We have proved that for all $x \in R, s \in S$,

$$
\begin{equation*}
\operatorname{asad}(x) a=\operatorname{ad}(x) a s a \tag{1}
\end{equation*}
$$

Since $d(a)=0, d(a R) \subset a R$; moreover if $\rho_{R}(a)$ is the left annihilator of a in $R, d\left(\rho_{R}(a)\right) \subset \rho_{R}(a)$; this says that d induces a derivation (which we will still denote by d) in the prime ring $R_{1}=a R / \rho_{R}(a) \cap a R$. Moreover, for $s \in S$, if $\overline{a s}$ is the image of as in R_{1}, from (1) we get

$$
\overline{a s} d(\overline{a x})=d(\overline{a x}) \overline{a s}, \quad \text { for all } \overline{a x} \in R_{1}
$$

By [4] since char $R \neq 2$ either $d=0$ in R_{1} or $\overline{a s} \in Z\left(R_{1}\right)$, the center of R_{1}. That is, either $a d(R) a=0$ or asaxa $=$ axasa for all $x \in R$.

If $a d(R) a=0$ we are done; therefore we may assume that asaxa $=$ axasa, for all $x \in R, s \in S$. But then, by [3, Lemma 1.3.2.], as $a=\lambda a$, for some $\lambda \in Z$ and, by Lemma 3, R has a minimal right ideal, a contradiction.

We remark that since R is simple with 1 then it must be a primitive ring. Now, through a repeated application of the density theorem we will be able to prove that R is artinian.

Proposition 2. R is a simple artinian ring.

Proof. Since R is primitive it is a dense ring of linear transformations on a vector space V over a division ring D. By [3, Lemma 1.1.2.] to prove that R is artinian it is enough to prove that R has a minimal right ideal or equivalently that R contains a non-zero transformation of finite rank. Suppose, by contradiction, that this is not the case.

Let $s \in S$ be such that $d(s) \neq 0$ and suppose that there exist linearly independent vectors $v, w \in V$ such that

$$
v s=w s=0
$$

Since $d(s)$ is invertible, the vectors $v d(s)$ and $w d(s)$ are linearly independent over D. Moreover, since R doesn't contain non-zero transformations of finite rank, there exists a vector $u \in V$ such that $u s \notin v d(s) D+$ $w d(s) D$, i.e., $u s, v d(s), w d(s)$ are linearly independent over D.

By the density of the action of R on V, there exists $x \in R$ such that

$$
\begin{array}{r}
u s x \neq 0 \\
v d(s) x=0 \\
w d(s) x \neq 0
\end{array}
$$

Let $t \in S$. Since $v d(s) x=v s=0$ then $v d(s x t x * s)=0$; hence, since $s x t x{ }^{*} s \in S$ and $d\left(s x t x *_{s}\right)$ is not invertible, we must have $d\left(s x t x{ }^{*} s\right)=0$. Moreover s, and so $\operatorname{sxtx}^{*} s$, is not invertible. Since R has no minimal right ideals, by applying Lemma 4 to the element $s x t x{ }^{*} s$, we get $s x t x{ }^{*} s d(R) s x t x{ }^{*} s=0$, for all $t \in S$. Hence Lemma 2 implies $x^{*} s d(R) s x$ $=0$.

Now let $y, z \in R$. Since $x^{*} s d(y) s x=0$ we have

$$
0=x^{*} s d(y s x z) s x=x^{*} s y d(s x z) s x
$$

Hence $x^{*} s R d(s x R) s x=0$ and, since $x^{*} s \neq 0$, the primeness of R forces $d(s x R) s x=0$. If $y \in R$ we get

$$
0=d(s x y) s x=d(s) x y s x+s d(x y) s x
$$

hence, since $w s=0,0=w d(s x y) s x=w d(s) x y s x$. But $w d(s) x \neq 0$, and, by the density of the action of R on V, $w d(s) x R=V$; thus $0=$ $w d(s) x R s x=V s x$ implying $s x=0$, a contradiction.

We have proved that for every $s \in S$ with $d(s) \neq 0, \operatorname{dim}_{D} \operatorname{ker} s \leq 1$.
Now let W be a finite dimensional subspace of V such that $\operatorname{dim}_{D} W$ >1 and let $\rho=\rho_{w}=\{x \in R \mid W x=0\} ; \rho$ is a right ideal of R.

We claim that there exists $s \in \rho \cap S$ such that $s^{2} \neq 0$. In fact, suppose not and let $x \in \rho, s \in \rho \cap S$. Then, since $\left(x s+s x^{*}\right) \in \rho \cap S$ and $\left(x s+s x^{*}\right)^{2}=S^{2}=0$; we get $0=s\left(x s+s x^{*}\right)^{2}=s(x s)^{2}$, i.e., $s \rho$ is a right ideal nil of bounded index. By Levitski's theorem $s \rho=0$; hence $(\rho \cap S) \rho=0$. Now, since R has no minimal right ideals, by [3, Lemma 5.1.2.], for $v \notin W$, there exists $x \in \rho$ such that $x^{*} \in \rho, v x^{*}=0$ and $v\left(x+x^{*}\right)=v x \notin W+D v$. But then, by density, there exists $y \in \rho$ such that $v\left(x+x^{*}\right) y \neq 0$, contradicting the fact that $\left(x+x^{*}\right) y \in(\rho \cap S) \rho$ $=0$. This establishes the claim.

Then set $s \in \rho \cap S$ such that $s^{2} \neq 0$. Since ρ is a proper right ideal of R, s is not invertible; moreover, since $\operatorname{dim}_{D} \operatorname{ker} s \geq \operatorname{dim} W>1, d(s)$ $=0$. Hence, by Lemma 4, $s d(R) s=0$.

Now, if $x \in \rho$ then $s x^{*}+x s \in \rho \cap S$ and $d(s)=0$ implies $0=$ $d\left(s x^{*}+x s\right)=s d\left(x^{*}\right)+d(x) s$. Since $s d\left(x^{*}\right) s=0$, multiplying by s from the right we get $d(x) s^{2}=0$. Thus $d(\rho) s^{2}=0$. Now, for $x, y \in \rho$, $0=d(x y) s^{2}=d(x) y s^{2}$ forces $d(\rho) \rho s^{2}=0$ and, since R is prime and $s^{2} \neq 0, d(\rho) \rho=0$. Clearly $d(\rho) \neq 0$; so, let $x \in \rho$ be such that $d(x) \neq 0$. If $v d(x) \notin W$ for some $v \in V$, then by density there exists $r \in \rho$ such that $v d(x) r \neq 0$, contradicting the fact that $d(x) r \in d(\rho) \rho=0$. Thus $V d(x) \subset W$ and $d(x)$ is a tranformation of finite rank, a contradiction.

We are now in a position to prove the Theorem:

Proof of the Theorem. By Proposition 1 and Proposition 2 we may assume that R is a simple artinian ring. Hence, $R=D_{n}$, the ring of $n \times n$ matrices over a division ring D.

Suppose first that * on D_{n} is of transpose type and assume $n>2$. Let $e_{1 j}$ be the usual matrix units. For $i=1, \ldots, n e_{i i}=e_{i i}^{*} \in S$ implies $d\left(e_{t i}\right)=e_{i t} d\left(e_{i i}\right)+d\left(e_{i l}\right) e_{i i}$. Thus, since rank $e_{i i}=1$, $\operatorname{rank} d\left(e_{i i}\right) \leq 2$ and, being $n>2, d\left(e_{i i}\right)$ cannot be invertible. Hence $d\left(e_{i l}\right)=0, i=1, \ldots, n$.

Now, if $i \neq j$, for a suitable $0 \neq c \in D, e_{i j}+c e_{j l}=e_{i j}+e_{i j}^{*} \in S$. Thus

$$
\begin{aligned}
d\left(e_{t j}+c e_{j i}\right) & =d\left(e_{i i}\left(e_{i j}+c e_{j i}\right)+\left(e_{i j}+c e_{j i}\right) e_{i l}\right) \\
& =e_{i i} d\left(e_{i j}+c e_{j l}\right)+d\left(e_{i j}+c e_{j t}\right) e_{i i}
\end{aligned}
$$

and so, rank $d\left(e_{i j}+c e_{j ı}\right) \leq 2$. It follows $d\left(e_{i j}+c e_{j i}\right)=0$ which implies $0=d\left(e_{i i}\left(e_{i j}+c e_{j i}\right)\right)=d\left(e_{i j}\right)$.

We have proved that $d\left(e_{i j}\right)=0$ for $i, j=1, \ldots, n$. Now let $x \in D$.

If $i \neq j, \quad S \ni x e_{i j}+\left(x e_{i j}\right)^{*}=x e_{i j}+c_{1} x^{*} c_{2} e_{j i}$ for suitable $c_{1}, c_{2} \in$ $D \cap S$. We have:

$$
\operatorname{rank}\left(d\left(x e_{1 j}+c_{1} x^{*} c_{2} e_{j i}\right)\right)=\operatorname{rank}\left(d(x) e_{i j}+d\left(e_{1} x^{*} c_{2}\right) e_{j i}\right) \leq 2
$$

hence $d\left(x e_{i j}+e_{1} x^{*} c_{2} e_{j i}\right)=0$, and, multiplying by $e_{j i}$ from the right we get $d(x) e_{i 1}=0$, for all $i=1, \ldots, n$. Thus $d(x)=d(x I)=\Sigma_{i} d(x) e_{i i}=0$, i.e. $d(D)=0$. In short $d=0$ in D_{n}.

Now suppose that * is symplectic. In this case $D=F$ is a field and suppose $n>4$. Let $I_{1}=e_{11}+e_{22} ; \quad I_{1}^{2}=I_{1} \in S$, so $\operatorname{rank} d\left(I_{1}\right)=$ $\operatorname{rank}\left(I_{1} d\left(I_{1}\right)+d\left(I_{1}\right) I_{1}\right) \leq 4$ implies $d\left(I_{1}\right)=0$. Now, for i odd, $a=$ $e_{1 i}+e_{i+1,2} \in S$; hence $d(a)=d\left(I_{1} a+a I_{1}\right)=I_{1} d(a)+d(a) I_{1}$ has rank ≤ 4. It follows $d(a)=0$ and, so, for $i \neq 1,0=d\left(I_{1} a\right)=d\left(e_{1}\right)$. On the other hand, if i is even, $e_{1 i}-e_{i-1,2} \in S$ and by the same argument we get $d\left(e_{1 i}\right)=0$ for $i \neq 2$. Moreover by looking at $e_{1 t}+e_{i 1}^{*}$ as above, we obtain $d\left(e_{i 1}\right)=0$ for $i \neq 1,2$. At this stage it easily follows $d\left(e_{i j}\right)=0$ for all i, $j=1, \ldots, n$. Since $d\left(I_{1}\right)=0$ implies $d(F)=0$, then $d=0$ in F_{n} and we are done.

We are left with the case $R=F_{4}$ and ${ }^{*}$ symplectic. We will prove that in this case d must be inner. By a well known result on finite dimensional simple algebras it is enough to prove that $d(F)=0$. So, suppose by contradiction that there exists $\alpha \in F$ such that $d(\alpha) \neq 0$ and let $s \in S$, $s \neq 0$, be such that $d(s)=0$. Then, since $d(\alpha) \in F, d(\alpha s)=d(\alpha) s \neq 0$ implying s invertible. Therefore, for every $s \in S, s \neq 0, d(s)=0$ implies s invertible.

Now, if I is the identity matrix in $F_{2}, t=\binom{00}{0 I} \in S$ and, since t is not invertible, $d(t) \neq 0$. Moreover it is easy to prove that $d(t)=\binom{0 A}{B 0}$ where $A, B \in F_{2}$. Now let V be a 4-dimensional vector space over F and let $\left\{e_{1}\right.$, $\left.e_{2}, e_{3}, e_{4}\right\}$ be the standard basis for V. Then since $d(t)$ is invertible, $e_{1} d(t), e_{2} d(t)$ are linearly independent over F; moreover $e_{1} d(t), e_{2} d(t)$ $\in \operatorname{Span}_{F}\left\{e_{3}, e_{4}\right\}$.

Clearly, there exists an element $x \in F_{4}$ such that $e_{1} d(t) x=e_{2} d(t) x$ $=0$ and $\operatorname{span}_{F}\left\{e_{1} x, e_{2} x\right\}=\operatorname{span}_{F}\left\{e_{3}, e_{4}\right\}$. Now writing

$$
x=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

where $X_{i j} \in F_{2}$, we have that X_{21} is a unit and that $\left(t x x^{*} t\right)_{2,2}=X_{21} X_{21}^{*}$ $\neq 0$, a contradiction.

References

[1] J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math., 35, 2 (1983), 300-310.
[2] I. N. Herstein, Topics in Ring Theorey, Univ. of Chicago Press, Chicago, 1969.
[3] _ Rings With Involution, Univ. of Chicago Press, Chicago, 1976.
$[4]$ _ A note on derivations II, Canad. Math. Bull., 22 (1979), 509-511.
[5] , A theorem on derivations of prime rings with involution, Canad. J. Math., 34, 2 (1982), 356-369.

Received March 6, 1984 and in revised form July 5, 1984. This work was supported by RS 60% (Italy) and FAPESP (Brazil).

Universita di Palermo
Via Archinafi 34
90123 Palermo, Italy
AND
Universidade de São Paulo
Caixa Postal 20.570 Ag. Iguatemi
São Paulo, Brasil

