LINES HAVING HIGH CONTACT
 WITH A PROJECTIVE VARIETY

George Jennings

Let \mathscr{U} open $\subset \mathbf{P}^{n}=\mathbf{P}^{n}(\mathbf{C}), X \subset \mathscr{U}$ an analytic subvariety,

$$
\begin{aligned}
& \quad J=\left\{(p, l) \in \mathbf{P}^{n} \times \mathbf{G}(1, n) \mid p \in l\right\} \\
& \pi \swarrow \quad \forall \lambda \\
& \mathbf{P}^{n} \quad \mathbf{G}=\mathbf{G}(1, n),
\end{aligned}
$$

the incidence correspondence with induced projections π, λ, where $\mathbf{G}=\mathbf{G}(1, n)$ is the Grassmannian of lines in \mathbf{P}^{n}.
0. Definition. The contact cones of X are

$$
\begin{aligned}
C^{r} & =\left\{(p, l) \in \pi^{-1} \mathscr{U} \mid l \text { has contact } \geq r+1 \text { with } X \text { at } p\right\} \\
C^{\infty} & =\bigcap_{r=0}^{\infty} C^{r} .
\end{aligned}
$$

The contact cones may be thought of as schemes of cones in the tangent space of \mathbf{P}^{n} which reflect the local geometry of the embedding $X \rightarrow \mathscr{U}$. The main results of this paper are a singularities theorem (13) which puts an upper bound on the pathology of the contact cones if X is not ruled, and an algebraization theorem (17) which says roughly that if X is a hypersurface whose contact cones resemble those of an algebraic hypersurface of low degree then X is algebraic. Hypersurfaces are the simplest case-in a future paper we show that in general hypersurfaces are determined up to projective equivalence by the projective moduli of the third contact cone with a little help from the ideal of the fourth.

The contact cones have a scheme structure defined in terms of the functor of principal parts (jets) $\mathscr{P}_{J / G}^{r}$ [5,§16]. Let \mathscr{F} be a sheaf of \mathcal{O}_{J}-modules. Form the fiber product $J \times_{\mathbf{G}} J$. Let \mathscr{I}_{Δ} be the ideal sheaf of the diagonal, and $J^{r} \xrightarrow{\Delta} J \times_{\mathbf{G}} J$ the subscheme defined by $\mathscr{I}_{\Delta}^{r+1}$. One has a commutative diagram

\[

\]

where p, q are the projections. Then
$\mathscr{P}_{J / G}^{r} \mathcal{O}_{J}$ is a locally free sheaf of rank $r+1$ consisting of relative r jets of sections of \mathcal{O}_{J}.

Let $\mathscr{I}_{X} \subset \mathscr{O}_{\mathscr{U}}$ be the ideal sheaf of X.

1. Definition. $C^{r}, 0 \leq r<\infty$, is the zero scheme of the sheaf of sections $\mathscr{P}_{J / \mathbf{G}}^{r}\left(\pi^{*} \mathscr{I}_{X}\right) \subset \mathscr{P}_{J / \mathbf{G}}^{r} \mathcal{O}_{J} \mid \mathscr{U} . \quad C^{\infty}=\bigcap_{r=0}^{\infty} C^{r}$ is the intersection scheme. $C_{p}^{r}=\pi^{-1}(p) \cap C^{r}, 0 \leq r \leq \infty$, is the fiber over $p \in \mathscr{U}$.

Since $J \times{ }_{\mathbf{G}} J^{\pi \times \pi} \mathbf{P}^{n} \times \mathbf{P}^{n}$ is the blow up of $\mathbf{P}^{n} \times \mathbf{P}^{n}$ along the diagonal the exceptional divisor J is naturally isomorphic to the projectivized tangent space $P T \mathbf{P} \rightarrow \mathbf{P}^{n}$, via the relation " v is tangent to l ". In particular the relative cotangent sheaf $\Omega_{J / \mathbf{G}}^{1} \cong \mathscr{I}_{\Delta} / \mathscr{I}_{\Delta}^{2}$ of J is just the dual $\mathcal{O}_{T}(1)$ of the universal subbundle $\mathcal{O}_{T}(-1)$ of $\pi^{*} T \mathbf{P}$ over PTP. $J \cong$ $\operatorname{Proj}\left(S \cdot \Omega_{J / \mathbf{G}}^{1} \mathbf{P}\right)$ where $S \cdot \Omega_{J / \mathbf{G}}^{1}$ is the sheaf of graded rings

$$
S \cdot \Omega_{J / \mathbf{G}}^{1} \cong \mathcal{O}_{J} \oplus \mathscr{I}_{\Delta} / \mathscr{I}_{\Delta}^{2} \oplus \mathscr{I}_{\Delta}^{2} / \mathscr{I}_{\Delta}^{3} \oplus \cdots
$$

There is an (additive) sheaf homomorphism $d_{J / \mathbf{G}}^{r}: \mathcal{O}_{J} \rightarrow \mathscr{P}_{J / \mathbf{G}}^{r} \mathcal{O}_{J}$ induced by the corresponding map on sections [5, p. 16]. One has a commutative diagram

over $\pi^{-1} \mathscr{U}$ arising directly from the definition. Define contact ideal sheaves $\left.\mathscr{J}_{X}^{r} \subset S \cdot \Omega_{J / \mathbf{G}}^{1}\right|_{\pi^{-1} \mathscr{U}}$ inductively by

$$
\begin{aligned}
& \mathscr{J}_{X}^{0}=\pi^{*} \mathscr{I}_{X} \otimes_{\mathcal{O}_{J}} S \cdot \Omega_{J / \mathbf{G}}^{1} \\
& \mathscr{J}_{X}^{r}=\mathscr{J}_{X}^{r-1}+\iota^{-1}\left(d_{J / \mathbf{G}}^{r}\left(\pi^{*} \mathscr{I}_{X}\right)+\operatorname{ker} \rho\right) \otimes_{\mathcal{O}_{J}} S \cdot \Omega_{J / \mathbf{G}}^{1} \\
& \mathscr{J}_{X}^{\infty}=\sum_{r=0}^{\infty} \mathscr{J}_{X}^{r}
\end{aligned}
$$

on $\pi^{-1} \mathscr{U} \cdot \mathscr{J}_{X}^{r}$ is the ideal sheaf of C^{r} in $S \cdot \Omega_{J / \mathbf{G}}^{1}$.
This leads to a convenient version in coordinates. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an affine coordinate system on $\mathscr{U}, d x=\left(d x_{1}, \ldots, d x_{n}\right), p \in \mathscr{U}, g \in$ $\mathcal{O}_{p, \mathscr{U}}$. Expand in a power series

$$
\begin{equation*}
g(x(p)+t)=g^{0}(x)+g^{1}(x ; t)+g^{2}(x ; t)+\cdots \tag{9}
\end{equation*}
$$

where $t=\left(t_{1}, \ldots, t_{n}\right)$ are indeterminants and $g^{r}(x ; t)$ is the r th order term. Replacing t by $d x$,

$$
\begin{equation*}
\mathscr{J}_{X}^{r}=\left(g^{s}(x ; d x) \mid 0 \leq s \leq r, g \in \mathscr{I}_{X}\right) \tag{10}
\end{equation*}
$$

in coordinates.
The geometry of the contact cones is controlled by the "derivative relation":

$$
\begin{equation*}
\frac{\partial g^{r}(x ; t)}{\partial x_{i}}=\frac{\partial g^{r+1}(x ; t)}{\partial t_{i}}, \quad i=1, \ldots, n, \tag{11}
\end{equation*}
$$

in coordinates (see [5, p. 43] for a coordinate free version).
12. Proposition. If $\mathscr{J}_{X}^{r}=\mathscr{J}_{X}^{r+1}$ for some r then $\mathscr{J}_{X}^{r}=\mathscr{J}_{X}^{\infty}$, so $\pi C^{r} \subset$ X is ruled (by line segments).

Proof. Let g_{1}, \ldots, g_{m} generate \mathscr{I}_{X} over \mathscr{U}. By hypothesis there exists a local relation

$$
g_{i}^{r+1}(x ; t)=\sum_{j=1}^{m} \sum_{s=0}^{r} a_{i j s}(x ; t) g_{j}^{s}(x ; t), \quad i=1, \ldots, m .
$$

Differentiate with respect to x_{λ} and apply the derivative relation (11):

$$
\frac{\partial g_{i}^{r+2}}{\partial t_{\lambda}} \equiv \sum_{j=1}^{m} \sum_{s=0}^{r} a_{i j s} \frac{\partial g_{j}^{s+1}}{\partial t_{\lambda}} \quad \bmod \mathscr{J}_{X}^{r},
$$

$\lambda=1, \ldots, n$. Multiply by t_{λ}, sum over λ, and apply the Euler relation:

$$
(r+2) g^{r+2} \equiv 0 \quad \bmod \mathscr{J}_{x}^{r+1} .
$$

Continue inductively. Since πC^{∞} is obviously ruled we are done. (Of course C^{r} may be empty.)

Example. If $X \subset \mathbf{P}^{n}$ is algebraic of degree d then $\mathscr{\mathscr { F }}_{X}^{d}=\mathscr{F}_{X}^{\infty}$. A partial converse is Theorem (17).

The tangent cone $\left.T Y \subset T J\right|_{Y}$ of a subscheme $Y \subset J$ is the locus of tangent vectors annihilating the ideal of Y. In particular

$$
T C_{p}^{r}=\left.\left(\operatorname{ker} \pi_{*}\right) \cap T C^{r}\right|_{C_{p}^{r}}
$$

where $C_{p}^{r}=\pi^{-1}(p) \cap C^{r}$ and $\pi_{*}: T J \rightarrow \pi^{*} T \mathbf{P}$ is the differential.
$\pi C_{p}^{r} \subset \mathscr{U}$ is a cone with vertex at p. Identify $T_{p, l} C_{p}^{r}$ with the corresponding plane in \mathbf{P}^{n} tangent to πC_{p}^{r} along l. In local coordinates (9) $T_{p, l} C_{p}^{r}$ is the plane through $x(p)$ cut out by the hyperplanes

$$
\sum \frac{\partial g^{s}(x(p) ; t)}{\partial t_{i}}\left(x_{i}-x(p)\right)=0, \quad s=1, \ldots, r, g \in \mathscr{I}_{X} .
$$

Over a dense open subset $\mathscr{W} \subset C^{r}$ the fibers $T_{p, l} C_{p}^{r}$ will have locally constant dimension. We shall say that $T_{p, l} C_{p}^{r}$ is locally constant along l if $\lambda^{-1}(l) \cap \mathscr{W}$ is nonempty and $T_{p, l} C_{p}^{r}$ is locally constant as a plane in \mathbf{P}^{n} along $\lambda^{-1}(l) \cap \mathscr{W}$.

It is easy to write down the condition for this to happen, using the coordinates of (9) (for a coordinate-free method, see [1, p. 10] "second fundamental form"). Let (\bar{x}, \bar{t}) represent $(p, l) \in \lambda^{-1}(l) \cap \mathscr{W} . \lambda^{-1}(l)$ is locally parametrized by $s \mapsto(\bar{x}+s \bar{t}, \bar{t})$ for s near 0 . Regarding $T_{p, l} C_{p}^{r}$ as a subspace of \mathbf{C}^{n+1} we have a vector bundle $T_{;, l} C^{r}$. over $\pi^{-1}(l) \cap \mathscr{W}$. Let $v(s)=\sum a_{i}(s) \partial / \partial t_{i}$ be a local holomorphic section, so that

$$
0 \equiv \sum_{i} a_{i}(s) \frac{\partial g^{\nu}}{\partial t_{i}}(\bar{x}+s \bar{t}, \bar{t}), \quad \text { for all } g \in \mathscr{I}_{X}, v=1, \ldots, r
$$

identically in $s . T_{p, l} C_{p}^{r}$ is locally constant along l iff for all such sections v the derivative

$$
0 \equiv \sum_{i} a_{i}^{\prime}(s) \frac{\partial g^{\nu}}{\partial t_{i}}(\bar{x}+s \bar{t}, \bar{t}), \quad \nu=1, \ldots, r, g \in \mathscr{I}_{X}
$$

also vanishes identically.

13. Theorem. Fix $r \geq 1$. Suppose

$$
Z \subset\left\{(p, l) \in C^{r} \mid T_{p, l} C_{p}^{r-1}=T_{p, l} C_{p}^{r}\right\}
$$

is a nonempty subscheme, and πZ contains an irreducible component of πC^{r-1} as a subscheme. Then
(i) $Z \subset C^{\infty}$,
(ii) $T_{p, l} C_{p}^{r-1}$ is locally constant along the rulings l for generic $(p, l) \in Z$.

Proof. We work in the coordinates (9). Let $(\bar{x}, \bar{t})=(p, l) \in Z, v=$ $\sum a_{i} \partial / \partial x_{i}+\sum b_{i} \partial / \partial t_{i}$. Then $v \in T_{p, l} C^{r-1}$ iff for all $g \in \mathscr{I}_{p, X}, \nu=$ $0, \ldots, r-1$,

$$
0=d g^{\nu}(v)=\sum_{i} a_{i} \frac{\partial g^{\nu}}{\partial x_{i}}+\sum_{i} b_{i} \frac{\partial g^{\nu}}{\partial t_{i}}=\sum_{i} a_{i} \frac{\partial g^{\nu+1}}{\partial t_{i}}+\sum_{i} b_{i} \frac{\partial g^{\nu}}{\partial t_{i}}
$$

By the Euler relation, $\nu g^{\nu}(\bar{x}, \bar{t})=\sum_{i} \bar{t}_{i} \partial g^{\nu} / \partial t_{i}$. Since $(p, l) \in C^{r}, T_{p, l} C^{r-1}$ contains $w_{x}=\sum \bar{t}_{i} \partial / \partial x_{i}(11)$.

Since πZ contains a component of πC^{r-1}, and $Z \subset C^{r} \subset C^{r-1}$, it follows that at a generic point $(p, l) \in Z$ the differential $\pi_{*}: T_{p, l} C^{r} \rightarrow$ $\pi_{*} T_{p, l} C^{r-1}$ is surjective. Its kernel is $T_{p, l} C_{p}^{r}$. But $T_{p, l} C_{p}^{r}=T_{p, l} C_{p}^{r-1}$, so $T_{p, 2} C^{r}=T_{p, l} C^{r-1}$. In particular $w_{x} \in T C^{r}$, so $0=\sum \bar{t}_{i} \partial g^{r} / \partial x_{i}=$ $\sum \bar{t}_{i} \partial g^{r+1} / \partial t_{i}=(r+1) g^{r+1}(\bar{x}, \bar{t})$. Hence $Z \subset C^{r+1}$.

Now let $v_{t}=\Sigma b_{i} \partial / \partial t_{i} \in T_{p, l} C_{p}^{r-1}$ be any vector and set $v_{x}=$ $\sum b_{i} \partial / \partial x_{i}$. Then $v_{t} \in T_{p, 1} C_{p}^{r}$, hence for all $g \in \mathscr{I}_{p, X}, 0=\sum b_{i} \partial g^{\nu} / \partial t_{i}$, $\nu=1, \ldots, r$. Thus $v_{x} \in T_{p, l} C^{r-1}$. But $T_{p, l} C^{r-1}=T_{p, l} C^{r}$, so $v_{x} \in T_{p, l} C^{r}$, thus $v_{t} \in T_{p, l} C_{p}^{r+1}$. Therefore $T_{p, l} C_{p}^{r}=T_{p, l} C_{p}^{r+1}$ and (i) follows by induction.

As for (ii), if $s \mapsto(\bar{x}+s \bar{t}, \bar{t})$ is a local parametrization of $\lambda^{-1}(l)$ and $\sum a_{i}(s) \partial / \partial t_{i}$ is a local holomorphic section of $T_{,,} C^{r-1}$ over $\lambda^{-1}(l)$ then

$$
\begin{aligned}
& 0 \equiv \sum_{i} a_{i}(s) \frac{\partial g^{\nu}}{\partial t_{i}}(\bar{x}+s \bar{t}, \bar{t}), \text { hence } \\
& 0 \equiv \sum_{i} a_{i}^{\prime} \frac{\partial g^{\nu}}{\partial t_{i}}+\sum_{i j} a_{i} \bar{t}_{j} \frac{\partial^{2} g^{\nu}}{\partial t_{i} \partial x_{j}}, \quad \nu=1, \ldots, r-1,
\end{aligned}
$$

but $\partial^{2} g^{\nu} / \partial t_{i} \partial x_{j}=\partial^{2} g^{\nu+1} / \partial t_{i} \partial t_{j}$, so the second term vanishes by the Euler relation since $T_{p, l} C_{p}^{r-1}=T_{p, l} C_{p}^{r}$.

Remark. If X is ruled then the hypotheses of (13) are satisfied for some r.

Example. Fundamental Forms. (See [4, p. 373].) In affine coordinates, the r th osculating space $T_{p}^{r} X \subset \mathbf{P}^{n}$ is the span of p and the derivatives $\sigma^{\prime}(p), \ldots, \sigma^{(r)}(p)$ of all open curves $\sigma \subset X$ through p. Let $p \mapsto \gamma^{r}(p)=$ $T_{p}^{r} X$ be the associated r th order Gauss map. There is a natural way of representing its derivative at a generic point p by an element

$$
d \gamma^{r}(p) \in H^{0}\left(\mathbf{P} T_{p} X, \mathcal{O}(r+1)\right) \otimes N_{p}\left(T_{p}^{r} X\right)
$$

where $N\left(T_{p}^{r} X\right)=T_{p} \mathbf{P}^{n} / T_{p}\left(T_{p}^{r} X\right)$ is the normal space. $d \gamma^{r}(p)$ is the $r+1$ st fundamental form of X at p.

Let $v=\sum a_{i, \sigma} \sigma^{(i)}$ be any local section of the associated bundle $T^{r} X$ (with fiber $\left.\left(T^{r} X\right)_{q}=T_{q}^{r} X\right)$ defined near p. Then

$$
v^{\prime}(p) \equiv \sum a_{r, \sigma} \sigma^{(r+1)} \bmod T_{p}\left(T_{p}^{r} X\right)
$$

in coordinates. So define $d \gamma^{r}$ by

$$
\left.\left[d \gamma^{r}\left(\sigma^{\prime}(p)^{\otimes r+1}\right)\right]\right\lrcorner d g=(g \circ \sigma)^{(r+1)}(p), \quad \text { for all } g \in \mathscr{I}_{T_{p}^{\prime} X, p}
$$

(This does not depend on any choices.)
The associated linear system

$$
\left.L^{r+1}=\left\{d \gamma^{r}\right\lrcorner \theta \mid \theta \in N_{p}^{*}\left(T_{p}^{r} X\right)\right\} \subset H^{0}\left(\mathbf{P} T_{p} X, \mathcal{O}(r+1)\right)
$$

is contained in the ideal of C_{p}^{r+1} (viewed as a subvariety of $\mathbf{P} T_{p} X$). (Since p is a generic point we may represent X as a graph $y_{j}=f_{j}(x), j=1, \ldots, k$, $x=\left(x_{1}, \ldots, x_{m}\right)$ in affine coordinates near p. If $g=\sum a_{j} y_{j}$ vanishes on
$T_{p}^{r} X$ then $\left.d \gamma^{r}\right\lrcorner d g=\sum a_{j} f_{j}^{r+1}(x(p) ; d x)$. For $r \geq 1$ this is the $r+1$ st order part of an element, $\sum a_{j}\left(f_{j}(x)-y_{j}\right)$, of $\left.\mathscr{I}_{X}\right)$. Geometrically the reason is that, if $(p, l) \in C_{p}^{r+1}$ then choose a curve $\sigma \subset X$ through p which meets l through order $r+1 . \sigma^{\prime}(p), \ldots, \sigma^{(r+1)}(p)$ lie along $l \subset$ $T_{p}^{1} X \subset T_{p}^{r} X$, so if g vanishes on $T_{p}^{r} X$ then $(g \circ \sigma)^{(r+1)}(p)=0$.

At a generic p, L^{2} generates the ideal of C_{p}^{2} in $\mathbf{P} T_{p} X$, but this is not in general true of the higher L^{r} 's. For example, if X is a hypersurface, not a hyperplane, then $T_{p}^{2} X=\mathbf{P}^{n}$ so $L^{3}=\{0\}$. But $\mathscr{J}_{X}^{3} \neq \mathscr{J}_{X}^{2}$ unless X is ruled (12). A less trivial example is the following, due to Mark Green:

Example. (Green [3].) Consider the surface $X \subset \mathbf{P}^{4}$ parametrized by

$$
p(s, t)=\left(t, s^{2} t^{2}, s^{6} t^{3}, s^{12} t^{4}\right)
$$

in affine coordinates. Then

$$
\frac{\partial^{2} p}{\partial t^{2}}=\frac{s}{t^{2}} \frac{\partial p}{\partial s}
$$

so every $Q \in L^{2}$ vanishes on $(\partial p / \partial t)^{\otimes 2}$. In fact

$$
L^{2}=\operatorname{span}\left\{d s^{2}, d s \cdot d t\right\}
$$

By a result of Griffiths and Harris [4, p. 373], the Jacobian system of L^{r+1} is contained in $L^{r}, r=2,3, \ldots$ It follows that

$$
L^{r} \equiv 0 \quad \bmod \left\{d s^{r}, d s^{r-1} \cdot d t\right\}, \quad r=2,3, \ldots
$$

Griffiths and Harris conjectured that any surface with such L^{r} 's ought to be ruled [4, p. 377]. But X is not ruled. In particular, by (12), the L^{r} 's cannot generate the ideal of C_{p}^{r} if $r \geq 3$ at a generic p.

Example. [4, p. 387]. The second fundamental form represents the derivative of the Gauss map $\gamma=\gamma^{1}$. $\operatorname{ker} d \gamma_{p}$ (projectivized) is the common singular locus in $\mathbf{P} T_{p} X$ of all the quadrics in L^{2}.

Conversely if, at a generic $p \in X$, all the quadrics in L^{2} have a common singular locus Z_{p}, then the hypotheses of (13) are satisfied with $r=2$: take $Z=\cup Z_{p}$. Then X is ruled by the planes πZ_{p}, which are the fibers of γ (locally).

Examples of such X are cones and developable varieties. Recently F. Zak [7, p. 540 see [2] for a proof] proved that if X is a smooth algebraic variety of degree ≥ 2 then the fibers of γ are finite (zero dimensional).
14. Corollary. Let $X \subset \mathscr{U}$ be an irreducible variety. If X is not ruled then over a generic $p \in X$ the dimensions $\operatorname{dim} T_{p, l} C_{p}^{r}, r=0,1,2, \ldots$, are strictly decreasing to zero for all $(p, l) \in \pi^{-1}(p)$.

Proof. Let $Z^{r}=\left\{(p, l) \in C^{r} \mid T_{p, l} C_{p}^{r}=T_{p, l} C_{p}^{r-1}\right\} . Z^{r}$ is an analytic variety. Since π is proper, πZ^{r} is an analytic subvariety of X. If X is the countable union $X=\cup_{r=1}^{\infty} \pi Z^{r}$ then one of the Z^{r},s, say Z^{r}, must map dominantly to X. Restricting to an open subset one may assume Z^{r} is surjective. Then $X=\pi Z^{r}=\pi C^{r-1}$. Apply (13).

The following answers a question in Griffiths and Harris [4, p. 450].
15. Corollary. Let $X \subset \mathscr{U}$ be an irreducible hypersurface, $p \in X a$ generic point. Then for each $r=1, \ldots, n=\operatorname{dim} \mathbf{P}^{n}$, if C_{p}^{s} is not a smooth complete intersection of type $(1,2, \ldots, s)$ in $\mathbf{P}\left(T_{p} \mathbf{P}^{n}\right)$ for all $s=1, \ldots, r$ (if $s=n$ this means C_{p}^{n} is not empty) then X is ruled, and C_{p}^{r} is singular or has codimension $<r \operatorname{in} \mathbf{P}\left(T_{p} \mathbf{P}^{n}\right)$.

Proof. Let g be a local generator for \mathscr{I}_{X}. Then $C_{p}^{r} \cong\left\{t \mid g^{1}(x(p) ; t)\right.$ $\left.=\cdots=g^{r}(x(p) ; t)=0\right\}$ in $\mathbf{P}\left(T_{p} \mathbf{P}^{n}\right)$. Let $1 \leq r \leq n$ be the least integer such that C_{p}^{r} is not a smooth complete intersection of type $(1, \ldots, r)$. Then C_{p}^{r} is singular or $C_{p}^{r}=C_{p}^{r-1}$. Since C_{p}^{r} has codimension at most 1 in C_{p}^{r-1} it follows that for some $(p, l) \in C_{p}^{r}, T_{p, l} C_{p}^{r}=T_{p, l} C_{p}^{r-1}$. Apply (14).

If X is ruled then say the rulings are in general position if $\left(\operatorname{span} C_{p}^{\infty}\right)$ $=\mathbf{P} T_{p} X$ at a generic $p \in X$.
16. Lemma. Let $\mathscr{U} \subset \mathbf{P}^{n}$ be an open set, $X \subset \mathscr{U}$ an irreducible, ruled variety whose rulings are in general position. Then X is piecewise linearly connected i.e. given $p, q \in X$ there exists a finite sequence $l_{i}, i=0, \ldots, m$, of line segments in X such that $p \in l_{0}, q \in l_{m}$ and l_{i} meets l_{i+1} for each i.

Proof. Let $Y \subset X$ be the locus of points $p \in X$ such that C_{p}^{∞} spans $T_{p} X . Y$ is a dense open subset. Let $\mathscr{U}^{\prime} \subset \mathscr{U}$ be a convex open subset such that $\mathscr{U}^{\prime} \cap X \subset Y$ is nonempty. Let $X^{\prime} \subset \mathscr{U}^{\prime}$ be an irreducible component of $\mathscr{U}^{\prime} \cap X$, and let $C^{\infty \prime}$ be the ∞ contact cone of X^{\prime} in $\pi^{-1} \mathscr{U}^{\prime}$. Let $p^{\prime} \in X^{\prime}$.

Since $\pi: \pi^{-1} \mathscr{U}^{\prime} \rightarrow \mathscr{U}^{\prime}$ is a proper map one can define a sequence of analytic subvarieties of X by

$$
C_{p^{\prime}}^{\infty \prime}(1)=\pi C_{p^{\prime}}^{\infty \prime}, \quad C_{p^{\prime}}^{\infty \prime}(k+1)=\pi \pi^{-1} C_{p^{\prime}}^{\infty \prime}(k), \quad k=1,2,3, \ldots
$$

Clearly $C_{p^{\prime}}^{\infty^{\prime}}(k+1)$ consists of all points in X^{\prime} connected to points in $C_{p^{\prime}}^{\infty \prime}(k)$ by line segments in X^{\prime}. Eventually the dimension of $C_{p^{\prime}}^{\infty \prime}(k)$ will reach a maximum. Then a generic smooth point q^{\prime} of $C_{p^{\prime}}^{\infty}(k)$ is also a smooth point of $C_{p^{\prime}}^{\infty}(k+1)$. But $C_{p^{\prime}}^{\infty \prime}(k+1)$ contains all the lines in X^{\prime}
through q^{\prime}. Since the rulings are in general position, $\operatorname{dim} C_{p^{\prime}}^{\infty^{\prime}}(k+1)=$ $\operatorname{dim} X^{\prime}$. Since X^{\prime} is irreducible, $C_{p^{\prime}}^{\infty}(k+1)=X^{\prime}$.

Now replace X^{\prime} by X, \mathscr{U}^{\prime} by \mathscr{U}. Going through the same construction, construct $C_{p^{\prime}}^{\infty \prime}(k+1)$. Then $C_{p^{\prime}}^{\infty \prime}(k+1) \subset C_{p^{\prime}}^{\infty}(k+1)$; since X is irreducible, $C_{p^{\prime}}^{\infty}(k+1)=X$. So every point $p \in X$ can be connected to p^{\prime} by at most $k+1$ line segments, hence any two points can be connected to each other by at most $2 k+2$ line segments.
17. Theorem. Let $X \subset \mathscr{U} \subset \mathbf{P}^{n}$ be an irreducible analytic hypersurface, $p \in X, g \in \mathscr{I}_{p, X}$ a generator. Assume
(i) $\mathscr{J}_{X}^{d}=\mathscr{J}_{X}^{d+1}$ for some $d \leq n-1$.
(ii) $g^{1}(x(p) ; t), \ldots, g^{d}(x(p) ; t)$ are a regular sequence of polynomials
(iii) C_{p}^{d} is reduced.

Then X is algebraic—there is a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ of degree $\leq d$ (in affine coordinates) vanishing on X.

Proof. Recall some consequences of (i), (ii), (iii):
18. $C_{p}^{d}=\left\{t \in \mathbf{P} T_{p} \mathbf{P}^{n} \mid g^{1}(x(p) ; t)=\cdots=g^{d}(x(p) ; d)=0\right\}, g \in$ $\mathscr{I}_{X, p}$ a generator, is nonempty (since $d \leq n-1$), smooth on a dense open subset (by (iii)), and $C_{p}^{d}=C_{p}^{\infty}$ (by (12)).
19. Every homogeneous polynomial vanishing identically on C_{p}^{d} is in the homogeneous ideal generated by g^{1}, \ldots, g^{d}.
20. Every homogeneous relation $\sum_{r=1}^{d} a^{r} g^{r}=0$ is of the form $a^{r}=$ $\sum_{s} Q_{r s} g^{s}$ where $Q_{r s}$ is an antisymmetric matrix of polynomials (19, 20 follow from (ii), (iii); use a Koszul complex).
21. If $a^{i}(t), i=1, \ldots, d$, are homogeneous polynomials satisfying the identity

$$
0 \equiv \sum_{i=1}^{d} a^{i} \frac{\partial g^{i}}{\partial t_{\lambda}} \bmod g^{1}, \ldots, g^{d}, \quad \text { for all } \lambda=1, \ldots, n
$$

then $a^{i} \equiv 0 \bmod g^{1}, \ldots, g^{d}$, for all i.
Proof of 21. If $\sum_{i=1}^{d} a^{i} d g^{i} \equiv 0 \bmod g^{1}, \ldots, g^{d}$ then $0 \equiv \sum_{i=1}^{d} a^{i} d g^{i} \wedge$ $d g^{1} \wedge \cdots \wedge \widehat{d g} \wedge \cdots \wedge d g^{d} \equiv \pm a^{j} d g^{1} \wedge \cdots \wedge d g^{d} \bmod g^{1}, \ldots, g^{d}$. By $18, d g^{1} \wedge \cdots \wedge d g^{d} \neq 0$ on a dense open subset of C_{p}^{d}, so $a^{j} \equiv 0$ on C_{p}^{d}. Apply 19.
22. The points of C_{p}^{d} are in general position in the hyperplane $g^{1}(t)=0\left(\right.$ by 19, since $\left.\operatorname{deg} g^{i}=i\right)$.

Proof of theorem. We may assume g generates \mathscr{I}_{X} on \mathscr{U}. Taken together (ii), (iii) are open conditions-assume they are satisfied everywhere on \mathscr{U}. We shall work in the ring $\mathcal{O}_{\mathscr{U}}[t]$ of polynomials in t with holomorphic coefficients. All polynomials are homogeneous. Degree means degree as a polynomial in t.

Set $e=d+1$. As in the proof of (12) one has local relations on $\pi^{-1} \mathscr{U}$:

$$
\begin{align*}
0 & \equiv \sum_{i=0}^{e} a^{e-i}(x ; t) g^{i}(x ; t) \tag{23}\\
0 & \equiv \sum_{i=0}^{e+1} b^{e+1-i}(x ; t) g^{i}(x ; t) \tag{24}
\end{align*}
$$

$\operatorname{deg} a^{i}=\operatorname{deg} b^{i}=i$ for all i, and $a^{0}, b^{0} \neq 0$. The idea is this: if $f(x)=$ $g(x) h(x)$ were a polynomial of degree $<e$ (in x) vanishing on X then, expanding as a power series, one has $0 \equiv f^{e}=\sum h^{e-i} g^{l}$. So one can hope to recover f from (23).

One may replace b^{i} by $b^{i}\left(a^{0} / b^{0}\right)+a^{i-1}\left(a^{1} / a^{0}-b^{1} / b^{0}\right), \quad i=$ $0, \ldots, e+1$, (set $\left.a^{-1}=0\right)$. Then

$$
a^{0}=b^{0}, \quad a^{1}=b^{1}
$$

Differentiate (23) with respect to x_{λ} and (24) with respect to t_{λ} :

$$
\begin{aligned}
0 & \equiv \sum_{i=0}^{e} \frac{\partial a^{e-i}}{\partial x_{\lambda}} g^{i}+\sum_{i=0}^{i} a^{e-i} \frac{\partial g^{i}}{\partial x_{\lambda}} \equiv \sum_{i=0}^{e} \frac{\partial a^{e-i}}{\partial x_{\lambda}} g^{i}+\sum_{i=1}^{e+1} a^{e+1-i} \frac{\partial g^{i}}{\partial t_{\lambda}} \\
0 & \equiv \sum_{i=0}^{e} \frac{\partial b^{e+1-i}}{\partial t_{\lambda}} g^{i}+\sum_{i=1}^{e+1} b^{e+1-i} \frac{\partial g^{i}}{\partial t_{\lambda}}
\end{aligned}
$$

for all $\lambda=1, \ldots, n$, since $\operatorname{deg} g^{0}=\operatorname{deg} b^{0}=0$. Subtract:

$$
\begin{equation*}
0 \equiv \sum_{i=0}^{e}\left(\frac{\partial a^{e-i}}{\partial x_{\lambda}}-\frac{\partial b^{e+1-i}}{\partial t_{\lambda}}\right) g^{i}+\sum_{i=1}^{e-1}\left(a^{e+1-i}-b^{e+1-i}\right) \frac{\partial g^{i}}{\partial t_{\lambda}} \tag{25}
\end{equation*}
$$

Since g^{1}, \ldots, g^{e-1} is a regular sequence it follows (21) that $a^{e+1-t} \equiv$ $b^{e+1-i} \bmod g^{0}, \ldots, g^{e-1}$ for all $i=1, \ldots, e+1$. Define $a^{e+1}=b^{e+1}$. Write

$$
\begin{equation*}
b^{e+1-i}=a^{e+1-i}+\sum_{j=0}^{e+1} P_{i j} g^{j}, \quad i=0, \ldots, e+1 \tag{26}
\end{equation*}
$$

where $P_{i j}$ has degree $e+1-i-j$ when $0 \leq i, j, i+j \leq e+1$ and vanishes for i, j outside this range. Set

$$
A_{i j}=\sum_{r=0}^{j+1} P_{i+1+r, j-r}-\sum_{r=0}^{i+1} P_{j+1+r, i-r}
$$

Then $A_{i j}=-A_{j i}, \operatorname{deg} A_{i j}=e-i-j$ for all i, j, and

$$
A_{i-1, j}-A_{i, j-1}=P_{i j}+P_{j i} \quad \text { for all } i, j=0, \ldots, e+1
$$

Define $B_{i j}$ by

$$
A_{i-1, j}+A_{i, j-1}-2 B_{i j}=P_{i j}-P_{j i}, \quad i, j=0, \ldots, e+1
$$

Then $B_{i j}=-B_{j i}, \operatorname{deg} B_{i j}=e+1-i-j$ for all i, j. Set

$$
\begin{aligned}
\bar{a}^{e-i} & =a^{e-i}+\sum_{j=0}^{e+1} A_{i j} g^{j}, & i & =-1, \ldots, e, \\
\bar{b}^{e+1-i} & =b^{e+1-i}+\sum_{j=0}^{e+1} B_{i j} g^{j}, & i & =0, \ldots, e+1 .
\end{aligned}
$$

Since $A_{i j}, B_{i j}$ are antisymmetric the \bar{a}^{i}, \bar{b}^{i} satisfy $(23,24)$. Moreover they have the right degree, and $\bar{a}^{0}=a^{0}+A_{e o} g^{0}$ does not vanish near the locus ($g^{0}=0$). Finally, one may check using (26), that

$$
\bar{a}^{i}=\bar{b}^{i}, \quad i=0, \ldots, e+1
$$

Replace the a, b 's by the \bar{a}, \bar{b} 's in $(23,24)$. Then (25) becomes

$$
0=\sum_{i=0}^{e}\left(\frac{\partial a^{e-i}}{\partial x_{\lambda}}-\frac{\partial a^{e+1-i}}{\partial t_{\lambda}}\right) g^{i}, \quad \lambda=1, \ldots, n
$$

Subtract ($\left.\partial a^{0} / \partial x_{\lambda}-\partial a^{1} / \partial t_{\lambda}\right) / a^{0}$ times eq. (23) from this and get

$$
0 \equiv \sum_{i=0}^{e-1}\left\{\frac{\partial a^{e-1}}{\partial x_{\lambda}}-\frac{\partial a^{e+1-i}}{\partial t_{\lambda}}-\frac{a^{e-i}}{a^{0}}\left(\frac{\partial a^{0}}{\partial x_{\lambda}}-\frac{\partial a^{1}}{\partial t_{\lambda}}\right)\right\} g^{i}
$$

a homogeneous relation among the g^{i} 's. Reducing mod g^{0} one can apply (20), then by adding an appropriate multiple of g^{0} one has

$$
\begin{equation*}
\frac{\partial a^{e-i}}{\partial x_{\lambda}}=\frac{\partial a^{e+1-i}}{\partial t_{\lambda}}+\frac{a^{e-i}}{a^{0}}\left(\frac{\partial a^{0}}{\partial x_{\lambda}}-\frac{\partial a^{1}}{\partial t_{\lambda}}\right)+\sum_{j=0}^{e-1} Q_{i j}^{\lambda} g^{j} \tag{27}
\end{equation*}
$$

$i=0, \ldots, e-1, \lambda=1, \ldots, n, \operatorname{deg} Q_{i j}^{\lambda}=e-i-j$ where $Q_{i j}^{\lambda}$ is an antisymmetric matrix of polynomials.

Multiplying (23) by $1 / a^{0}$ we may assume $a^{0} \equiv 1$. Then for $i=e-1$ (27) becomes

$$
\begin{equation*}
\frac{\partial a^{1}}{\partial x_{\lambda}}=\frac{\partial a^{2}}{\partial t_{\lambda}}-a \frac{\partial a^{1}}{\partial t_{\lambda}}+Q_{e-1,0}^{\lambda} g^{0}+Q_{e-1,1}^{\lambda} g^{1} \tag{28}
\end{equation*}
$$

Consider the form

$$
\Phi=\sum_{\mu} \frac{\partial a^{1}}{\partial t_{\mu}} d x_{\mu}, \quad d \Phi=\sum_{\lambda \mu} \frac{\partial^{2} a^{1}}{\partial x_{\lambda} d t_{\mu}} d x_{\lambda} \wedge d x_{\mu}
$$

Applying (28),

$$
d \Phi=g^{0} \sum_{\lambda \mu} \frac{\partial Q_{e-1,0}^{\lambda}}{\partial t_{\mu}} d x_{\lambda} \wedge d x_{\mu}+\sum_{\lambda \mu} Q_{e-1,1}^{\lambda} \frac{\partial g^{1}}{\partial t_{\mu}} d x_{\lambda} \wedge d x_{\mu}
$$

Since $\sum\left(\partial g^{1} / \partial t_{\mu}\right) d x_{\mu}=d g^{0}, \Phi$ is closed along $\left(g^{0}=0\right)$. So locally along ($g^{0}=0$) one can solve the equation $d \log h(x)=\Phi$. Multiply the a^{i} 's by $h(x)$. Then

$$
\begin{equation*}
\sum_{\lambda} \frac{\partial a^{0}}{\partial x_{\lambda}} d x_{\lambda}=\sum_{\lambda} \frac{\partial a^{1}}{\partial t_{\lambda}} d x_{\lambda} \quad \bmod g^{0}, d g^{0} \tag{29}
\end{equation*}
$$

Let $\bar{x} \in X$. Define a polynomial $f(x)$ of degree $\leq e-1$ by

$$
\begin{equation*}
f(x)=\sum_{i=0}^{e-1} \sum_{j=0}^{i} a^{i-j}(\bar{x}, x-\bar{x}) g^{j}(\bar{x}, x-\bar{x}) \tag{30}
\end{equation*}
$$

It remains to show that f vanishes on X. Clearly

$$
\begin{align*}
& 0=f^{0}(\bar{x})=a^{0}(\bar{x}) g^{0}(\bar{x}) \tag{31}\\
& f^{r}(\bar{x} ; t)=\sum_{j=0}^{r} a^{r-j}(\bar{x} ; t) g^{j}(\bar{x} ; t), \quad r=0, \ldots, e-1, \quad \text { and } \\
& f^{e}(x ; t) \equiv 0
\end{align*}
$$

Define functions

$$
\begin{aligned}
& f_{\lambda}^{r}(x ; t)=\sum_{j=0}^{r-1} \frac{\partial a^{r-j}}{\partial t_{\lambda}}(x ; t) g^{j}(x ; t)+\sum_{j=1}^{r} a^{r-j}(x ; t) \frac{\partial g^{j}}{\partial t_{\lambda}}(x ; t) \\
& r=1, \ldots, e, \lambda=1, \ldots, n .
\end{aligned}
$$

In particular $f_{\lambda}^{e} \equiv 0$ by (23), and f_{λ}^{r} is homogeneous of degree $r-1$.
Differentiate:

$$
\frac{\partial f_{\mu}^{r}}{\partial x_{\lambda}}-\frac{\partial f_{\mu}^{r+1}}{\partial t_{\lambda}} \equiv \sum_{j=1}^{r}\left(\frac{\partial a^{r-j}}{\partial x_{\lambda}}-\frac{\partial a^{r+1-j}}{\partial t_{\lambda}}\right) \frac{\partial g^{j}}{\partial t_{\mu}} \quad \bmod g^{0}, \ldots, g^{e-1}
$$

Then substituting in $(27,29)$ this becomes

$$
\begin{equation*}
\sum_{\lambda}\left(\frac{\partial f_{\mu}^{r}}{\partial x_{\lambda}}-\frac{\partial f_{\mu}^{r+1}}{\partial t_{\lambda}}\right) d x_{\lambda} \equiv 0 \quad \bmod g^{0}, \ldots, g^{e-1}, d g^{0} \tag{32}
\end{equation*}
$$

Let $l(s)=(x+s t, t)$ be a line in C^{e-1}. Then g^{0}, \ldots, g^{e-1} vanish on l. So by (32)

$$
\begin{equation*}
\left.\frac{d}{d s}\right|_{0} f_{\mu}^{r}(x+s t, t)=\sum_{\lambda} t_{\lambda} \frac{\partial f_{\mu}^{r}}{\partial x_{\lambda}}(x, t)=r f_{\mu}^{r+1}(x, t) \tag{33}
\end{equation*}
$$

along l. Now it is easy to show that functions f_{μ}^{r}, homogeneous of degree $r-1$ in t, satisfying (33) and the condition $f_{\mu}^{e} \equiv 0$ are uniquely determined along a line by their values at a single point.

On the other hand the functions $\left(\partial f^{r} / \partial t_{\mu}\right)(x ; t)$ derived from the polynomial (30) also satisfy these relations, moreover they agree with the f_{μ}^{r} 's at any point (\bar{x}, \bar{t}) lying on a line in C^{e-1} through \bar{x} (differentiate (31) at \bar{x}). By (22) the rulings of X are in general position, so by (12), (16) $f_{\mu}^{r}=\partial f^{r} / \partial t_{\mu}$ everywhere on C^{e-1}.

In particular $\partial f^{1} / \partial t_{\lambda}=f_{\lambda}^{1}$ on C^{e-1}. But $d f^{0}=\Sigma\left(\partial f^{1} / \partial t_{\lambda}\right) d x_{\lambda}$ and

$$
\sum f_{\lambda}^{1} d x_{\lambda}=\sum\left(\frac{\partial a^{1}}{\partial t_{\lambda}} g^{0}+a^{0} \frac{\partial g^{1}}{\partial t_{\lambda}}\right) d x_{\lambda} \equiv 0 \quad \bmod g^{0}, d g^{0}
$$

Hence f^{0} is constant $=f^{0}(\bar{x})=0$ on C^{e-1}. Since $\pi C^{e-1}=X$ (18), f vanishes on X.

Example. If C_{p}^{r} is not reduced then the conclusion of (17) may not hold.

Let $X \subset \mathbf{P}^{3}$ be the cylinder

$$
X=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid g\left(x_{1}, x_{2}\right)=0\right\}
$$

in affine coordinates. X may not be algebraic (if g is not).

$$
\begin{aligned}
g^{1}(x ; d x) & =g_{1} d x_{1}+g_{2} d x_{2} \\
g^{2}(x ; d x) & =\frac{1}{2}\left(g_{11} d x_{1}^{2}+2 g_{12} d x_{1} d x_{2}+g_{22} d x_{2}^{2}\right)
\end{aligned}
$$

etc., where $g_{t}=\partial g / \partial x_{i}$. If $g^{1}(x(p) ; d x) \neq 0$ and $g^{1}(x(p) ; d x)$ does not divide $g^{2}(x(p) ; d x)$ then g^{1}, g^{2} are a regular sequence generating any homogeneous cubic in $d x_{1}, d x_{2}$. In particular $g^{3} \equiv 0 \bmod g^{1}, g^{2} . C_{p}^{2}$ is supported on the point $\left[d x_{1}, d x_{2}, d x_{3}\right]=[0,0,1]$ but it is not reduced, since $\left\{d x_{1}, d x_{2},\right\} \not \subset \mathscr{J}_{X}^{2}$.

I would like to thank my teachers at UCLA, especially Mark Green, for their invaluable help and encouragement.

References

[1] A. Altman and S. Kleiman, Introduction to Grothendieck Duality Theory, Springer Lecture Notes 146, 1970.
[2] W. Fulton and R. Lazersfeld, Connectivity and its applications in algebraic geometry, (preprint), Brown University.
[3] Mark Green (Lecture given at UCLA, 1983).
[4] P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Scient. Éc. Norm. Sup. 4^{e} série, t. 12 (1979), 355-432.
[5] A. Grothedieck and J. Dieudonné, Eléments de Géométrie Algébrique IV, Publ. Math. I.H.E.S., 32 (1967).
[6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., Springer-Verlag, 1977.
[7] F. Zak, Projection of algebraic varieties, Math. USSR Sbornik, 44 (1983), 535-544.
Received June 3, 1985 and in revised form October 20, 1985.

University of Washington
Seattle, WA 98195

