PACIFIC JOURNAL OF MATHEMATICS
Vol. 125, No. 2, 1986

ON EXISTENCE CRITERIA FOR CAPILLARY
FREE SURFACES WITHOUT GRAVITY

LUEN-FAI TaM

Consider a cylinder of homogenous material closed at one end by a
base of general cross section 2 and partly filled with liquid. We want to
find conditions under which in the absence of gravity the liquid can cover
Q and is in mechanical equilibrium.

If the liquid can cover Q, then the liquid surface is a graph over the
base. In general, the surface has constant mean curvature and makes
constant angle with the bounding wall. Even if Q is convex analytic, such
a surface may not exist. However, it is the case when  is piecewise
smooth that interests us. In this case, the interior angles at the corners
play an important role. It turns out that the existence of the liquid
surface as a graph over the base can be characterized by the nonex-
istence of a certain subsidiary variational problem.

1. Introduction and preliminary results. Let  be a bounded do-
main in R”, n > 2. The problem of minimizing the following functional
has received much attention:

(1.1) @(u; v) Ef V1 +|Du|2 +f H udx — cosyf udH,_,
Q Q 80

for u € BV(Q), the space of functions of bounded variation in £, where
7/2 >y = 0is a constant and H,, = (|9€|/|%|) cosy.

In order to study the problem, we also consider the subsidiary
functional:

(12) G(4;7) Efg ID¢AI+‘/QHY¢AdHn— cosy/aﬂ b, dH,_,

where A C Q is a Caccioppoli set (or set of locally finite perimeter), and
¢, is the characteristic function of 4. The following necessary condition
for the existence of (variational) solution of ®(u; y) was obtained by
Concus-Finn [2]:
(1.3) G(A4;y)>0 foral AcCQ, A+ & or Q.

As for sufficiency, Giusti [9] gave the following general criterion: if
there exists € > 0, such that

(13) (1= e) [ (Dol + [ HydH, — cosy[ ¢,dH, >0
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forall 4 C Q, A # @ or Q, then ®(u; y) has a solution. Finn [5] proved
that in some cases we need only the weaker condition (1.3). To be more
precise, Finn proved that if n =2, © is a piecewise smooth domain,
2a = smallest interior angle and #/2 > a > m/2 — y at each corner,
then (1.3) is also sufficient for the existence of soltion of ®(u; v). In fact,
he proved that in this case (1.3) implies (1.3)".

The case a + vy = /2 is more delicate, because in that case there
exists no € > 0 so that (1.3)’ is true. In this case, Finn [6] introduced some
additional conditions on 3%.

Specifically, if Q satisfies the following hypothesis, then (1.3) still
guarantees the existence of a solution:

Hypothesis a(y). At each vertex P with interior angle 2e, it is
possible to place a lower hemisphere v(x; v) of radius R, = 2H 1 with
equatorial circle Q passing through P in such a way that at each point of
0Q interior to Q and to some neighborhood N, of P there holds
Tv - v > cosy, where v is the outward normal of 9€2.

The results of Finn are restricted to n = 2. The methods of proof do
not extend readily to higher dimensions. In this paper, it is our aim to
generalize those results to higher dimensions by using another method,
and at the same time give a new proof of Finn’s result. Moreover we shall
also show that even if € does not satisfy hypothesis a(y) (but satisfies
(1.3)), we still can find a solution of

diviw=H, inQ
Du

1.4) = —==mmes
( V1 +|Dw|®

Tw-v=cosy weaklyon d%.

We shall use the idea of generalized solution introduced by M.
Miranda [16]. This idea has ben employed to deal with different problems,
for example see [10], [11], [16] and [17].

The functional ®(u; vy) is related to the following functional:

(1.5) FE(U; v) E/QXR |D¢Ul+fQXR H ¢y dxdt — cosy

where U C @ X R is a Caccioppoli set.

¢y dH,
3QXR :

DEFINITION 1.1. A Caccioppoli set U C £ X R is said to be a solution
of ®(u; v) if for any T > 0, and for any Caccioppoli set V' C € X R with
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support of ¢, — ¢, contained in £ X [~ T, T'] we have

(1.6) Fr(U; v) < Fr (Vs y)
where
Fo(Usy)= [ Doy |
QX[-T,T]
+ H ¢, dxdt — cosy dydH,,.
Qx[~T,T] QX[ T,T]

DEFINITION 1.2. A function u: € — [— 00, 0] is said to be a gener-
alized solution of ®(u; vy) if its subgraph U = {(x,?) € @ X R|? < u(x)}
is a solution of F(U; ).

DEerFINITION 1.3. 4 C @ is a solution of G(4; v) if G(4; v) <
G(E; v) for any Caccioppoli set E C Q.

The relation between ®(u; y) and F(U; v) is the following theorem
by M. Miranda [16], see also [11] and [17].

THEOREM 1.1. Let Q be a Lipschitz domain and u € BV({2), then u is a
solution of ®(u; v) if and only if u is a generalized solution of ¢(u; ).

REMARK 1.1. In the definitions of ®(u; y) and F(u; y), Definition
1.1-1.3 and Theorem 1.1 there is no need to restrict y so that 0 <y < 7 /2.

By Theorem 1.1, in order to find a solution of (1.2) we may first find
a generalized solution and then prove that it actually belongs to BV({).

We need several lemmas. First of all, we say that an open portion I’}
of 9% has Lipschitz constant L if for any point x € T, there exists a ball
B,(x) such that B,(x) N dQ = graph g for some Lipschitz function g:
A c R""! - R with 4 open and the Lipschitz constant of g is L.

LEMMA 1.1. Let Q be a bounded Lipschitz domain in R”, T} is an open
portion of 082 with Lipschitz constant L. Suppose T is a closed subset of T,
then there is a constant 8, > O such that for all 0 < § < §, we can find a
constant C; depending only on 8, Q, T}, and T such that for any T > 0

(1.7) / fldH, <1+ 1% [ | Df |
TX(~T,T) Qs X(~T,T)
+C, |f | dxdi

QX (-T,T)
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forall f € BV(Q X (—T,T)), where Q5 = { x € @|dist(x,08) < §}. Note
that §, and C, do not depend on T.

The proof of the lemma is the same as the proof of Lemma 1.1 in [3],
sO we omit it.

LEMMA 1.2. With the same assumptions as in Lemma 1.1 and let { f;}
be a sequence of functions in BV(Q X (—T,T)), T>0, such that
the functions f, converge in L'(Q X (—T,T)) to some function f€
BV(Q X (—T,T)). If cosy/1 + L? < 1 then

(1.8) f | Df| — cosy fdH,
QX(-T,T) I'x(-T,T)

< liminf Df;| — cos dH,, |.
: Jj— oo (fnx(—T,T) l fjl .Y'/I“x(—T,T)fj )
Proof. (See [11].) Define
J(u) =f |Du| — cosy udH, .
Qx(~T,T) T'X(—T,T)

By Lemma 1.1, there are constants §, and C; not depending on j, such
that for any 0 < § < §, if 25=Q — Q,

I =If) = |

1Df| - |0, |
Qx(-T,T) Qx(-T,T)

+cosy \f—71|dH,
TX(~T,T)

< Df| — Df,
‘/;IX(—T,T)I | fszx(—T,T)| f’l

+cosy/1 + L2 [ | Df - Df|

QX (~T,T)

+Clcosy/;2x( |f—f;|dx

-T,T)

< Df| — Df,
= Lsx(—T,T)I /] fzsx(—T,T)l fjl

+2 |Df|+C1fQX(_TT)|f—fJ.|dx

QX (~T,T)
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where we have used the fact cosy/1 + L? < 1. Since J; converge to f in
LYQ X (—T,T)), by semicontinuity Theorem 1.9 of [12] and let j —» o
we get

J(f) = liminf J(f,) <2 | Df|.
Jj—o o QX (~T,T)
Since f € BV(Q X (—T,T)), let § = 0 the lemma follows. ]

In application, we need a refined version of Lemma 1.2. Let us
assume 9§ satisfies

there is an g, > 0 such that for all 0 < & < ¢, we can
(1.9) find L, such that 9Q has Lipschitz constant L, and
V1 + L2(cosy —¢) < 1.

REMARK 1.2. If 3Q has Lipschitz constant L with cosy/1 + L* <1,
then 9 obviously satisfies (1.9). If 02 is smooth and y = 0 then there
will be no L such that 99 has Lipschitz constant L and cosy/1 + L* < 1.
However 0% satisfies (1.9). Also if n = 2, 3Q is piecewise smooth and the
smallest interior angle 2« satisfies a + y = /2 (we assume every interior
angle is less than =) then 02 again satisfies condition (1.9).

LEMMA 1.3. Same assumptions as in Lemma 1.2 except that now we
only assume Iy = 3Q satisfying (1.9). If [vy(_r.1) f;dH, are uniformly
bounded, then the conclusion of Lemma 1.2 is still true.

Proof. By assumption, there is a constant M > 0 such that

[ faH,| +| [ fdH,
TX(—T,T) TX(~T,T)

Let J(u) be the functional defined in Lemma 1.2. For any 0 < & < ¢,

HN=IG)s [ D =osy=)f fa,

TX(~T,T)

(1.10) <M forall j.

(=T,T

- |Df| +eosy ) [ faH,
ex(-T,T) X(=T,T)
+ dH

¢ fI‘x(—T,T)f g

+
o
By Lemma 1.2, (1.9) and (1.10), let j = oo

J(f) - hmme(f) < eM.

Since & can be arbitrary small, the lemma follows.
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2. Existence of generalized solution.

LEMMA 2.1. Suppose 2 is a bounded Lipschitz domain in R" satisfying
(1.3), then ®(u; B) has a bounded solution ug for all w/2 > B> y.
Furthermore ug is analytic and satisfies div Tug = Hg in Q.

Proof. Since G(A; y) > Oforall A # & or Q, for such an 4

_cosy _ CosY
fQ|D¢A|+fQHﬂ o P cosﬁ/aQ cosh  GadHn1> 0.

Hence,

(1—e)fQ |Do, | + fQHB¢Adx‘C°SBfm¢AdHn—1>O

cosf3
cosy

fore=1— >0

From [9], we coﬁclude that ®(u; v) has a bounded solution ugz which is in
C?*(Q) and satisfies div Tug = Hy in Q. Since Hp is a constant, therefore
up is analytic. O

THEOREM 2.1. Let Q be a bounded Lipschitz domain satisfying (1.3)
and (1.9). For any sequence m/2 > v, >y and Y; \ Y, if u; is a solution of
®(u; v;) for each j, then we can find a subsequence of u; which converges
pointwise almost everywhere to a generalized solution of ®(u; v).

Proof. (See [11].) Since Q satisfies (1.3), the solutions u; of ®(u; v,)
exist by Lemma 2.1. Let U, be the subgraph of u;, U, is a solution of

F(U; v;) by Theorem 1.1. For any T > 0, compare U, with U, — Q X
(=T,7):

[ (Dot [ gy

—cosyjf ¢, dH, < 2|Q]|.
QX[ T,T]

J

f | Doy | < 2|Q| +cosyjf
QX[-T,T] 7 UX[-T,T

Also foxi-1.1) ¢y dxdt < 2T|Q|. Hence

(2.1) fQX[_T’T] | Doy | + fﬂx[_T’T] Gy dx dt

< (2+27)|Q| + 27]0Q]| forall ;.

by dH, < 2|Q| + 270Q|.
] J
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By compactness Theorem 1.19 of [12], we can select a subsequence of
¢, which converges almost everywhere in & X (— T, T') to the characteris-
tic function of some set. Take a sequence T, — oo, and use diagonal
process, we can find a subsequence of ¢,, which we also call it ¢,
converging almost everywhere to the characteristic function of some set ul),
which may take the valeus —co or +oo, and lim,, u; = w almost
everywhere in . By (2.1) and semicontinuity, we know that W is a
Caccioppoli set.

It remains to prove that w is a generalized solution of ®(u; v). Note
that for almost all T > 0,

(i) the traces of ¢, and ¢, on @ X {—7,T} are ¢, and ¢y
H,-almost everywhere; ' ’

(i) fox(-7.1) D¢yl = Jax(-1.1y |Ddy| = 0; and

(iii) im; _, ., fox(~7,1} |9y, — dwldH, = 0.

(1) and (ii) follow from the fact that U; and W are Caccioppoli sets
and (iii) follows from the fact that lim; , ,, fo.(_ 1.1y ¢y, — dwldH, =0
forall T > 0.

For any T > 0 satisfying (i), (ii) and (iii), and for any Caccioppoli set
VcQXR, V= Woutside @ X [T, T], define

B {U; outside @ X[-T,T],

77\v i@ x[-T,7T]

Then
f Doy + | H,$y dxdt — cosy, [ by dH,
Qx[-T,T] ’ ox[-1,11 7’ "’ x[-T,T]
<[ Doy | + [ H, ¢, dxdt
QX[-T,T] i ax(-r,r} 7 7
—cosyjf ¢, dH,.
wx[-1,11 "’

Therefore

J

@2) '/S.ZXI—T,T] Doy + fszx[—T,T] Hypy dxdt

—cosy ¢y, dH, +(cosy — cos yj)f ¢y dH,
@x[-T,T] Wx[-T,T]
< f | Do, | + f H, ¢, dxdt
QX[~-T,T] ox[-T1,T]
—cosyjf ¢,dH, + |¢W - ¢U_|dH,,.
X[-T,T] QX {-T,T} d
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Since T satisfies (ii) and (iii), by Lemma 1.3 with I' = I', = 0Q and

the fact that lim;_, .y, = v, let j — o0 in (2.2):

2.3 D + H dx dt
(2.3) -[Qx[—T,T]I owl '/S-ZX[—T,T] P

—cosy oy dH,
AQX[-T,T]

< D + H ¢, dxdt
’/S.ZX[-T,T]l ov] fszx[—T,T] e

—cosy ¢,dH,.
QX[ T,T]
(2.3) is true for almost all T > 0, so it is easy to see that (2.3) holds
for all T > 0. Therefore w is a generalized solution of ®(u; v). O

Take any sequence v, \i v, since the solution u; of ®(u; v;) is unique
up to an additive constant, we normalize u; in Theorem 2.1 by

l{x € Qu;(x) = 0}, >|2|/4 and

2.4
. [{x € Qlu,(x) < 0}| = |@|/4.

By passing to a subsequence, lim;_,  u; =w almost everywhere in
where w is a generalized solution of ®(u; y). In the remaining part of this
paper we always assume § satisfies (1.3) and (1.9), and we fix the sequence
u; and the function w described above unless otherwise specified.

Let P={x€ Q|w(x)= +o0}, and N = {x € &|w(x) = —o0}.
Then we have:

LEMMA 2.2. P is a solution of G(A; y) and N is a solution of
G(A; 7 — ).

Proof. For any positive integer j, w — j is also a generalized solution
of ®(u; v). As in the proof of Theorem 2.1, we can find a subsequence of
w — j which converges to a generalized solution w” of ®(u; v). But the
subgraph of w’ is P X R. Therefore P X R is a solution of F(U; v). Since
P X R is a cylinder, so P is a solution of G(A4; v). By considering —w
which is a generalized solution of ®(u; 7 — y), one can similarly prove
that N is a solution of G(4; 7 — v). a

COROLLARY 2.1. w is finite almost everywhere.
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Proof. By Lemma 2.2, G(P; v) < G(9; y) = 0. By (1.3) we conclude
P = @ or Q. But each u; satisfies (2.4) so P = &. Similarly we can prove
N=g. |

3. Boundedness of w: case when cosyV1 + L? < 1.

LEMMA 3.1. Let U be a solution of F(U; B) and T’} be an open portion
of 0Q. Assume (1) I'i = @ or I has a Lipschitz constant L with
lcosBV1 + L?| < a < 1; and (i) |Hg| < b. For any subdomain Q' of &
with dist(’,0Q — I')) > o > 0, we can find constants C; > 0 and r, > 0,
which depend only on n, b, o, and Q if I', = @ and depend also on T';, L
and a if T, # @, such that for all (x,,t,) € 2 X R, the following are
true:

(3.1) if |U(x¢,t5)| = |C(xg,25) N U| > O forall r > 0, then

[U(x4,20)| = Cr™*Y forallr < ry;
(B2) if |U/(x4,t0)| = |C(xq,t5) — U| > 0 forall r > 0, then
|U/ (x4, t0)| = Cyr™*t forallr < 1,
where C,(xq,t,) = {(x,2) € R""Y |x — xo| <rand |t — to| <r}.

Note. We define the distance between a set and the empty set to be
+ oco.

Proof. The proof is essentially the same as the proof of Theorem 3.2
in [11]. Let us first assume I', # &. For simplicity we write , = U,(x,, ¢,),
C, = C,(xq,t,) and H = Hp. Now compare U withU — C,

(3.3) [ 1Dgy| + [ Hg dxdt — cosf [ by dH,
(@XR)NC, (@XR)NC, (

3QXR)NC,

< dH,,.
J.
So for almost all » > 0,

(3.4) foR | Do, | + /m Hoy dxdi = cosB[ ¢y dH,

<2f ¢,dH,.
ac,
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Let I' = {x € I'||dist(x,0Q2 — I'}) > 0/2}. Suppose 0 <r <oa/2,
then by Lemma 1.1,

(35) [ eydH,= [ ¢ydH,<1+L* [ [Do,|+ Gl
IAXR TxR QxR ’

<h+1 fﬂxn Doy | + Cike(n + DIGI "7 [ | Doy,

where C,; is the constant in Lemma 1.1 which depends only on o, £ and
I}, and k(n + 1) is the isoperimeteric constant in R"*'. In the last
inequality we have used the isoperimetric inequality Corollary 1.29 in [12].
Now choose r; > 0 small enough such that
1/(n+1)

(3.6) rn<o/2 and C; -k(n+1)|C]| <1/2.

Since [ | Doyl = faxr 1Doyl + [aaxr Py dH,, so from (3.5) and (3.6)
we have

1+ L* + Cik(n + 1)|c,|1/<"+1>f |Déy |
1 - Ck(n+1)|CJ/*D  Joxr ' UV

37) [ ¢ydH, <
IUXR

and
(38) [ |pgyl= fQXR |Do, | + fmxn ¢y, dH,
1+ V1 + L?

< D
1 - Ck(n +1)|C|/"*D fﬂxR |y

<21+ + Lz)'/S;XR | Doy |,

forall0 <r <r.
By Lemma 2.1 of [11]:

(3.9) j Hpydxdi = [ Hdxdt > —k(n) - b-1C["" [ |Dgy].
QxR U §
Combining (3.7)~(3.9):

(3.10) fQXR He, dxdt ~ cos - fa by dH,

QxR

> —{Zb(l + 1+ L2) - k(n)|C|”"

1+ L* + Cik(n + 1)|C|/**D . f Do
1— Ck(n + 1)|CJ/*D axr

+cosB

b

for almost all0 < r < r,.
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The expression in the whole bracket above tends to cos8V1 + L? as
r — 0. Since cos fV1 + L? < a < 1, we may choose 0 < r, < r; such that
the expression in the bracket is less than (1 + a)/2 for all 0 < r < r,. We
see that r, depends only on n, a, b, o, L, ©, and I';. By (3.4), (3.6), (3.8)
and (3.10) we get

d _ 1+a
2E|U'|_2fac,¢udH"2f9xR|D¢U' 2 an|D¢u,|
1—-a
> D¢
4(1+\/1+L2)‘/‘ o
1- l |n/(n+1)

= 4-k(n+1)(1+V1+L2)

for almost all 0 < r < r,. If |U| > O for all r > 0, then we have |U,| >
C,r™*! for all r < r, where C, depends only n, a, and L, which can be
computed explicitly.

If I, = &, then there is no need to estimate boundary term
Joaxwr ¢y, dH,. So in this case we do not need the inequality cos 8V1 + L?
< a < 1, the rest of the proof is similar. Hence (3.1) is true. Similarly by
considering U’ = @ X R — U, we can also prove (3.2). a

THEOREM 3.1. Suppose Q is a bounded Lipschitz domain satisfying (1.3)
and (1.9). Let v;, u; and w be as before, and let ', be an open portion of
0Q such that either T, = @ or Iy has a Lipschitz constant L with
cosyV1 + L? < 1. Then for any subdomain Q' C Q with dist(Q,9Q — T))
> 0, there exists a constant C, independent of j such that

(3.11) sup |u;| < C, and

(3.12) sup |w| < C,.

Proof. We assume I', # &, the case when I}, = @ can be proved
similarly. Suppose the functions u; are not uniformly bounded above in
§’. Since each u; is bounded in 2, by passing to a subsequence if
necessary, we can find x; € Q, lim;_,  x;,=x,€ Q" and lim, _, , u;(x;)
= 4 o00. Let C; and r, be the constants in Lemma 3.1 corresponding to
a=cosyl/l + L*> and b= H, . For any ¢ >0, we hae u;(x;) >t and
|x; = xo| < ro/2if j is large enough. Let U, be the subgraph of u;. Then
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U, is a solution of F(U; v,), and if j is large enough |U, (x;,1)| =
U, C(x;,2)] >0 for all r >0, because u; is regular in Q. Since
cosyyl + L? <aand 0 < H, < b, by Lemma 3.1 if j is large enough
then

ra\ntl
|Uj,r0 (x0,1)] le/},ro/z(xpt)l = C3(70) .
Let j — oo, we conclude that
r.\nt+1
|VV,0(x0,t)| an(—zq) )
where W is the subgraph of w. Since ¢ is arbitrary, this contradicts
Corollary 2.1 that w is finite almost everywhere. Therefore u; are uni-
formly bounded above in {¥'. Similarly we can prove that u; are uniformly
bounded below in £’, and (3.11) is proved. (3.12) is an immediate
consequence of (3.11) because u; converge to w almost everywhere in Q.0

THEOREM 3.2. Let  be a bounded Lipschitz domain having Lipschitz
constant L with cosy1 + L* < 1. If Q satisfied (1.3), then ®(u; v) has a
bounded solution which is analytic in .

Proof. By Theorem 3.1 with I'; = 0§, we conclude that w is bounded
and hence is a bounded solution of ®(u; y). As in the proof of Lemma
2.1, we see that w is analytic in £. O

If @ only satisfies (1.9) (and (1.3)) then w may be unbounded. For
example, if € is smooth and y = 0, then w may be unbounded, see [10].
However we have the following:

THEOREM 3.3. Let Q be a bounded Lipschitz domain satisfying (1.3)
and (1.9), then ®(u; v) has a locally bounded generalized solution which is
analytic and satisfies diivTw = H, in Q.

Proof. By Theorem 3.1, for any subdomains Q' C C Q” C C , there
exists a constant C, not depending of j such that supg. |u,| < C, for all ;.

Since each u; is analytic and satisfies div Tu = H, i Q. By Corollary
15.7 of [8], we can find a constant C; not depending on j such that

sup|Du,| + sup|D?u;| + sup|Du;| < G,
Q Q Q

for all j. By passing to a subsequence, u;, Du; and D?u , converge
uniformly in ©’. Hence w € C*(’) and satisfies divTw = H, sowis
analytic in ©’. Since £’ can be any subdomain of Q such that @’ C Q, the

theorem follows. O
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Now we are going to investigate the boundary behavior of w. Follow-
ing [7] and [13] we have the following definitions:

DEFINITION 3.1. We say a family of domains {2, exhausting @ if
02, eC,LQ CcQ.,andU,Q, =Q.

If © is Lipschitz we can always find such an exhausting sequence by
[14].

DEFINITION 3.2. Let @ be a Lipschitz domain, u € C?(Q) is said to

satisfy Tu - v = cosy weakly on 9% if for any exhausting sequence &, of
Q,

(3.13) lim [ fTu-v.dH, = [ feosydH,_,
k= Jag, 89

for any function f belonging to the Sobolev space W'(Q), wher v, is the

outward normal of 9%,.

THEOREM 3.4. If Q satisfies (1.3) and (1.9), and if u; and w are as
before, then w satisfies Tw - v = cosy weakly on 9€).

Proof. For each j, u; is a variational solution of ®(u; v;). By the
proof of Lemma 2 in [7], for all f € W!(Q), we have

(3.14) fﬂ Df -

Du
Jl_TB—Fdx-F /f fmfcosyjdH,,_1=O.

From the proof of Theorem 3.3, by passing to a subsequence
lim Du—DwmQAs|Du/\/1+|Dul|<1in$2forallj,noting

Jj— oo

that hml_,wcos y; = cosy and hmj_m = H,, let j = oo in (3.14), by
Lebesgue dominated convergence theorem we get

(3.15) fﬂ pf- —2¥

V1 + |Dw)?

Let @, be an exhausting sequence of 2. Multiply div7w = H, by [
and integrating by parts over Q,:

dx + ffH dx — f feosydH, , = 0.

2 ix+ [ fHydc~ [ fTw- v dH, =0,

(3.16) Df ———
fﬂk /1 + |Dw)? 9 o
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By Lebesgue dominated convergence theorem again

lim D

Df -
k= Jg, A \/1+|Dw / \/1+]Dw]2

kwf fH, dx—ffH dx.
Therefore combine (3.15) and (3.16), we have

Jm fasz fTw - v, dH,_ —f fcosydH, _ O

—————dx and

4. Boundedness of w: general case. As we noted before, if there is
no L with cosy/1 + L? <1 such that © has Lipschitz constant L, then
the generalized solution w may fail to be bounded. However, if we impose
some reasonable assumptions on 92, we can still prove that w is bounded
and hence w is a solution of ®(u; v).

As before we assume {2 satisfies (1.3) and (1.9). In addition we assume
92 = I'" U I'” such that

(41) TV is an open portion of 992 with Lipschitz constant L,

cosy/l + L? < 1;
(42) T”=T'UT?U --- UT" each I'* is closed;

(4.3) for each k = 1,..., N, there is an open set O, C R” containing
T'* such that dist(0,, U,, ., ™) > 0, O, N © is Lipschitz and connected;
also there are functions v{" and v{® belonging to C*(R") and satisfying:

(i) divTv = divIv® = H, in O, N Q; and

(i) Tv® - » > cosy > Tv? - v H,_,-almost everywhere on O, N 0%.

o) and v{® will serve as upper and lower comparison surfaces for w
respectively. In some cases, for example, n =2 and Q is piecewise
smooth, lower comparison surfaces always exist, see [6]. Our assumptions
on 99 is a generalization of the hypothesis a(y) introduced in §1 to
higher dimensions.

THEOREM 4.1. Suppose Q satisfies (1.3), (1.9) and (4.1)—(4.3). Let u;
and w be as before, then w is bounded and is a variational solution of

®(u;y).

Proof. By Theorem 3.1 and (4.1), we know that w is bounded in every
subdomain £’ C @ with dist(Q’,0Q — I'’) > 0. It remains to prove that w
is bounded in O, N @ for k = 1,..., N. Firstly, we want to prove that w
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is bounded above. For simplicity, we write O = O, I' = T'* and v = v{.
Let O’ c C O be an open set containing I', then dist(O — O’,T'”") > 0 by
assumption (4.3), and so dist((O — O’') N ,T”) > 0. By Theorem 3.1,
the functions u; are uniformly bounded in (O — O’) N Q. By adding a
constant to v, we may assume the u; <v on (O — 0’) N Q. We assert
thatw <vonO N Q.

From the proof of Theorem 3.1, we know that by passing to a
subsequence u; converge to w and Du; converge to Dw, both uniformly
on compact subsets of . If v(x,) < w(x,) for some x, € O N Q, then
there exist positive numbers p, M, and a positive integer j, such that
B,(x,) € Q,and wehave 0 < u;, — v < M in B,(x,), for j > j,. Define

0 u;—v<0
w,={U; =0 0<uj—v<M in0O N Q.
M MSuj—v

Extend w; to be zero in € — 0. Since w;=0 in (O — 0)N{ and
dist(2 — 0,0’) > 0,s0w; € W'(Q). From the proof of Lemma 2 of [7]:

Du;
(4.4) Dw, - ——L—dx

one 7 1+ |Du,?

= — Hijjdx + f chosyjdH,,_l,
ong 0N

bearing in mind that w; = 0 in € — O. On the other hand by assumption
(4.3)(i) and (ii),

Dy
(4.5) Dw, - ——— dx
form "1+ |Dop?
> - Hw.dx + w.cosydH, _;.
ong "’ fomm GO !
Subtracting (4.5) from (4.4):
Du, Do

4.6 Dw, - = -
( )fonﬂ "1+ Dyl 1+ Do

< fomz (H, - HYj)wjdx + fomm w;(cosy; — cosy)dH,_;.
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By the definition of w; and the particular structure of the operator
Tu, it is easy to see

Duj Dv

J1 + |Du,? T+ Do

Dw - > 0.

J

By (4.6), for j > ji:

Du;
(4.7) D(u, - v) - i Dv |
B,(x0) J1+1Du)® Y1+ |Dof?
Du,.
< f Dw; - J - Do dx
one 1 +|Du> |1+ |Dv?

< -[omz (HY - Hyj)wjdx + fomm w,(cosy, — cosy)dH,_,.

Let j — oo, noting that 0 < w; < M for all j,

Dw Dv )
- <0.
1+|Dw> |1+ |Dv)?

(4.8) fB(x)D(w—v)-

But

D(w—v) -

Dw _ Dv )
/1 +|Dw> |1+ |Dv)?

2 [l dt
>|pw—Do|*- [[ — &,
| Dw = Dol -/(; (1 + |Dv)?)”?

where v, = tw + (1 — t)v. Therefore Dw — Dv = 0 in B,(x,) and w =
v + K there, where K = w(x,) — v(x,) > 0.

Let A={x€ 0N Q|w(x)=uv(x)+ K}. A is obviously closed in
O N Q since w and v are continuous. Also from the proof above, we see
that A4 is open. Since 4 # &, and by assumption O N & is connected we
conclude that A = O N Q. This is impossible because u; < v in (O — 0’)
N © which is not empty. Hence w < v in O N £, and w is bounded above
in . Similarly, we can prove that w is bounded below. By Theorem 1.1, w
is a solution of ®(u; v). O
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