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SPACE CURVES THAT INTERSECT OFTEN

STEVEN DIAZ

In intersection theory one tries to understand X Π Y in terms of
information about how X and Y lie in an ambient variety Z. When the
sum of the codimensions of X and Y in Z exceeds the dimension of Z
not much is known in this direction. The purpose of this note is to
provide some results in perhaps the simplest nontrivial case of this—that
of curves in P 3 (protective three space). A weaker result for P" is also
obtained. We work over any fixed algebraically closed field of arbitrary
characteristic.

(1) THEOREM. Let X of degree d and Y of degree e be two distinct

reduced, irreducible curves in P 3 neither of which is contained in a hyper-

plane. Assume d < e. Let m be the number of points in X Π Y (not

counting multiplicity). Then:

(ϊ)m<(d-l)(e-l) + l

(ii) If m = (d - l)(e — 1) + 1 then there exists a quadric hypersurface

Q containing X U Y. If furthermore d > 4 then Q is smooth and on Q X has

type (d — 1,1) and Yhas type (1, e — 1).

(iii) //d > 4 and m > (d — 2)e + I then there exists a smooth quadric

Q containing X U Y.

The key to the proof of this theorem will be a study of the ideal of the

curve X. Results of [GLP] will be crucial.

The author would like to thank David Eisenbud and Marc Levine for

helpful discussions in the course of the investigations which led to this

paper.

Before starting the proof of (1) we quote results from other sources

that will be needed.

(2) DEFINITION ([GLP], p. 491). L e t I c P r b e a reduced curve. For

a given integer n > 0 we say X satisfies property (Cn) if X is cut out in P r

by hypersurfaces of degree n, and the homogeneous ideal of X is

generated in degrees greater than or equal to n by its component of degree

n.
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(3) THEOREM ([GLP], p. 492, 504). Let X ^ Pr (r > 3) be a reduced,

irreducible curve of degree d, not contained in any hyperplane. Then'.

(i) Property (Cd+ι_r) fails if and only if X is a smooth rational curve

having a (d + 2 — r)- secant line.

(ii) Let Jx be the ideal sheaf of X. If d > r + 2 and (Cd+ι_r) fails

then Hι{P\ ^x(d — r)) is one dimensional unless both r = 3 and X lies on

a smooth quadric surface.

(4) DEFINITION ([M], lecture 14, and [GLP], p. 494). Let I c P ^ b e a

reduced curve then for n > 0 we say X is ^-regular if Hι(Pr, yχ(n - /))

- 0 for i > 0.

(5) THEOREM (Castelnuovo, see [M] lecture 14). If XaVr is an

n-regular curve then X satisfies property (Cn).

Proof of (1). The cases d = 3 and d = 4 follow from elementary

considerations. If d = 3 then X lies on three independent quadrics. If Y

meets X in at least (3 - l)(e - 1) 4- 1 = 2e — 1 points then at least one

quadric containing X meets Y in at least 2e + 1 points. By Bezout's

theorem this quadric contains X U Y. If d = 4 X lies on at least one

quadric. If Y meets X in at least (4 — 2 ) e + l = 2e + l points, then

Bezout's theorem says this quadric contains X U Y. The rest of the

theorem for d = 3 or d = 4 now follows from standard knowledge about

curves on quadrics (smooth or singular).

Now assume d > 5. First note that once (iii) is proven the rest easily

follows from standard knowledge about curves on a smooth quadric.

Assume we have X and Y as in the hypothesis of (iii). By Bezout's

theorem once X lies on a smooth quadric that quadric will contain Y also.

In fact any hypersurface of degree less than or equal to d — 2 containing

X must also contain Y. That means X does not satisfy property ( Q _ 2 ) .

By (3) we conclude that X is a smooth rational curve with a (d — 1)-

secant line, call it L. Bezout again tells us that the intersection of all

hypersurfaces of degree d — 2 containing X must contain at least X U Y

U L. The following lemma now completes the proof of the theorem.

(6) LEMMA. Let I c P ' " ( r > 3 ) be a reduced, irreducible curve of

degree d > r + 2 not contained in any hyperplane that does not satisfy

property (Cd+ι_r). In particular by (3) we know that X is a smooth rational

curve with a (d + 2 — r)- secant line, call it L. Let Wequal the intersection

of all hypersurfaces of degree d + 1 — r which contain X. Then:

(i) Ifr = 3 and X lies on a smooth quadric Q, then W = Q.

(ii) Otherwise W = X U L.
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Proof, (i) is elementary. Among the surfaces of degree d — 2 contain-
ing X there will certainly be every surface of the form Q U an arbitrary
surface of degree d — 4, so Q D W. On the other hand one of the rulings
of Q consists entirely of (d — 1)- secant lines to X, so W D Q.

To prove (ϋ) we will use (5). That is, we want to show that if either
r Φ 3 or X does not lie on a smooth quadric, then X U L is (d + I — r)-
regular. Let TΓ: Z -> X U L be the normalization map. Z is just the
disjoint union of X and L. As usual let 0 stand for structure sheaf. We
have three exact sheaf sequences.

(7) 0 -> ΦXUL{k) -> π*Φz(k) -> 0 * n L -> 0

(8) 0 ̂ Λ * ) ^ M * ) ^ <M*)-> 0

(9) 0 -> JW(*) - M * ) - ^ u ^ ) - 0
Since H0(τr*Θz{k)) = H\Θx(k)) Θ H°(ΘL(k)) it has dimension

Λ(rf + 1) + 2. Because L is (έ/ + 2 - r)- secant to X, H°(ΘXUL) has
dimension J + 2 — r.

What is presented from here to (11) is a simplification of our original
proof. This was suggested by the referee and independently by P. Rao to
whom we are grateful.

Hι(π*Θz(k)) = H\Θx{k)) Θ Hι(ΘL(k)) = 0, for k > 1.

Putting this into the cohomology sequence for (7) we see that if we wish to
show that H1(ΘXU L(k)) = 0 it is sufficient to show that the map

(10) H°(v*Θz(k))-*H0(ΦXnL)

is surjective. But this map is just the difference of the homomorphisms
H°{Ox{k)) -> H°(ΘXnL) and H°(ΘL(k)) -» H°(ΘXnL) arising from the
inclusions of X Π L in X and L. So it is enough to show that either of
these, in particular the first, is surjective. But this is clear, since

0x(-(X Π L)) = ΘPι(r -2-d)

and hence H\ΦX(-(X Π L)) β Φr(k)) = 0 for k > 0.

(11) ^ ( ^ u i ( * ) ) = 0 forA:>l.

Putting (11) and the other cohomology groups calculated just after (9)
into the exact cohomology sequence for (7) we obtain:

(12) dimH°(ΦXuL(k)) = (k-l)d + k + r, f o r A : > l .

Compare the cohomology sequences for (8) and (9) with k = d - r.
Using (12), (3)(ϋ), and the facts that H\Jx{d - r)) = H°(JXvL{d - r))
(Bezout) and dim H°(Φx(k)) = kd + 1 one proves that

Hl{SXUL(d-r)) = 0.
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Using the cohomology sequence for (9) together with (11) one shows

that H2(SXuL(d - r - 1)) = 0. Finally that H\JXΌL{d + 1 - r - /))

= 0 for i > 3 comes directly from the cohomology sequence for (9).

(13) COROLLARY. Let X of degree d and Y of degree e be two reduced

curves in Pr (r > 4), with X irreducible and not contained in any hyper-

plane, and no component of Y equal to a line or X. Assume r + 2 < d. Let

m be the number of points in X Π Y {not counting multiplicity). Then

m < (d - r + l)e + 1.

Proof. Otherwise some component of Y would be contained in every

hypersurface of degree d - r + 1 that contained X contradicting (6).

REMARKS (14). In intersection theory one usually likes to count

intersections with appropriate multiplicities. In the case of a hypersurface

H intersecting a reduced, irreducible curve X in finitely many points

pv . . . , pn there is more or less universal agreement on the definition for

/(X, H, pj) the intersection multiplicity of X and H at pJm Let Θp x be the

local ring of Pj in X and ry the image of an equation for H in 0p x, then

i(X9 H, Pj) = the length over ΘpX of ΦPtχ/r For a reducible curve, add

up the multiplicities for each component. For the case of two curves X

and Y intersecting in finitely many points />!,...,/>„ a possible definition

for an intersection multiplicity is: i(X9Y9pj) = the minimum over all

hypersurfaces H which contain X but do not contain any component of

Yof i(Y9H,pj).
If in either (1) (with d > 5) or (13) we replace m with

Σp€ΞXnγi( X, Yy p), then the proofs as stated go through without change.

This multiplicity has the disadvantage that it is not symmetric. Also it is

not known whether this is the largest multiplicity one can use and have

these results remain true.

(15) In (1) the assumptions that X and Y are irreducible are neces-

sary. For instance if X consisted of d lines from one ruling of a smooth

quadric and Y was e lines from the other ruling, then X Π Y would

consist of de points.

(16) When X and Y in (1) achieve the maximum possible number of

intersections both X and Y are smooth rational curves. This follows

immediately from standard knowledge about curves on a quadric.
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(17) For most values of d and e in (1) there is a gap between the
largest possible value of m as counted in (14) and the second largest. This
gap gets wider as d and e get larger. This follows immediately from
standard knowledge about curves on a smooth quadric.
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