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DERIVATIONS WITH INVERTIBLE VALUES
IN RINGS WITH INVOLUTION

A. GIAMBRUNO, P. Mi1sso AND C. PoLcINO MILIES

Let R be a semiprime 2-torsion free ring with involution * and let
S = {x € R|x = x*} be the set of symmetric elements. We prove that
if R has a derivation d, non-zero on S, such that for all s € S either
d(s) = 0 or d(s) is invertible, then R must be one of the following: (1) a
division ring, (2) 2 X 2 matrices over a division ring, (3) the direct sum
of a division ring and its opposite with exchange involution, (4) the direct
sum of 2 X 2 matrices over a division ring and its opposite with exchange
involution, (5) 4 X 4 matrices over a field with symplectic involution.

Recently Bergen, Herstein and Lanski studied the structure of a ring
R with a derivation d # 0 such that, for each x € R, d(x) = 0 or d(x) is
invertible. They proved that, except for a special case which occurs when
2R = 0, such a ring must be either a division ring D or the ring D, of
2 X 2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting
of rings with involution, namely: let R be a 2-torsion free semiprime ring
with involution and let S be the set of symmetric elements. If d # 0 is a
derivation of R such that the non-zero elements of d(S) are invertible,
what can we conclude about R?

We shall prove that R must be rather special. In fact we shall show
the following:

THEOREM. Let R be a 2-torsion free semiprime ring with involution. Let
d be a derivation of R such that d(S) # 0 and the non-zero elements of d(S)
are invertible in R. Then R is either:

1. a division ring D, or

2. D,, the ring of 2 X 2 matrices over D, or

3. D & D, the direct sum of a division ring and its opposite relative to
the exchange involution, or

4. D, ® D;® with the exchange involution, or

5. F,, the ring of 4 X 4 matrices over a field F with symplectic
involution.

In case R = F, with * symplectic we shall prove that d is inner. As
Herstein has pointed out, an easy example of such a ring is given by
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taking F to be a field in which -1 is not a square and d the inner
derivation in F, induced by (°, J) where I is the identity matrix in F,.

Now, if R=D® D® or R=D,® D then S=D or S =D,
respectively. Thus both cases come naturally from [1].

We remark that if d(S) = 0 then d(S) = 0, where S is the subring
generated by S; hence, if R is semiprime, by [3, Theorem 2.1.5] either S
lies in the center of R (and R satisfies the standard identity of degree 4)
or d(J) = 0 for some non-zero ideal J of R.

Let R be a ring with involution; we denote by Z the center of R and
by S and K the sets of symmetric and skew elements of R respectively.
Throughout this paper, unless otherwise stated, R will be a 2-torsion free
semiprime ring with an involution * and d will be a derivation of R such that
d(S) # 0 and the non-zero elements of d(.S) are invertible.

We begin with the following

LEmMA 1. If I = I* is a non-zero ideal of R then d(1 N S) # 0.

Proof. Suppose, by contradiction, that d(I N S) = 0andlet r € S be
such that d(¢) # 0. For all S € I N S the elements sts and st + ts lie in
I N S, hence

0 =d(sts)=sd(t)s
0=d(st+ts)=sd(t)+d(t)s

Multiplying the second equality from the left by s, we obtain sd(¢) = 0.
Now, from our basic hypothesis on R, d(t) is invertible; hence s = 0,
foralls e I N S.

Now let x € R, s € I N S. Then the element sx + x*s liesin I/ N S
and, so, it must be square-zero. Therefore, since 52 = 0,

0 = (sx + x*s)sx = (sx)°,
that is, every element in the right ideal sR is nilpotent of index < 3. By
Levitski’s Theorem [2, Lemma 1] we must have sR = 0 and, so, s = 0.
This proves that I N S = 0.

For x€I, x+x*€INS; hence x=-x* and x>’ € 1IN S =0.
This 7 is a nilideal of index < 2. This forces I = 0, a contradiction. O

At this stage we are able to prove our result in case R is not simple;
in fact we have

PROPOSITION 1. If R is not a simple ring then either R = D & D°®, D
a division ring, or R = D, ® D5® and * is the exchange involution.
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Proof. Let I # R be an ideal of R such that I = [*.

Since d(I* N S) c d(I?) c I, Lemma 1 shows that 7> = 0 and the
semiprimeness of R forces I = 0. We have proved that R does not
contain proper *-ideals.

If R is not simple, then there exists a proper ideal I # I*. Since
I+ I* is a non-zero *-ideal of R, I+ [*=R. Also INI*# R is a
*.ideal of R, hence I N I* = 0. Thus we have that R = I & I*. More-
over since I?# I*> we also get R=1?@® I** and, so, I =1? and
I* = I*?; hence, they are both invariant under d. Clearly S = {x + x*|
x €1} and so d(x) and d(x*) are both 0 or both units in I and I*
respectively.

By [1, Theorem 1] I, and hence also I *, is either a division ring D or
D,. 1f d(I)= 0, then d(/*)+# 0 and the argument above leads to the
same conclusion. Clearly the involution in R is the exchange involution. [J

If R is a prime ring we denote by C the extended centroid of R and
by Q = RC the central closure of R (see [3, pg. 22]). The next lemma
holds for arbitrary rings with involution, with a derivation d # 0.

LEMMA 2. Let R be a prime ring with involution, with a derivation
d # 0. Let x € R be such that for all s € S

xsx*d(R)xsx* = 0.

Then either x*d(R)x = 0 or Q = RC has a minimal right ideal.

Proof. For y € R let u = x*d(y)x. Then if s € S, ususu = ususu* =
0; now, if r € R, su*r* + rus € S and, so,
0 = vsu(su*r* + rus)u(su*r* + rus)u = usurusurusu.
This says that every element in the right ideal usuR is nilpotent of
index < 3. By Levitski’s theorem (2, Lemma 1.1}, usuR =0 and so

usu = 0 for all s € S. By [5, Lemma 3], if u # 0, Q = RC has a minimal
right ideal. a

In light of Proposition 1 we now make a first reduction: from now on,
unless otherwise stated, we will always assume that R is a simple ring with
1. In this case clearly R coincides with its own central closure.

The next lemmas give us some information about the nature of the
symmetric elements in the kernel of d.

LEMMA 3. Leta € S. If for all s € S we have that asa = \a, for some
A = A(s) € z, then R has a minimal right ideal.
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Proof. Let x € R. Then a(x + x*)a = Aa, for some A € Z, that is
ax*a = Aa — axa. Let p € Z be such that a(xax + x*ax*)a = pa. Play-
ing these off against each other we get

0 = axaxa + ax*ax*a — pa = 2axaxa — 2Aaxa +(A\* — pu)a.

Therefore 2(ax)® — 2A(ax)? + (A> — p)ax = 0 and, since charR # 2, ax
is algebraic over Z of degree at most 3. This proves that aR is an
algebraic algebra of bounded degree. Thus aR satisfies a polynomial
identity; hence R satisfies a generalized polynomial identity. Since R
coincides with its own central closure, by a theorem of Martindale [3,
Theorem 1.3.2.] R has a minimal right ideal. O

LEMMA 4. Suppose R does not contain minimal right ideals. If a € S is
such that d(a) = 0 then either a is invertible or ad(R)a = 0.

Proof. Suppose a # 0 and a is not invertible. Since d(a) = 0 then,
forall s € S, d(asa) = ad(s)a and it is not invertible. Hence ad(s)a = 0.

Now let x € R. Then ad(x + x*)a = 0 implies ad(x)a = —ad(x*)a.
Therefore for all s € S, recalling that d(a) = ad(s)a = 0 we get

asad(x)a = ad(sax)a = —ad(x*as)a = —ad(x*)asa = ad(x)asa.
We have proved that for all x € R, s € §,
(1) asad(x)a = ad(x)asa

Since d(a) = 0, d(aR) C aR; moreover if pg(a) is the left annihila-
tor of a in R, d(pg(a)) C pg(a); this says that d induces a derivation
(which we will still denote by d) in the prime ring R; = aR/pg(a) N aR.
Moreover, for s € S, if as is the image of as in R, from (1) we get

asd(ax) = d(ax)as, forallax € R,.

By [4] since charR # 2 either d = 0 in R, or as € Z(R,), the center of
R,. That is, either ad(R)a = 0 or asaxa = axasa for all x € R.

If ad(R)a = 0 we are done; therefore we may assume that asaxa =
axasa, for all x € R, s € S. But then, by [3, Lemma 1.3.2.], asa = Aa, for
some A € Z and, by Lemma 3, R has a minimal right ideal, a contradic-
tion. O

We remark that since R is simple with 1 then it must be a primitive
ring. Now, through a repeated application of the density theorem we will
be able to prove that R is artinian.
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PROPOSITION 2. R is a simple artinian ring.

Proof. Since R is primitive it is a dense ring of linear transformations
on a vector space V over a division ring D. By [3, Lemma 1.1.2.] to prove
that R is artinian it is enough to prove that R has a minimal right ideal or
equivalently that R contains a non-zero transformation of finite rank.
Suppose, by contradiction, that this is not the case.

Let s € S be such that d(s) # 0 and suppose that there exist linearly
independent vectors v, w € V such that

vs = ws = 0.
Since d(s) is invertible, the vectors vd(s) and wd(s) are linearly indepen-
dent over D. Moreover, since R doesn’t contain non-zero transformations
of finite rank, there exists a vector u € V such that us & vd(s)D +
wd(s)D, i.e., us, vd(s), wd(s) are linearly independent over D.-
By the density of the action of R on V, there exists x € R such that

usx # 0
vd(s)x =0
wd(s)x #+ 0.

Let r € S. Since vd(s)x = vs =0 then vd(sxtx*s) = 0; hence, since
sxtx*s € S and d(sxtx*s) is not invertible, we must have d(sxtx*s) = 0.
Moreover s, and so sxtx*s, is not invertible. Since R has no minimal right
ideals, by applying Lemma 4 to the element sxtx*s, we get
sxtx*sd(R)sxtx*s = 0, for all + € S. Hence Lemma 2 implies x*sd(R)sx
= 0.

Now let y, z € R. Since x*sd(y)sx = 0 we have

0 = x*sd(ysxz)sx = x*syd(sxz)sx.

Hence x*sRd(sxR)sx = 0 and, since x*s # 0, the primeness of R forces
d(sxR)sx = 0.If y € R we get

0 = d(sxy)sx = d(s)xysx + sd(xy)sx;

hence, since ws = 0, 0 = wd(sxy)sx = wd(s)xpsx. But wd(s)x # 0, and,
by the density of the action of R on V, wd(s)xR =V; thus 0 =
wd(s)xRsx = Vsx implying sx = 0, a contradiction.
We have proved that for every s € S with d(s) # 0, dim , kers < 1.
Now let W be a finite dimensional subspace of ¥ such that dim , W
> landlet p=p, = {x € R|Wx = 0}; p is aright ideal of R.
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We claim that there exists s € p NS such that s +# 0. In fact,
suppose not and let x € p, s € p N S. Then, since (xs + sx*)€p N S
and (xs + sx*)2 = §% = 0; we get 0 = s(xs + sx*)? = s(xs)?, ie., sp is
a right ideal nil of bounded index. By Levitski’s theorem sp = 0; hence
(p N S)p = 0. Now, since R has no minimal right ideals, by [3, Lemma
5.1.2.], for v & W, there exists x € p such that x* € p, vx* = 0 and
v(x + x*) = vx &€ W + Dv. But then, by density, there exists y € p such
that v(x + x*)y # 0, contradicting the fact that (x + x*)y € (p N S)p
= 0. This establishes the claim.

Then set s € p N S such that s # 0. Since p is a proper right ideal
of R, s is not invertible; moreover, since dim ,kers > dimW > 1, d(s)
= 0. Hence, by Lemma 4, sd(R)s = 0.

Now, if x € p then sx* + xs € p N S and d(s) = 0 implies 0 =
d(sx* + xs) = sd(x*) + d(x)s. Since sd(x*)s = 0, multiplying by s
from the right we get d(x)s? = 0. Thus d(p)s* = 0. Now, for x, y € p,
0 = d(xy)s? = d(x)ys? forces d(p)ps* =0 and, since R is prime and
s2%# 0, d(p)p = 0. Clearly d(p) # 0; so, let x € p be such that d(x) # 0.
If vd(x) & W for some v € V, then by density there exists » € p such
that vd(x)r # 0, contradicting the fact that d(x)r € d(p)p = 0. Thus
Vd(x) C W and d(x) is a tranformation of finite rank, a contradic-
tion. O

We are now in a position to prove the Theorem:

Proof of the Theorem. By Proposition 1 and Proposition 2 we may
assume that R is a simple artinian ring. Hence, R = D,, the ring of n X n
matrices over a division ring D.

Suppose first that * on D, is of transpose type and assume n > 2. Let
e,, be the usual matrix units. For i=1,...,n e; =e} € § implies
d(e,) =e,d(e,) +d(e,)e;. Thus, since rank ¢, = 1, rank d(e;) < 2 and,
being n > 2, d(e,;) cannot be invertible. Hence d(e;,) =0, i =1,..., n.

Now, if i # j, for a suitable 0 # ¢ € D, e;tce,=e;+e*e S.
Thus

d(e, + ce;;) = d(eii(eij +ce,) +(e; + ceji)ei,)
= e,id(e,.j +ce,) +d(e, + ce;)e,;
and so, rank d(e;; + ce;) < 2. It follows d(e,; + ce;;) = 0 which implies

0 =d(e,(e; + ce,)) = d(e,;).
We have proved that d(eij) =0fori, j=1,...,n. Nowlet x € D.
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If i+#j, S>3 xe,+(xe;)* =xe;+ cx*c,e; for suitable ¢;, ¢, €
D N S. We have:

rank(d(xe,j + clx*czej,)) = rank(d(x)e,.j + d(elx*cz)ej,-) <2,
hence d(xe,;; + e;x*c,e ;) = 0, and, multiplying by e, from the right we
get d(x)e, =0, foralli=1,...,n. Thus d(x) = d(xI) = Z,d(x)e;; = 0,
i.e. d(D)=0.Inshort d=01in D,.

Now suppose that * is symplectic. In this case D = F is a field and
suppose n > 4. Let I, =e,; +ey; I} =1 €8, so rankd(Il)) =
rank(Z,d(1)) + d(1,)I,) < 4 implies d(I,) = 0. Now, for i odd, a =
e, + e, € S;hence d(a) = d(l,a + al}) = I,d(a) + d(a)l, has rank

< 4. It follows d(a) = 0 and, so, for i # 1, 0 = d(I,a) = d(e;,). On the
other hand, if i is even, e, — e;_;, € S and by the same argument we get
d(e,;) = 0 for i # 2. Moreover by looking at e,, + e} as above, we obtain
d(e,) =0 for i # 1, 2. At this stage it easily follows d(e,;) = 0 for all i,
j=1,...,n. Since d(1,) = 0 implies d(F) = 0, then d = 0 in F, and we
are done.

We are left with the case R = F, and * symplectic. We will prove that
in this case d must be inner. By a well known result on finite dimensional
simple algebras it is enough to prove that d(F) = 0. So, suppose by
contradiction that there exists « € F such that d(a) # 0 and let s € S,
s # 0, be such that d(s) = 0. Then, since d(a) € F, d(as) = d(a)s # 0
implying s invertible. Therefore, for every s € S, s # 0, d(s) = 0 implies
s invertible.

Now, if I is the identity matrix in F,, t = (3?) € S and, since ¢ is not
invertible, d(t) # 0. Moreover it is easy to prove that d(z) = (%) where
A, B € F,. Now let V' be a 4-dimensional vector space over F and let { e,
e,, e;, e,} be the standard basis for V. Then since d(¢) is invertible,
e,d(t), e,d(t) are linearly independent over F; moreover e,d(t), e,d(t)
€ Spang{e;, e,}.

Clearly, there exists an element x € F, such that e;d(¢)x = e,d(t)x
= 0 and span{e;x,e,x} = span;{ e;, e, }.Now writing

Xll X12
x =
X21 X22
where X, € F,, we have that X, is a unit and that (xx*?1),, = X, X3
# 0, a contradiction. O
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