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LINES HAVING HIGH CONTACT
WITH A PROJECTIVE VARIETY

GEORGE JENNINGS

Let <% open c P = PΛ(Q, X c ^ an analytic subvariety,

m ,/ \ λ

P" G

the incidence correspondence with induced projections π, λ, where
G = G(l, w) is the Grassmannian of lines in P".

0. Definition. The contact cones of X are

Cr = {(/>> 0 G π " 1 ^ I / has contact > r + 1 with X at p}

The contact cones may be thought of as schemes of cones in the
tangent space of P* which reflect the local geometry of the embedding
X -» °ll. The main results of this paper are a singularities theorem (13)
which puts an upper bound on the pathology of the contact cones if X is
not ruled, and an algebraization theorem (17) which says roughly that if X
is a hypersurface whose contact cones resemble those of an algebraic
hypersurface of low degree then X is algebraic. Hypersurfaces are the
simplest case—in a future paper we show that in general hypersurfaces
are determined up to projective equivalence by the projective moduli of
the third contact cone with a little help from the ideal of the fourth.

The contact cones have a scheme structure defined in terms of the
functor of principal parts (jets) ^ / / G [5, §16]. Let J be a sheaf of
0,-modules. Form the fiber product J XGJ. Let */Δ be the ideal sheaf of

Δ r

the diagonal, and Jr -* J XGJ the subscheme defined by */Δ

r+1. One has

a commutative diagram
Jr

Pr / i Δ' \ qr

J <- JχGJ -* /
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where p, q are the projections. Then

Vj is a locally free sheaf of rank r 4- 1 consisting of relative r jets of
sections of Oj.

Let J>x c Oy be the ideal sheaf of X.

1. Definition. C r, 0 < r < oo, is the zero scheme of the sheaf of
sections &>j/G(π*Sx) c ^ / / G ^ \°U. C°° = Γi%0C

r is the intersection
scheme. C = ^~1(/?) Π C r, 0 < r < oo, is the fiber over / G i

Since / X G / V p « x p r t is the blow up of PΛ X P" along the
diagonal the exceptional divisor / is naturally isomorphic to the projecti-
vized tangent space PTP -» P π , via the relation "υ is tangent to /". In
particular the relative cotangent sheaf Ω^/G = «/Δ//Λ2 °f J 1S J u s t the dual
ΘT(Ύ) of the universal subbundle Θτ{-1) of τr*ΓP over PTP. J =
Proj(SΏy/GP) where S'Ώ^/G is the sheaf of graded rings

ΘJ® Λ/Λ2 ® ΛVΛ3 ©

There is an (additive) sheaf homomorphism dr

J/G\ Θj -> ZPJ/QOJ in-
duced by the corresponding map on sections [5, p. 16]. One has a
commutative diagram

h) {v*Jx) - 0

over TΓ" 1 ^ arising directly from the definition. Define contact ideal
sheaves #χ c S'&J/G\m-\m inductively by

x = kerp) β β / S Ώ * / G

r=0

on T Γ - 1 ^ . / J is the ideal sheaf of Cr in S%/G.
This leads to a convenient version in coordinates. Let x = (xl9...,xn)

be an affίne coordinate system on ^ , dx = ( J x l 9 . . . , dxn), ^ e Ί f , g G
(Pp ̂ . Expand in a power series

(9) g(χ(p) +1) = g°(x) + gHχ; 0 + g2(χ; t) + • •
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where t = (tl9...9tn) are indeterminants and gr(x;t) is the rth order
term. Replacing t by dx,

(10) Si=(g'(x;dx)\0 <s<r,g&Jx)

in coordinates.
The geometry of the contact cones is controlled by the "derivative

relation":

in coordinates (see [5, p. 43] for a coordinate free version).

12. PROPOSITION. If fx = / £ + 1 for some r then / £ =«/*, so πC r c
X is ruled {by line segments).

Proof. Let gl9...9gm generate Jx over ^ . By hypothesis there exists

a local relation

m r

7 = 1 5 = 0

Differentiate with respect to xλ and apply the derivative relation (11):

λ = 1,...,«. Multiply by /λ, sum over λ, and apply the Euler relation:

(r + 2)g r + 2 = 0 m o d / £ + 1 .

Continue inductively. Since πC00 is obviously ruled we are done. (Of

course Cr may be empty.)

EXAMPLE. If I c P " is algebraic of degree d then Jχ=/χ. A
partial converse is Theorem (17).

The tangent cone TY c 771 γ of a subscheme Y c / is the locus of
tangent vectors annihilating the ideal of Y. In particular

where C/ = TΓ'H^)
 n C r and π*: TJ -+ ττ*ΓP is the differential.

mCr

p c Ql is a cone with vertex at /?. Identify Ϊ̂ /̂C/ with the corre-
sponding plane in P" tangent to mCr

p along /. In local coordinates (9)
Tp tCp is the plane through x(p) cut out by the hyperplanes
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Over a dense open subset Ψ*<z Cr the fibers TplCp will have locally
constant dimension. We shall say that TplCp is locally constant along / if
λ~1(/) Π # " is nonempty and Tp ;Cp is locally constant as a plane in P"
along λ-\l) Π or.

It is easy to write down the condition for this to happen, using the
coordinates of (9) (for a coordinate-free method, see [1, p. 10] "second
fundamental form"). Let (3c, t) represent (pj)^ λ~\l) Π 1Γ. λ~\l) is
locally parametrized by s -» (x + st, t) for s near 0. Regarding TplCp as a
subspace of C w + 1 we have a vector bundle Γ# /C over π~ι(l) Π TΓ. Let
y(^) = Σai(s)d/dti be a local holomoφhic section, so that

0= Σ,at(s)-£-(x + sϊ,t), for all g ε ^ , r = 1,...,#\
1 z

identically in .̂ 7̂ ,/C^ is locally constant along / iff for all such sections v
the derivative

also vanishes identically.

13. THEOREM. Fix r > 1. Suppose

z^ {{pj) <Ξ σ\τpJσp~
ι = τpJσp]

is a nonempty subscheme, and <πZ contains an irreducible component of
πCr~ι as a subscheme. Then

(i) Z c C00,
(ii) Tp jCp~

ι is locally constant along the rulings I for generic (p,l) e Z.

Proof. We work in the coordinates (9). Let (x, t) = (p, I) e Z, i; =
Σα^/θx, + Σ ^ / 3 / , Then o e Γ / ' " 1 iff for all g G / ^ , ^ =
0,..., r - 1,

By the Euler relation, vg\x, i) = Σ/^ θgyθί,.. Since (p, /) e Cr, TplC
r~λ

contains wx = Σ ^ Θ/ΘJC,- (11).
Since πZ contains a component of i rC" 1 , and Z c C r c C""1, it

follows that at a generic point (/?,/) G Z the differential π*: 7^/Cr ->
π*TpJC

r~ι is surjective. Its kernel is TplC
r

p. But TplC
r

p = TplC
r

p~
ι, so

Γ/ ? /C
r = ^ / C " 1 . In particular wx d TC\ so 0 = Σiβgydx, =

ι t i = (r + l)gr+1(3f, O H e n c e z c C r + 1 .
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Now let vt = Σbi'd/'dti<ΞTpjC
r

p-
1 be any vector and set υx =

i. Then υt<ΞTplC
r

p, hence for all g e / ; j r , 0 =
ir = l , . . . , r . Thus ^ e T^C'" 1 . But TpJC

r'1 = Γ,/y, so υx e Γ ^ C ,
thus ι;, e TpIC£+1. Therefore 2^7C/ = TpJC£+ι and (i) follows by induc-
tion.

As for (ii), if j •-> (3c + jί,ί) is a local parametrization of λ-1(/) and
/,- is a local holomorphic section of T%ιC[~ι over λ~1(/) then

I ι IJ ι J

but θV/fyθjCy = 32g"+1/3ί/9θ» s o t h e s e c o n d t e r m vanishes by the
TplC

r

p~
ι = TplC

r

p.Euler relation since TplC
r

p~
ι = TplC

r

p.

REMARK. If X is ruled then the hypotheses of (13) are satisfied for
some r.

EXAMPLE. Fundamental Forms. (See [4, p. 373].) In affine coordinates,
the rth osculating space TpX c P n is the span of p and the derivatives
σ'(p),..., σ(r)(p) of all open curves σ c X through p. Let p >-* yr(p) =
TpX be the associated rth order Gauss map. There is a natural way of
representing its derivative at a generic point p by an element

dy'(p) e H°{PTpX, Θ(r + 1)) Θ Np{Tp

rX)

where N(Tp

rX) = TpP
n/Tp(Tp

rX) is the normal space. ίίγ r(^) is the
r 4- 1st fundamental form of X at /?.

Let y = Σfl (>σ (/) be any local section of the associated bundle TrX
(with fiber {TrX)q = Tr

qX) defined near p. Then

in coordinates. So define dyr by

[dyio'(p)*'+1)]idg-(goo)lr+1Xp), forallge

(This does not depend on any choices.)
The associated linear system

Z/ + 1 = {dyrjθ\θ e ΛΓ/(Γ;X)} c H°{PTpX90(r + 1))

is contained in the ideal of Cp

+ι (viewed as a subvariety of PTpX). (Since
p is a generic point we may represent X as a graph j/y. = /)(x), y = 1,..., k,
x = (xv..., xw) in affine coordinates near p. If g = Σβ y j ; y vanishes on
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Tp

rX then dΊ

r idg = Σajff+\x(p); dx). For r > 1 this is the r + 1st
order part of an element, Σaj(fj(x) — j>y ), of Jx). Geometrically the
reason is that, if (/>,/) e Cp

 + ι then choose a curve σ c X through />
which meets / through order r + 1. a\p\. . .,σ ( r + 1 )(/?) lie along / c
Γ/JT c Tp

rX, SO if g vanishes on Tr

pX then (go σ)(r+ι\p) = 0.
At a generic p, L2 generates the ideal of C2 in PTpX, but this is not

in general true of the higher Z/'s. For example, if X is a hypersurface, not
a hyperplane, then T2X = P" so L? = {0}. But / ^ # / | unless X is
ruled (12). A less trivial example is the following, due to Mark Green:

EXAMPLE. (Green [3].) Consider the surface I c P 4 parametrized by

in affine coordinates. Then

d2p _ s dp

so every Q e L2 vanishes on (dp/dt)®2. In fact

L2 = span{ds2,ds dt).

By a result of Griffiths and Harris [4, p. 373], the Jacobian system of Lr+1

is contained in U, r = 2,3, It follows that

Z / = 0 moά{ds\dsr~ι -dt}, r = 2 , 3 , . . . .

Griffiths and Harris conjectured that any surface with such Z/'s ought to
be ruled [4, p. 377]. But X is not ruled. In particular, by (12), the Z/'s
cannot generate the ideal of Cr

p if r > 3 at a generic p.

EXAMPLE. [4, p. 387]. The second fundamental form represents the
derivative of the Gauss map γ = γ1. kerdγ^ (projectivized) is the common
singular locus in PTp X of all the quadrics in L2.

Conversely if, at a generic p e X, all the quadrics in L2 have a
common singular locus Zp, then the hypotheses of (13) are satisfied with
r = 2: take Z = ΌZp. Then X is ruled by the planes πZp, which are the
fibers of γ (locally).

Examples of such X are cones and developable varieties. Recently F.
Zak [7, p. 540 see [2] for a proof] proved that if X is a smooth algebraic
variety of degree > 2 then the fibers of γ are finite (zero dimensional).

14. COROLLARY. Let X c % be an irreducible variety. If X is not ruled
then over a generic p e X the dimensions dim TplCp, r = 0,1,2,..., are
strictly decreasing to zero for all (p, I) e τr~1(/?).
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Proof. Let Zr = {(/>,/) e Cr\TpJC
r

p = Γ^C/"1}. ZΓ is an analytic
variety. Since m is proper, mZr is an analytic subvariety of X. If X is the
countable union X = U L̂ χTrZr then one of the Z r 's, say Z r, must map
dominantly to X. Restricting to an open subset one may assume Zr is
surjective. Then X = ττZr = <πCr~x. Apply (13).

The following answers a question in Griffiths and Harris [4, p. 450].

15. COROLLARY. Let X c ^ be an irreducible hypersurface, p £ X a
generic point. Then for each r = 1,..., n = dimP", if Cp is not a smooth
complete intersection of type (1,2,..., s) in P(TpP

n) for all s = 1,..., r (//
s = n this means Cp is not empty) then X is ruled, and Cp is singular or has
codimension < r in

Proof. Let g be a local generator for Jx. Then Cp = {t\g\x(p); t)
= = g'ίxί/?); 0 = 0} in P(7j,Pw). Let 1 < r < n be the least integer
such that Cp is not a smooth complete intersection of type ( 1 , . . . , r).
Then Cp is singular or Cp = C/"1. Since Cp has codimension at most 1 in

p p / p

C;-1 it follows that for some (/>, /) e C/, Γ^C/ = Γ^C/"1. Apply (14).

If Jί is ruled then say the rulings are in general position if (spanC^00)
= PTpX at a generic p e X

16. LEMMA. Lei Φ c P " 6 e α « operc set, X a <% an irreducible, ruled
variety whose rulings are in general position. Then X is piecewise linearly
connected i.e. given p,q £ X there exists a finite sequence /,, i = 0,..., m,
of line segments in X such that p e /0, q G lm and /z meets li+ι for each i.

Proof. Let Γ c l b e the locus of points p ^ X such that Ĉ ° spans
7^X y is a dense open subset. Let °llf c ^ be a convex open subset such
that aUr Π X c y is nonempty. Let JΓ c ^ ' be an irreducible component
of <%' Π X, and let C007 be the oo contact cone of X' in TΓ" 1^'. Let
p' e Z r.

Since TΓ: TΓ" 1 ^' -> ̂ ' is a proper map one can define a sequence of
analytic subvarieties of X by

ς ?9 C?'(k + 1) = T Γ T Γ - 1 ^ / : ) , * = 1,2,3,....

Clearly C™'{k + 1) consists of all points in X' connected to points in
Cf\k) by line segments in X\ Eventually the dimension of Cj?\k) will
reach a maximum. Then a generic smooth point q' of C™'(k) is also a
smooth point of C£\k + 1). But C '̂(A: + 1) contains all the lines in X'
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through qr. Since the rulings are in general position, dim Cy"(fc + 1) =

dim X'. Since X' is irreducible, C$\k + 1) = X'.

Now replace X' by X, W by ^ . Going through the same construc-

tion, construct Cf\k + 1). Then C$\k + 1) c ςj?(Jfc + 1); since JΓ is

irreducible, Cy f̂c + 1) = X. So every point p e Xcan be connected to p'

by at most k + \ line segments, hence any two points can be connected to

each other by at most 2k + 2 line segments.

17. THEOREM. Let X <z <% <z J*n be an irreducible analytic hypersurface,

p ^ X, g G: Jp x a generator. Assume

(i) </x =</x+l for some d < n — 1.

(ii) gι(x(p)\ 0> > gd(x(p)\ t) are a regular sequence of polynomials

(iii) Cd is reduced.

Then X is algebraic—there is a polynomial f(xv..., xn) of degree < d (in

of fine coordinates) vanishing on X.

Proof. Recall some consequences of (i), (ii), (iii):

18. Cd={tePTpP
n\g\x(p);t)= ••• = gd(x(p); d) = 0}, g e

JXp a generator, is nonempty (since d < n - 1), smooth on a dense open

subset (by (iii)), and Cd = Cf (by (12)).

19. Every homogeneous polynomial vanishing identically on Cp is in

the homogeneous ideal generated by g1,..., gd.

20. Every homogeneous relation Σd

r=ιa
rgr = 0 is of the form ar =

ΣsQrsg
s where Qrs is an antisymmetric matrix of polynomials (19, 20

follow from (ii), (iii); use a Koszul complex).

21. If aι(t), i = 1,..., d, are homogeneous polynomials satisfying the

identity

d Λ

\—* . Q ζζ i j

then ai = 0 mod g 1 , . . . , gd, for all i.

Proof of 2Y. If Σf.ifl'έ/g1' = 0 mod g\..., gd then 0 = ΣU^dg1 A

dgι A ••• A dgJ A ••• Adgd = ±ajdgι A ••• Λ^g^modg 1 , . . . , g*. By

18, dg1 Λ Λύfg^ Φ 0 on a dense open subset of C^, so aj = 0 on C/.

Apply 19.
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22. The points of C* are in general position in the hyperplane
g\t) = 0 (by 19, since degg' = /).

Proof of theorem. We may assume g generates Jx on °U. Taken
together (ii), (iii) are open conditions—assume they are satisfied every-
where on °U. We shall work in the ring Θ#[t] of polynomials in / with
holomoφhic coefficients. All polynomials are homogeneous. Degree means
degree as a polynomial in t.

Set e = d + 1. As in the proof of (12) one has local relations on

(23) Os £ *«-'(*; 0g'(*;0,
i-O

e+l

(24) O ^ E b'^-'ix Og'ix t).
i-O

degα' = degb* = i for all /, and a°9 b° Φ 0. The idea is this: if f(x) =
g(x)h(x) were a polynomial of degree < e (in x) vanishing on X then,
expanding as a power series, one has 0 = fe = Σhe~ιgι. So one can hope
to recover / from (23).

One may replace V by b\a°/b°) + a^J/a0 - bλ/b% i =
0,..., e + 1, (set a-1 = 0). Then

Differentiate (23) with respect to xλ and (24) with respect to tλ:

/ = o όxλ / =o

e OLe+l-i e+l

o = y °* e< + y fc
.^n 3 ί λ

 g • , 3rλ

ί = 0 λ z = l Λ

for all λ = 1,..., n, since deg g° = deg b° = 0. Subtract:

Since g 1 , . . . , ge~ι is a regular sequence it follows (21) that ae+1~' =
6 e + 1 - ' m o d g 0 , . . . ^ ' " 1 for all i = l,...,e+l. Define ae+1 = be+1.
Write

e+l

(26) 6 ' + H = β + H + Σ P / i = 0,...,e + l,
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where Ptj has degree e + 1 - i - j when 0 < /, j , i + j < e + 1 and
vanishes for i, 7 outside this range. Set

7+1 j+1

Aij = 2L *i+l + rj-r ~~ 2^ *7

Then yli7 = -^4^, degyll7 = e — i — j for all /, j \ and

A^j - i ί ^ . ! = Pu 4- P., for all i, 7 = 0,...,e + 1.

Define #,7 by

^ ί _ 1 J + Λ,.,^ - 25 ί 7 = P.j - PJi9 ij = 0,...,e +

Then £ / y = -JS^, deg5 l 7 = e + 1 - / - 7 for all 1, 7. Set

7 - 0

7 = 0

a' T)1
Since >4J7, 5 l 7 are antisymmetric the a', T)1 satisfy (23, 24). Moreover they
have the right degree, and d° = a0 + Aeog° does not vanish near the
locus (g° = 0). Finally, one may check using (26), that

W = V9 i = 0,...,* + 1.
Replace the α, Z>'s by the ά, ό's in (23, 24). Then (25) becomes

Subtract (3α°/9*λ - d^/dtχϊ/a0 times eq. (23) from this and get

ψjda'-1 dae+1-i qt-'lda0 da1

a homogeneous relation among the g"s. Reducing modg 0 one can apply
(20), then by adding an appropriate multiple of g° one has

/ = 0,...,e - 1, λ = 1,...,w, degζ);7 = e — i —j where β l 7 is an anti-
symmetric matrix of polynomials.

Multiplying (23) by l/a° we may assume a0 = 1. Then for i' = e — 1
(27) becomes
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Consider the form

Φ = Σ ̂ -Λ,, dΦ - Σ 3 ^ - ^ λ Λ Λ,.
μ V> λμ λ /*

Applying (28),

λμ °V λμ °>

Since Σ(dg1/dtμ) dxμ = t/g°, Φ is closed along (g° = 0). So locally along
(g° = 0) one can solve the equation d logΛ(x) = Φ. Multiply the ai9s by
Λ(JC). Then

(29) Σj^dxλ = Σjfdxλ mod g°,dg°.

Let x ^ X. Define a polynomial f(x) of degree < e — 1 by

(30) /(*)= Σ t^ w (i,x-jc)g>(x,x-5f).

It remains to show that / vanishes on X. Clearly

(31) 0 = /°(*) = ao(x)go(3c),

/ ' ( * ; ί ) = Σ aτ~\x\ t)gj(x; t), r = 0,...,e-l, and

Define functions
r-\ Λ r-j r Q ,

Λ

r( γ / ) = > ( γ t)σJ( x' t) 4- > a J( x' A—— ( x' t)

r = l , . . . , e , λ = 1,...,«.

In particular /jf = 0 by (23), and f{ is homogeneous of degree r — 1.
Differentiate:

Then substituting in (27, 29) this becomes

I df dfr+ι\
(32) Σ 97"" a 7 " r X λ Ξ ° π iodg 0 , . . .^- 1 ,* 0 .

λ \ λ σ ί λ /
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Let l(s) = (JC + st, t) be a line in Ce~1. Then g°,..., ge~ι vanish on
/. So by (32)

(33) I

along /. Now it is easy to show that functions fμ, homogeneous of degree
r — 1 in /, satisfying (33) and the condition fμ = 0 are uniquely de-
termined along a line by their values at a single point.

On the other hand the functions {ΰfr/ΰtμ)(x\t) derived from the
polynomial (30) also satisfy these relations, moreover they agree with the
fμ's at any point (3c, I) lying on a line in Ce~ι through x (differentiate
(31) at 3c). By (22) the rulings of X are in general position, so by (12), (16)
fμ = V/9*/t everywhere on Ce~ι.

In particular dfι/dtλ = ft on Ce~\ But df° = Σ(dfι/dtλ) dxλ and

hλ = 0 modg0, dg°.

Hence /° is constant = /°(x) = 0 on Ce~\ Since πCe~λ = X (18), /
vanishes on X.

EXAMPLE. If Cr

p is not reduced then the conclusion of (17) may not
hold.

Let X c P 3 be the cylinder

X = ((x x x )lί?(jc x ) = 0 )

in affine coordinates. X may not be algebraic (if g is not).

g1(x; dx) = gλdxx + g2dx2

g2(x;dx) = \{glλdx2 + 2gudx1dx2 + g22dxj)

etc., where g, = dg/dXj. If gx(jc(/7); ί/x) # 0 and g1(x(p); dx) does not
divide g2(x(p); dx) then g1, g2 are a regular sequence generating any
homogeneous cubic in dxvdx2. In particular g3 = 0 modg1, g2. C2 is
supported on the point [dxvdx2,dx3] = [0,0,1] but it is not reduced,
since { dxλ, dx2,} <£</£.

I would like to thank my teachers at UCLA, especially Mark Green,
for their invaluable help and encouragement.
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