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RELATIVE NULLITY FOLIATIONS
AND INDEFINITE ISOMETRIC IMMERSIONS

KINETSU ABE AND MARTIN MAGID

This paper investigates the relative nullity distribution of an indefi-
nite Riemannian manifold isometrically immersed into an indefinite
space form.

Introduction. In this paper we investigate the relative nullity distribu-
tion of an indefinite Riemannian manifold isometrically immersed into an
indefinite space form. This distribution is totally geodesic and gives rise to
a Ricatti-type differential equation along a geodesic in a leaf of the
distribution.

This differential equation is applied in several ways to estimate the
index of relative nullity v for geodesically complete, connected, Lorentzian
submanifolds M" of Af"+1(c), the Lorentzian sphere. These applications
extend the work of Abe [1], [2], [3], Ferus [7], [8], and others to the setting
of indefinite manifolds. Some of the work in §2 was obtained previously
by Graves [10] in the codimension one case and by M. Dajczer. In
particular Theorem 2 was conjectured by Dajczer [5].

Sections 1 and 2 lay the groundwork and derive the Ricatti-type
differential equation. In §3 an integer vn is defined and it is shown that if
M" is as above and if v > vn then M" is totally geodesic. This integer is
used to formulate a geometric condition which guarantees that a complete
connected hypersurface of S"(c) is totally geodesic. We also estimate v
given a natural condition on the space-like Ricci curvature of the sub-
manifold. In [6] other conditions on Ricci curvature are given.

The general scheme of our investigation is very similar to that of the
Riemannian case as formulated in the papers mentioned above. However,
there are a few basic and non-trivial differences from the Riemannian
case. These differences are due to the indefinite metric and are to be
overcome. Therefore, we think it worthwhile to include the details of the
proofs for most of our results.

1. Preliminaries. An indefinite Riemannian manifold M" of dimen-
sion n is a connected manifold with a non-degenerate metric in each
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tangent space. The metric can be written

d s

2 = -(dχ1)2 (dxs)2+(dxs+1)2+ ••• +{dxnf

at every point of Mn. In this case, we say the signature of Mn is (s,« — s)

and write M".

If /: M" -> Mt

n + k is an immersion and the metric induced on Mn is

non-degenerate, / is an isometric immersion of M" with this metric into

M" + k. Denote by D the torsion-free metric connection on Mt

n+k. D

induces a torsion-free, metric connection v on M as follows:

(1.1) DxY = ft(vxY) + a(X9Y)9

where X and Y are tangent vectors on M, f*(VxY) is the tangential

component and a( X, Y) is the normal component, a is called the second

fundamental form of /.

Given a field of unit normal vectors ξ on f(M") we can define a field

of endomorphisms i ^ on M by

(1.2) Dxξ= -ft(AsX) + v£ζ,

where —f^(AξX) is the tangential component. Aξ is called the shape

operator associated to ξ.

We denote by N(x) the set of all normal vectors to f(M") at f(x).

The metric on Mt

n+k and M" is denoted by ( , >. As usual, R( ,) denotes

the curvature tensor of M". For the sake of future use, we list the

following:

(1.3) R(X,Y)Z = R(X,Y)Z+ Σ (ξpΛp

(Gauss equation)

n

(1.4) S(X,Y)= Y,(Xi9Xι){R{XnX)Y,Xi) (Ricci tensor)
ι = l

R( ,) is the curvature tensor of M"+k; ξp's form an orthonormal base

for N(x); and Xt

9s form an orthonormal base for TXM, the tangent space

of M; at x.

2. Relative nullity. If /: M" -> M" + k is an isometric immersion

between indefinite Riemannian manifolds we define the relative nullity

space at x, T°(x), to be

(2.1) T°(x)= ( I E TX(M): A^X = 0 yξ^N(x)}.
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The orthogonal complement [T°(x)]± of T°(x) in TXM is denoted

by T\x).

PROPOSITION 1. T°(x) = { I G TX(M): a(X,Y) = 0 V 7 G TX(M)}.

Proof. It is obvious.

PROPOSITION 2. T\x) = span{^y} for { e JV(x), 7 e 7;(Af).

. Given any ξ e JV(χ), 7 €= ΓX(M) and X e= Γ°(JC), (X, AζY)

= 0, soA{Ye T\x).

On the other hand, suppose Z e ΓX(M) satisfies (Z,AξY) = 0 for

all £, y as above. Then α(7, Z) = 0 for all Y and Z e Γ°(JC). This means

t h a φ p a n ^ y j ^ c Γ°(JC) so that [span{^^7}] D Γ^JC).

The dimension ẑ (x) of T°(x) is called the relative nullity of the

immersion at x. The minimum value of v(x) on M is called the index of

relative nullity and is denoted by v0.

THEOREM 1. Assume that M is a space form and let G denote the set of
points in M where v{x) = v0. Then

(1) G is an open subset of M\

(2) x -> T°(x), x G G is a differentiable and inυolutiυe distribution
in G;

(3) the foliation T° is totally geodesic in M; and

(4) each leaf of T° is immersed as a totally geodesic submanifold of M.

Proof. (1) Pick a point JC0 e G and a basis TXQ(M), {Y19...9YVQ9

YPQ + ι," 9Yn}9 such that, for some ξj(xo)9 {ΛξYVo+J} forms a basis of

Tι(x0). Extend Yl9...9Yn and ξl9..., ξn_VQ smoothly in a neighborhood

of x0. The set {A ξ YVo+j) remains linearly independent in a neighborhood

of x 0 . Therefore in a neighborhood of x 0 the dimension of T°(x0) must

be less than or equal to v0, and so equals vQ.

(2) It can be shown that T° is a smooth distribution on G by noting

that T° = Πy = 1 k e r ^ and that this intersection has constant rank on G.

(3) We use Codazzi's equation to see that T° is totally geodesic. Let

y, Z be vector fields in T°. For all X in TM and normal vectors ξ we

have

Vx(^ίY) - Λί(v*Γ) - AvHY = VriAtX) - A((vγX) - AWξX.
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This reduces to

Taking the inner product of both sides with Z yields 0 = <v γ(A ξX), Z) .
(AζX,Z) = 0 can be differentiated in the direction of Y.

0 = Y(AξX,Z) = (vY{AζX),Z) + (AζX,vγZ).

This gives (AξX,VYZ) = 0, i.e., V y Z e T°. This shows T° is totally
geodesic. Examining Codazzi's equation with Y in T° and ξ, X as above
gives

~ AvHX

so that

This shows that T1 is also parallel along T°.
For (4), notice that

=Λ(vyZ) + a(Y,Z)=f*(vγZ). D

Next we define a complementary distribution Tc(x) in a neighbor-
hood of y(t), t G [α, 6) where > (̂0 is a geodesic in a leaf of T°. The
distribution is complementary in the sense that Tc(x) θ T°(x) = TX(M).

If, at a fixed point j (O), T°(y(0)) is non-degenerate then r o ( x ) is
non-degenerate for all points x near y(0). Along a geodesic y(t) in a leaf
of Γ°, Γ°(;;(/)) remains non-degenerate since T°(y(t)) is parallel along
the geodesic. Therefore, T°(x) is non-degenerate in a neighborhood of the
geodesic. In this case set Tc(x) = Tι(x).

If T°(y(0)) is degenerate we use the following procedure. At y(0)
choose a pseudo-orthonormal basis

and

so that

<L,.(0),L,.(0)> = 0 = (L,(0),^(0)> = (L;(0),iv(0)>

and the Ek(0) and f}(0) form an orthonormal set. Add {L^O),..., Lr(0)}
so that each 1,(0) is peφendicular to Ek(0) and /}(0), (1,(0), 1,(0)) = 0
and(L ;.(0),Ly(0)>= - δ i y .
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Denote the parallel extension of this basis

along y(t) by [Lι{t),...,Lr{t)}.

Assume, without loss of generality, that y(0) is one of

say E,,o_r(0). Generalizing an argument in [10], define h: R" -» M" by

h(t,x1,...,xr,yι,..., y ^ . , ^ , « ! , . . . , un_Vo_r, vλ,...,vr)

= e χ P μ ( I ) ( Σ * , L , ( ί ) + ΣykEk(t) + Σu,F,{t) + Σ ι ; , l , )

Since

«,) = F,(t)

for each /, there is a neighborhood U of (/, 0) such that /z is an imbedding

on U. By shrinking, if necessary, we can find a neighborhood V of

{(/,0) | / G R } such that A#(3/9w/) and /2*(3/θι>y) are extensions of F,(/)

and L ; ( 0 respectively to A(F). By making F smaller and restricting t to

[Λ, b) we can assume A^Θ/ΘM/) and h^d/dVj) span a complement in a

neighborhood of >>(/), t e [Λ, 6).

In this neighborhood we let β be the projection defined by the

decomposition TX(M) = Γ°(JC) θ Tc(x)

(2.2) β:7;(M)-r(x).

For any 7 G 7° and I G TM we can define

(2.3) CYX= -Q(VXY).

C is called the conullity operator.
We need the following simple, technical lemma.

LEMMA 1. Let C and Q be defined by (2.2) and (2.3). // Y is in T° and

U and V are in TM then

(l)Q(VγU)=Q(Vy(QU))

(2)Q(VU_QUY) = O
(3) a(U,V) = a(QU,V)

(4) C is a tensor.
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Proof (1) Suppose U = Uo + Uc, where Uo e T° and Uc e Γc. Then
β(V y£/) = Q(VY(UO + Uc)) = β(V rl/c), since VYUO is in 7°. This
means that Q(VYU) = β(V y (βt/)).

(2) If [/ = Uo + Uc then βί/ = Uc. This says that U - QU e Γ°, so
that ̂ (V^^y) = 0.

(3) Again α(ί/, F) = a(U0 + QU, V) = a(QU, V).
(4) It is sufficient to show that CφY = <ρCYU for φ: M -*• R.

= <p[-Q(VoY)]=cpCYU. D

We now define a connection v ' in the complementary local bundle
Tc. If U e ΓM, F e Γc, then

(2.4) V ^

Using this connection we can differentiate C.

(2.5) ( v f C y ) X = VY{CYX) - C r ( v y X ) .

Another expression can be found for (VYCY)X. The first term is

V'Y{CYX) = Q(VY(CYX)) = - β ( v y ( β ( v ^ F ) ) ) = - ρ ( V y

The second term is, by Lemma (1.2),

-CY{vYx) = Q(vv,xY) = β ( v β ( v ^ y ) = Q(VVYXY).

Combining both terms gives

Vί(CγX) - Cγ{v^X) = -Q(R(Y, X)Y

If W e Tι then < v y 7 , W) = 0 and so 0 =
+ <VyF, VΎί^). Along a geodesic yt in Γ° let Y = yr Then v y Γ = 0,
and along yt we have (VxVγY, W) = 0 and Q(VxVγY) = 0.

Next we claim that Q(VVχYY) = Cγ(CγX). In fact C y ( C y ^ ) =

-Q(^CyχY) = Q(VQ{VχY)Y) =XQ(VVχYY) by Lemma 1.
Finally then, if Y is an extension of the tangent vectors yt along a

geodesic in T° then

(2.6) (vίrCγ)X = Q(R(X9Y)Y) + C$X.

THEOREM 2. ///: M" -> M"+k(c) is an isometric immersion andMn is
complete, then the relative nullity foliation is geodesically complete.

We first sketch a proof of Theorem 2.
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Let yt be a geodesic in a leaf L of T°. It must be shown that yt can

be extended indefinitely in L. Since L is totally geodesic in M we know

that yt is a geodesic in M which can be extended indefinitely in M

because M is geodesically complete. It must be proven to lie entirely in L.

Assume that yt is in L for t in [a, b). If we can show that yh is in G, then

we can take a coordinate system {y1, ...9y
n) adapted to the foliation

with origin yh9 that is, with the property that the integral manifolds of T°

are given by y"0+J = Cj. Now all points yt9 for / less than and close to b,

belong to one slice. As t approaches b, yt approaches yh with coordinates

( 0 , . . . , 0), so that cl9...9cn_ are all zero. Thus, yh G L and we are done.

To show that yb e G we need the following lemma, which will be

proved after the proof of the theorem.

LEMMA 2. For any Z in Tya(M) there exist Zt G TV((M)y a < t < b,

such that Za = Z and

(2.7) V/(βZ,) + CΛ(QZt) = 0 ίoτa<t<b.

Moreover, Zt can be extended differentiably to t = b. Here v / stands for

The extension part of Lemma 2 will be proved using 2.6. Let Xt be a

parallel vector field along yt9 a < t < b9 such that Xh G T°(yh). We will

prove that Xa e T°(ya) so v(ya) > υ(yh) > v0 and v(yh) = v0. Take Zt

as in Lemma 2. For each point yt9 t < b, extend Yt = yn Xt and Zt to

vector fields 7, X and Z with 7 in T°.

Examine Codazzi's equation with 7, X and Z.

Vfa(Z9 X) - a(vγZ, X) - a(Z,VγX)

= V/a(Y, X) - «(VZ7, X) - α(7,VZX)

Along ^ v y ^ = 0 and α(7, X) = 0 and α(7, VZX) = 0. The equation
reduces to

Vy

x α(Z, X) - a(vγZ, X) = - α ( v z 7 , X) = α(C y Z, Z)

by Lemma (1.3). This gives

V,1 α(Z, Jί) = α ( v r Z , Z) + α(C y Z, X)

along 7 r

This is true for t < b, so by continuity it holds for t = b. That is to

say that α(Z, X) is parallel along yr a < t < b. a(Z, X) = 0 at t = b
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which means a(Z, X) = 0 at ya. Since Za is arbitrary, Xa G T°(ya), as
desired.

Proof of Lemma 2. In what follows we use the same notation that was
introduced in the definition of Tc(x). Along yt write

We want to solve β(V,βZ,) + C~(QZt) = 0. Rewriting, this is

β( V,(Σφy (0£y(0 + Σψ^ίO^ίO)) + CΛ(βZ,) = 0;

or

Q{Σ^j{t)LJ{t) + Σψ;(0^(0) + ςj(βZ r) = 0;

or

Σφ; (ί)i7(0 + ΣΨ;(* W ) + q(βz,) = o.
Since C-(QZt) can be written in terms of Ly(ί) and Fp(t) this is a system
of ordinary differential equations which can be solved for a < t < b. To
see that the solution can be extended: By (2.6)

(VγCγ)X= CYX+ Q(R(X,Y)Y) for all X in TM.

Q(R(X, Y)Y) = c(Y, Y)QX, so that along yt, a < t < b,

(2.8) (v^Cγ) = Cγ + c(Y,Y)Q.

If Z, satisfies (2.7), then by differentiating once more we have:

or

V;\QZ,) +(v;c~y)Qzt + cr(v/(ρz,)) = o.

This yields, using (2.8),

V/2(£Z,) + Cl{QZt) + c(Y,Y)QZt + Cr{v;(QZt)) = 0.

Plugging in (2.7) gives

V,'2(QZt) + Cγ{QZt) + c(Y,Y)QZt - Cr(QZt) = 0,

i.e.,

(2.9) v / ( ρ z , ) - c < r , y > ρ z , = o ΐoτa<t<b.

In terms of the parallel basis for Tc along yt (2.9) can be written

^ = o, —β± + 0(7,7)^^ = o.

Solutions to these equations can be extended differentiably beyond b. D
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To see that (2.6) is an equation of Ricattti-type write
r n-vo-r

C j (f\ = y c^(t\τ (t\ 4- V c
Ύ i V / — J—4 i i V / /' V / LmJ

CγFq{t) = Σ K

Then

" Dp

F

q{t)Fp{t).

jiή) - Cγ(VyLj(t))

Similarly,

Q(R(LJ(t),Y)Y) = c(Y,Y)LJ(t),

Q(R{Fq(t),Y)Y) = c(

Let

C(t) =

Then, (2.6) can be written as

(2.10) * M

and

-cHi) + κ(t).

= c(Y,Y)In.

3. Applications of the Ricatti-type differential equation. Let M" be a
geodesically complete Lorentzian submanifold of M"+k(c) (c > 0), where
M"+k(c) is the Lorentzian space form of constant curvature c. Let P0 be
the index of relative nullity of M" in M?+k(c).

It is well-known that for K(t) > 0, the equation (2.10) has no global
solution with an initial condition C(0) which has a real eigenvalue. This
implies, in our case, that there is no global solution of (2.10) if (Y9Y) > 0.
If ( 7, Y) = 0, 0 is the only global solution under an initial condition C(0)
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with a real eigenvalue. In particular, if C(t) has a real eigenvalue for some

/, Y must be 0, provided that Y is space-like.

Here let us state an elementary fact on a Lorentzian vector space.

PROPOSITION 3. Let Ln be a Lorentzian inner product space with the

inner product ( , ). Let Vv be a linear subspace of dimension v. Then,

(i) Vv = U and ( ) | v* is non-degenerate, or

(ii) Vv = Ev and ( ) | v* is positive definite, or

(Hi) ( , > I v* is degenerate and Vv = Ev~γ + span{£}, where (ξ, ξ) = 0

andξ ±E"-\

(Proof). See Graves [9].

Now let Yi9...,YVQ_ι be a set of (v0 - 1), linearly independent

space-like vectors in T°(x) such that span{7 1 ?..., Yv ι} is a positive

definite subspace of T°(x). Proposition 1 tells us the choice of

Yi9..., Y^^ is possible. Denote Cι = Cy, (/ = 1,..., v0 - 1) for simplic-

ity.

LEMMA 3. The set of vectors { X, C\( X),.. .,CVQ__X(X)} forms a vo-frame

in Tc(x) forXΦ 0 e Tc(x).

Proof. Let αX + afi^X) + +αI,o_1Cϊ,o_1( JT) = 0. Then

Hence, -a is a real eigenvalue of C γ +... +Oί p_γv _χ. Since aγYγ

4- +a, o _ 1 y i , o _ 1 is a space-like vector, ^ ^ 4- + ^ r l ^ r l = 0

from the above remark. This implies ax = = α x = 0 and α = 0.

As was done in [7], denote by Vnr the Stiefel manifold of ordered

r-frames in En. It is well known that Vnr -> Vnl is a principal fiber

bundle in a natural way. Denote by p(n) the largest integer such that the

fibration Vnp{n)-+ VnX has a global cross-section. Define by vn the largest

integer such that p(n - vn) > vn.

THEOREM 3. Let M[ be a geodesically complete, connected submanifold

of M" + k(c), c > 0. // the index of relative nullity vQ > vn, then M" is

totally geodesic in M" + k(c) and v0 = n.

Proof. For any x e G, T°(x) always contains a copy of Ev°~ι. By

Lemma 3, Vn__v v -> Vn_ λ has a global cross-section φ defined by

<p(X) = ( ^ C i ί . ^ ς ^ J ) for V I # 0 e Tc{x). Hence, p(/ι - vo) >

vQ; therefore, v0 < vn.
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REMARK. If one of the relative nullity leaves is a Riemannian mani-

fold relative to the induced metric, the above vn can be improved by

defining vn to be the largest integer such that ρ(n — pn) > vn + 1. Clearly

Some of the numerical values for vn are as follows: vλ = 0, v2 = 1,

v3 = h v4 = 2, v5 = 1, v6 = 2, vΊ = 3, vs = 4, j>9 = 1.

The argument used here can be applied to obtain a similar result for

more general indefinite metrics. Unlike the Riemannian case, it is known

that the above pn

9s are often the best possible value. For example, Graves

and Nomizu [11] constructed an isometric immersion of S\2 into S* with

the index of relative nullity 1.

Our next result states:

THEOREM 4. Let f: M" -> M"+P(c) be an isometric immersion between

two Lorentzian manifolds, where M"+P(c) is the Lorentzian space form of

positive curvature c. Suppose that the Ricci curvature S of M" satisfies

S(X,X)>(n- l)c(X, X) for all space-like vectors X.

(1) // T°(x) is Lorentzian for some x e G, then the index of relative

nullity is either 0 or n.

(2) If T°(x) is degenerate for some x e G, then the index of relative

nullity is 0, 1, n — 1 or n.

(3) If T°(x) is Riemannian for all x e G and if p = 1, then the index

of relative nullity is 0, n — 2, n — 1, or n.

We will prove Theorem 4 after a sequence of propositions and

lemmas.

PROPOSITION 4. Let ( , ) be a symmetric bilinear form on an n — v0

dimensional vector space V over R with signature (mvm2,m3). If mλ Φ m2

and T: V —> V is a symmetric linear operator with respect to ( , ) , then T has

a real eigenvalue. Note a symmetric bilinear form of signature (mvm2,m3)

has mx (-l)'s, m2 (-f-l)'s and m3 0's in the canonical form.

Proof. Choose a canonical basis {e l9..., emχ, Λ, . . . , /m 2, gv..., gni3}

of V for the symmetric bilinear form, so that (ea, ea,) = - δaa,, (fβ, fp) =

δββ'> (gyigy) = 0 a n d aW other products are zero. The matrix of the
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symmetric operator T with respect to this basis has the form:

m A

B

D

1
1

J .
I
1

_L
I
1
1

m2
-B'

C

E

1
1
L
1
1
I
1
1
1

m3
0

0

F

Here A' = A and C = C. Denote this matrix by Mτ. The matrix Ms =
[/? c Ί represents a symmetric linear transformation on the span of
{el9...,emi,fl9...,fm2}. By a change of basis, Ms can be put into a
standard form [15]. If mx Φ m2, there is one block of the form:

λ 1

0

Thus, Ms has an eigenvalue λ. Noting that

det[λ/ - Mτ] = det[λ/ - Mjdet[λ/ - F] = 0,

we see that T has a real eigenvalue λ. D

Now let η = Σ J L ! < * „ * , ) « ( * , , * , ) , where {Xl9...,Xn} is an or-
thonormal basis of TX(M). Define a bilinear form ( , ) : Tc(x) X Tc(x) ->
R by, for any X and Y e Γ(x\

It is clear that (,) is symmetric, since a is symmetric. We may find an
alternative expression for ( , ) using the Gauss equation and the Ricci
curvature of M[.

) = (a(X9Y)9η)

= S(X,Y)-nc(X,Y) +c(X,Y)

Clearly, the definition of ( , ) and the above expression for (X9Y) do not
depend on the choice of the orthonormal basis {Xl9...,Xn}.
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If {ξl9..., ζp} is an orthonormal basis for N(x)9 then the last term of
the above expression can be rewritten

J

Since the normal space is positive definite,

(X,Y) = S(X, Y) - c(n - l)(Xf Y) + Σ (Λ\X9 Y).

For convenience, let τ = c(n — 1), and A^ by Aj. We examine ( , ) by
looking at

p

h(X,Y):= S(X,Y)-r(X,Y) and k(X,Y):= Σi^XiY).

LEMMA 4. If the Ricci curvature satisfies the hypothesis in the theorem,
then h(X,Y) is positive semi-definite or Lorentzian.

Proof. We show that h cannot have two (-l)'s in its signature. If it
did, we could find a pair of linearly independent vectors e and / in TXM
such that h{e,e) = - 1 , h(fj) = -1 and h(ej) = 0 i.e., S(e9e) = -1
+ τ<e,e>, S ( / , / ) = - l + τ</,/> mdS(eJ) = τ(e,f). By the hy-
pothesis, it would then be the case that (e, e) < 0 and (/, / ) < 0.

We now examine the various possibilities for the lengths of e and /.
In each case, we will find a space-like vector which violates the condition
on the Ricci curvature. We will use the reverse Cauchy-Schwarz inequal-
ity, i.e, 0 < (e, e)(f9 f) < (e, f)2 in this case. In the following argument,
denote (e,f) by a for brevity, (e, f) = a can be positive.

If both e and / were light-like, e + f would be space-like and
(e+f,e+f) =2α.

S(e+f,e+f) = S(e9e) + 2S(e,f) + S(f9f)

= (-1) + 2τ(eJ) +(-1) < 2τ(e,f) = 2τa

= τ<β+/,e+/>.

This contradicts the hypothesis.
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If e were light-like and / were time-like, we could also assume that
(/, /> = - 1 . Then e + af would be space-like, for (e + af, e + af) = a2.
But

S(e + af,e + af) = S(e,e) + 2αS(e,/) + tf2S</,/>

= -1 4- 2ara + a2(-l - r) < ra2,

a contradiction.
If e and / are both time-like, we could assume that (e,e) = -1 =

</,/) . Then, e + α/ is space-like with <e + α/,e + α/> = -1 + α2 > 0
by the reverse Cauchy-Schwarz inequality.

S(e + af,e + af) = -I - τ + 2a2τ - a2 - a2τ < (-1 + α 2 )τ,

a contradiction.
Next we show that if there are any vectors which are time-like with

respect to Λ, then h is non-degenerate and therefore Lorentzian. If this is
not the case, there are linearly independent e and g such that h(e,e) = - 1 ,
Λ(g,g) = 0 and Λ(e,g) = 0, i.e., S(e,e) = -1 + τ<e,e>, S(g,g) =
τ(g, g) and S(e, g) = τ(^, g). We know that (e, e) < 0 and can assume
that (e, g> > 0. If (g, g) > 0, then (g + e,g+e) = <g, g> + 2<e, g>
> 0, so that g 4- e is space-like. However,

S(g + e, g + ^) = τ(g, g) 4- 2τ<e, g) - 1

+ τ(e,e) < τ [ ( g , g > +2(e,g)]9

a contradiction. The only remaining possibility is that (e9e) < 0 and
(g, g) < 0. The span of e and g is non-degenerate, so for some k e R,
e 4- Λ g is space-like.

S(β + kg9e + kg) = S(e,e) + 2kS{e, g) + fc25(g, g)

τ(e,e) + 2ί:τ<e,g) + k2τ(g,g)

a contradiction.
This completes the proof of Lemma 4.

We now turn to k(X9 Y) = Σ^AJX, Y) on Tc(x).

LEMMA 5. If Tc(x) is positive definite, then k restricted to Tc(x) is
positive definite.

Proof.

k(XyX) = Σ (A2jX,X) = Σ (AJX9AJX).
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If k(X,X) = 0, then AjX = 0 for j = 1,...,p, since Tc(x) = Γ^JC) =
span{y4y.Γ} is positive definite. This means that I e T°(x) Π T\x);
therefore, X = 0. Hence, A: is positive definite.

PROPOSITION 5. // Tc(x) is positive definite, then ( , ) is positive
definite on Tc(x).

Proof. For no non-zero e e TC(X) is h(e,e) = - 1 , since this implies
(e9e) < 0. Thus, the form ( ,) is the sum of a positive semi-definite form
and a positive definite form.

LEMMA 6. // Tc(x) is a degenerate subspace with respect to ( , ), then h
is positive semi-definite on Tc(x) for dimTc(x) > 1.

Proof. Tc(x) is a positive semi-definite subspace with respect to ( , >
by hypothesis. If there were an e e Tc(x) with h(e,e) = - 1 , then (e9e)
= 0. By Lemma 4, there would be g e ΓC(JC) such that &(g, g) = 1 and
Λ(e, g) = 0. By hypothesis we would have (g,g) > 0 and (e,g) = 0. For
all / e R (g + te, g + te) = (g, g> > 0, but

S(g + te9g + te) = 1 4- τ(g,g> - t2 < τ(g,g>.

This is a contradiction.

LEMMA 7. // Tc(x) is a degenerate subspace with respect to ( , > and if
dimΓ^jc) > 1, then k is positive semi-definite on Tc(x) and for some
y e Tc(x) k(Y9Y)> 0.

Proof. If T°(x) is degenerate, so is T\x) = sptm[AξY]. Thus, there is
a light-like vector L such that, for any normal vector ξ9 \mAi c [L] x .
The metric on [ L ] x is positive semi-definite, so (AξY,AξY) > 0 for all £,
y. This implies that k is positive semi-definite. If k(Y9Y) = 0 for all Y9

then each yί^y is light-like. We also have (AξY9 L) = 0 for ξ, Y. Recal-
ling that perpendicular light-like vectors are linearly dependent, we see
that T\x) would be one-dimensional, which is not the case.

PROPOSITION 6. // Tc(x) is a degenerate subspace, then ( ,) is positive
semi-definite on Tc(x) and for some Y e Tc(x), (Y,Y)> 0.

Finally, we assume M" is a hypersurface in M" + 1 and that Tc = T1

is Lorentzian. Here k(X, Y) = (AX, AY) where A is a transformation of
Tι which is one-to-one.
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PROPOSITION 7. IfM" is a hypersurface in M"+ 1(c), T1 is Lorentzian
and n — v0 > 2, then the signature (m1? m2, m3) of ( ,) has m2 > rnv

Proof. We know that h is positive semi-definite or Lorentzian. The
shape operator A can be put into one of four canonical forms [15] and k
can be explicitly calculated using these forms.

λ 0
1 λ

(i) A =

where A is given with respect to a pseudo-orthonormal basis
{L,L,f1,...,fn_Pg_2} k t n e n has the following matrix with respect to
this basis:

~-2λ -λ2

-λ2 0

Note that XXλ Xn-V _2 Φ 0 and the signature of k is (1, n —
v0 — 1). We can find a space-like vector U in span{L, L) such that
k(U, U) > 0. In fact, there are choices for b e R such that (L + bL,
L 4- bL) = -2b and k(L + bL, L + bL) = -2λ(l + bX) are both posi-
tive. Set U = L + 6L. We claim that ( , ) is positive definite on
span{i/,/1,...,/M_,o_2}.

Λ ( c t f + Σ c / y . , c t / + Σ c / y ) > 0

since
(cU + Σc/y,cC/ + Σcjfj) = c2(ί/,£/) + Σc 2 > 0.

It is also clear that k(cU + Σcjfp cU + Cy/̂  ) > 0 and is equal to 0 if and
only if c = 0 = Cj for j = 1,..., n - v0 - 2. Hence, if n - v0 > 2, the
signature of (,) will have more plus signs than minus signs.

" λ 0 0
0 λ 1

-1 0 λ

(ϋ)
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with respect to a pseudo-orthonormal basis {L, L,f,fv...,fn_ 3). k
has the following form with respect to the above basis:

1 -λ2 -2λ
-λ2 0 0

-2λ 0 λ2

In this case, we construct a space-like vector U = L + bL such that
k(U, U) > 4. That is, we want (L + bL, L + bL) = -2b > 0 and
k{L + bL, L + bL) = 1 - 2Z>λ2 > 4.

Here, too, ( , > is positive definite on span {U,f9fv...,fn_Vo_3}. For
any vector V in this span, (V,V) > 0. Therefore, h(V,V) > 0° and the
fact that k(U, U) > 4 guarantees that jfc(K, F) > 0 with £(F, V) = 0 if
and only if F = 0.

(iii)

n - i/n - 2

with respect to orthonormal basis {e,f,fl9.. .,//7_^_2} We can find a
space-like vector U in span {β,/} with k(U,U) > 0. As above, the
signature of ( ,) has more plus signs than minus signs.

(iv) A is diagonalizable with respect to an orthonormal basis. Then, it
is easy to see that the conclusion of the proposition is satisfied. This
completes the proof.

We are now in the position of proving Theorem 4. We follow the
argument in [7]. If n > P0 > 0, choose any non-zero Z G T°(X). Then,
C z : Tc(x) -> Tc(x) is a symmetric operator with respect to ( , ) . In (1), by
Propositions 4 and 5, Cz would have a real eigenvalue. Also Z can be
chosen as a space-like vector. But the equation (2.10) has no global
solution in which k(t) > 0 and Cz has a real eigenvalue. This is a
contradiction. In case (2), if n — v0 > 1, by Propositions 4 and 6, C z

would have a real eigenvalue. Clearly, Z can be chosen to be a space-like
vector; hence, a contradiction as before. Finally, in case (3), Propositions
4 and 7 assure us a real eigenvalue of Cz. Since n — v0 > 2 and since Tι

is Lorentzian, Z can be chosen to be space-like. The same argument as
above completes the proof.
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The following result concerns the over simplified "The axiom of
sphere" for the hypersurfaces in the Lorentzian space form of positive
constant curvature c.

Let /: M" -> M"+ 1(c) be a geodesically complete Lorentzian hyper-
surface, where M"+1(c) is the Lorentzian space form of positive curvature
c. Let us assume:

(*) Through each point x of M exists a /c(x)-dimensional local
submanifold Sx of M which is mapped under / isometrically into a
A:(x)-dimensional totally geodesic submanifold of M"+1(c).

THEOREM 5. // 2k{x) - n > vn9 M" is totally geodesic in M"+1(c).
Here vn is the numerical value determined in Theorem 3.

LEMMA 8. // 2k(x) - n > 0, the relative nullity v{x) at x > 2k(x) -
n. In particular, the index of relative nullity v0 > 2k — n, where k =

Proof. If Sx is non-degenerate, the result of Lemma 8 will be obtained
in the same manner as in [3]. Now let us assume that Sx is degenerate. Let
ex(x)y... 9en_k_ι(x)9 L form a pseudo-orthonormal basis for (TSX)

± ,
which is the orthogonal complement of TSX in TXM". Extend it to a basis
of TXM by adding {ex(x),.. .9ek_ι(x)9 L(x)}, which is also pseudo-
orthonormal. Then, eλ(x),.. .,ek_1(x), L(x) form a basis for TSX. Since
Sx is totally geodesic, a(eι(x),eJ(x)) = a{et{x), L) = 0, where a is the
second fundamental form. Set

^ξ(ei) = Σajiej + btL + a linear combination of ek and L
j

and

Aξ(L) = Σcjej + bL + a linear combination of ek and L.
j

Similarly, A^(ek) and A^(L) can be given as a linear combination of
the basis elements el9..., ek_v L, L, el9..., en_k_v With respect to this
basis, A^ is represented by an n X ^-matrix, which we also denote by the
same symbol. In fact, we have

^ξ(ei) = ~(Λξ(ei), L)L + a linear combination of eks

and

= —(Aξ(L)9L)L -f a linear combination of ek

9s.
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Thus,

n-k

0
*
0
*

0
• *

0

• *

*
*

*
*

k
O

C

n-k
B

D.

n-k

Thus, by interchanging the A:th and (k + l)st rows, Aζ has the form:

k

n-k

Here, O is the k X /c-zero matrix and B, C and D are k X (n — /c),
(n — k) X k and (n — k) X (n — A:)-matrix, respectively. Let RB be the
row-reduced echelon matrix of B. Then, at least k — (n — k) = 2k — n
rows from the bottom of RB must be the zero rows. Similarly, the
column-reduced echelon matrix CC of C must have at least 2 k — n zero
columns on the right side C Denote by r(x) the smaller between the
number of the zero rows of RB and the number of the zero columns of
CC. Applying an appropriate sequence of row operations and column
operations, we finally get an n X π-matrix of the following form:

'rXr
O,

α(n-r)Xr

rX(n-r)

Here OpXqis the p X g-zero matrix.
Since ^(JC) is the multiplicity of zero as an eigenvalue of Aξ and since

the multiplicity of zero is invariant under row and column operations, A^
must have at least r(x) as its nullity, i.e., v{x) > r(x) > 2k — n.

Theorem 5 is then obtained immediately from Theorem 3. This result
may be regarded as an oversimplified version of " the axiom of sphere" for
hypersurfaces.
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