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COUNTING FUNCTIONS AND MAJORIZATION
FOR JENSEN MEASURES

CHARLES S. STANTON

We establish a generalization for uniform algebras of the classical
identities of Hardy and Stein. We use this and an estimate based on the
isoperimetric inequality to give a proof of H. Alexander's spectral area
theorem. We use similar methods to prove a theorem of Axler and
Shapiro about VMOA of the unit ball in C .

1. Introduction. Given a Jensen measure on the maximal ideal
space of A, we introduce a "counting function" analogous to the classical
counting function N(r9w) of Nevanlinna's value distribution theory. In
particular, this counting function is non-negative, supported on the spec-
trum of /, and a subharmonic function of w on the complex plane except
for a logarithmic pole. We next establish an identity for integral means of
/ in terms of this counting function. This generalizes Theorems 2 and 9 of
[6]. Classical identities of Cartan and of Hardy and Stein occur as special
cases.

As an application, we give a proof (for Jensen measures) of H.
Alexander's spectral area estimate:

THEOREM A [1,2]. Let A be a uniform algebra, φ e MA9 and σ a
Jensen measure for φ. Then

(1) / | / | 2 ^ < i a r e a ( s p e c / ) + | / ( φ ) | 2 .

Finally, we apply these counting function techniques to prove a slight
generalization of the following result of Axler and Shapiro about analytic
functions of vanishing mean oscillation (VMOA) of the unit ball in Cπ.

THEOREM B [3]. Suppose / e H°°(Bn) and for each ξ e S

area(cl(/,f)) = 0.

ThenftΞ VMOA.

2. Uniform algebras and Jensen measures. We first recall some
basic facts about uniform algebras and Jensen measures (for more details
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see [7]). We then introduce the counting function and establish its sub-
harmonicity.

Let X be a compact Hausdorff space and A a uniform algebra on X,
i.e. a closed subalgebra of C(X) which contains the constants and
separates points of X. Let MA denote the maximal ideal space of A. The
spectrum of f e A, denoted spec/, is the set {w e C: f-w is not
invertiblein A).

Let φ e MA. A probability measure σ on MA is a Jensen measure for
φ if and only if

(2) l o g | / ( φ ) | < / \og\f\do,
JMA

for every / e A. Since σ is a Jensen measure it is also an Arens-Singer
measure for φ:

(3) /
JMΛ

for each invertible / belonging to A. It follows that σ is also a
senting measure for φ:

(4)

for each f ^ A.

DEFINITION. Suppose / G ^ φ G MA, and that σ is a Jensen measure
for φ. Then, for each w e C\{/(φ)},we define

(5) N(w;f9σ)=[ log \f- w\ do - log | / ( φ ) - w\.
JMA

REMARK. If σ = aτ + (1 - α)δφ with 0 < a < 1 then T is also a
Jensen measure for φ and N(w; /, σ) = aN(w; /, T). We shall assume that
σ(φ) = 0 in the following. We shall also denote N(w; /, σ) by N(w) when
/ and σ have been fixed.

The properties of N(w) are summarized by

PROPOSITION 1. Suppose f G A, φ e MA, and that σ is a Jensen
measure for φ. Then N(w) is a non-negative function supported on
spec/. Furthermore, N(w) is subharmonic on C\{/(φ)}, and N(w) +
l°Sl/(φ) ~ w\ is subharmonic on C.

Proof. The non-negativity is a consequence of the definition (2) of a
Jensen measure; since a Jensen measure is also an Arens-Singer measure
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the support of N(w) is contained in spec/ by (3). To prove the sub-
harmonicity we introduce the Borel probability measure f*(dσ) sup-
ported on spec/ defined by

/ (kof)dσ=f h(ξ)f*dσ(ζ)
JMA

 JC

for every h e l}{dσ). Thus

f log\f-w\dσ = ί log\ξ-w\f*(da).
JMA

 JC

This establishes N(w) + log|/(φ) — w\ as the potential of the measure
f*(dσ) and hence a subharmonic function on C. Since log|/(φ) — w\ is
harmonic on C \ {/(φ)}, we set that N( w) is subharmonic on C \ {/(φ)}.

When A is the disc algebra the following result is known as Lehto's
principle of majorization (see [10]):

THEOREM 1. Let Ω be an open set which contains spec/, and
GQ( W; f(φ)) be the Green function for Ω with pole atf(φ). Then

(6) N(w)<Gςι(w

REMARK. We shall always extend a Green function GΩ to all of C by
defining it to be identically zero outside of Ω.

Proof. The theorem follows immediately from the maximum principle
since GΩ(w;/(φ)) + log|/(φ) — w\ is harmonic on Ω while N(w) +
log|/(φ) — w\ is subharmonic on Ω and N(w) < GΩ(w;f(φ)) on the
boundary of Ω.

3. Identities for integral means. Our next result expresses integral
means of / as an integral of N(w) weighted by an appropriate measure.

THEOREM 2. Suppose Ψ is subharmonic on a disc Δ Λ = { z : | z |< i?}
which contains spec/. Let dμ be the Riesz measure for Ψ. Assume
μ(/(φ)) = 0. Then

(7) / Ψ(f)da=ί N(W)dμ + Ψ(f(ψ)).
JMA >C

Proof. By the Riesz decomposition theorem for subharmonic func-
tions

(8) (
'spec/
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Here the Riesz measure dμ = (l/2ττ)AΨ in the sense of distributions and
h is harmonic in the interior of ΔΛ. Thus h = Re if for some function H
holomorphic on {w: \w\ < R), It follows from the "functional calculus"
that Ho f e A. Since σ is a representing measure for φ we have by (4)

/ hofdσ = h(f(φ)).

We now calculate, using the Riesz decomposition (8) and the definition of
N(w):

ί ψofda=[ if log\w-f\dμ(w) + hof)dσ
JMA

 JMA \JΔR )

= f [ lθg\w-f\dσdμ(w)+h(f(φ))
y Δ Λ

 JMA

N(w) + \θg\f(φ)-w\dμ(w)

Since N(w) is supported on spec/ we may extend the last integral to be
taken over the entire plane to obtain (7).

Two important special cases of (7) occur when we take Φ(ζ) = log+|f |
and Ψ(ζ) = \ζ\p. In the first case Theorem 2 implies

(9)

If A is the disc algebra and dσ is Lebesgue measure on the unit circle this
is known as Cartan's formula [9, p. 8]. In the second case we obtain, for
P>0,

(10) / £f
JMA lπ Jc

which is a version of the Hardy-Stein identity [13]. For applications of
other choices of Ψ see [6].

4. Alexander's spectral area theorem. The key estimate we will
need is the following consequence of the isoperimetric inequality:

PROPOSITION 3 ([11, p. 115], [4, p. 60]). Let Ω be a plane domain of
finite area. Let GΩ(w,w0) be the Green function for Ω with pole at w0. Then

(11) ί Ga(w,wo)dudv < -area(Ω).
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Proof of Theorem A. Let Ω be a region containing spec/ such that

areaΩ < area(spec/) + ε. By the Hardy-Stein identity (10), Lehto's prin-

ciple of majorization (6), and the proposition above we have

\f\do = \ \ N(w)dudv+\f(φ)\2

~ ί Ga(w;f,φ)dudv+\f{φ)\2

π Jc

< — (area(spec/) -f- ε)

Letting ε -> 0 we obtain (1).

5. Counting functions on B". Let B" denote the open unit ball in C"

with normalized measure dσ on dBn. Suppose a e B". The Poisson-Szegδ

measure for a is

1 - lαl2

The Mδbius transformation ψa is defined by

a-Paz-{l-\a\ψ2Qaz
φ ( z ) =

where Pa is the orthogonal projection of Cn onto the subspace generated

by a, and Qa is the orthogonal complement to Pa. The properties of φa

are summarized by

PROPOSITION 4. Let α e B B , z e r , Λ ε C \ and g G L^ΘB").

(12.a) φα w α biholomorphism of B" o«/o B",

- l« l 2 ) 1 7 2

- ( z , α » 2

- ( l - | α | 2 ) 1 / 2 P β / z - βa/z - z(h,a) + h(z,a
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<Pad° = ί

Proof. Assertions (12.a-12.c) are contained in Theorem 2.2.2 of [12],
and (12.d) may be obtained in the same manner as part (ii) of that
Theorem. Part (12.e) is Theorem 3.3.8 of [12].

The Green function with pole at 0 for Bn is

(13) GB(z,O) =

We introduce the form

log —

In - 2

(if n = 1)

Then βn is Lebesgue measure on C", normalized so that jBβ
n = 1. We

recall Wirtinger's Theorem [8, p. 5]: If V is a A:-dimensional variety then
βk is the induced volume form.

It follows from Jensen's formula [14, p. 248] that do is a Jensen
measure for 0 and that the counting function N(0; /, σ) defined by (5) is
the usual counting function of value distribution theory in C". In particu-
lar, if μ(z) is the multiplicity of the zero at z then [14, p. 248]

ΛΓ(0;/,σ) = / μ(z)GB(zf0)β"-1.

It follows from (5) and (12.e) that

N(w;f,va) =

and hence

(14) N(w;f,va) = μ(z)GB(z,0)β-1

where μ is the multiplicity of the zero for / © φa — w at z. Since the
integrand on the right is non-negative it follows that va is a Jensen
measure for a.

The counting function N(w;f,va) may be extended to / in the
Nevanlinna class (see [5, §4] for more details) by setting

N(w'>f>Va) = Km sup (]im(N(w;fr9va)))
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where fr(z) = f(rz) for r < 1. Theorem 1 remains true in this context. If
Ψ is a positive subharmonic function then Theorem 2 may be extended to

lim f frdva= ί

6. Functions of vanishing mean oscillation on B". Definition. A
function / e H2(Bn) is said to belong to BMOA if

= sup/ \f~f(a)\2dva

is finite in which case | |/| |* + |/(0)| is a norm on the space BMOA.

DEFINITION. A function in H2(Bn) belongs to VMOA if for every
dB"

limf |/-/(«) | 2^α = 0.

We note that

(15)

l/ φJ2«/σ-|/(α)|2.

Since area (/° φβ(B")) = area(/(B")) it follows from Theorem A that if
area(/(B")) is finite then / e BMOA and

For ξ e 3B" we define

Our generalization of Theorem B is

THEOREM 3. Suppose fis holomorphic in B" and for every ζ e 3B"

(16) limarea(/(Z)^)) = O.

Then f e VMOA.

Before giving the proof of Theorem 3 we will show how Theorem B
follows from it. Since the sets Dp^ form a basis for the topology at ζ the
cluster set of / at ξ may be defined by

p > 0
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We have

(17) lim area(/(£>pJ) = area( f| /(J>P,f))

< area f| f(D

P9ζ)) =

\ p > 0 '

By the hypothesis of Theorem B area (cl(/, ξ)) = 0 so the hypothesis (16)
of Theorem 3 is satisfied and hence / e VMOA.

The equality in the first line of (17) follows from the dominated
convergence theorem; we note that the hypothesis / e H°° could be
replaced by the assumption area(/(Bw)) is finite.

The following two lemmas will be used in the proof of Theorem 3.

LEMMA 1 {see [12, Proposition 5.1.2]). // α, z, f e B" then

(18) |1 — (z,£) | + |1 — (z,α) | > | l - ( £ , « ) | .

LEMMA 2. Suppose a e Dτζ with r < p/16 and w £ f{Dpζ). Then
there is a constant C depending only on p and n such that

(19) N(w;f9wa) < C(l - \a\2)nN(w;f,σ).

Proof of Lemma 2. Suppose a e Dτς and Z G B " \ D p ^ . We deduce
from (18) that |1 - (α, z)\ > 9/16. Hence, by (12.b),

This implies that |φα(z)| > 7/9, and thus

(20) GB(Ψa(z),0)<c(l-\φa(z)\)2

for some constant c depending only on the dimension n.
Now suppose w £ f(Dp^). Then by (20) and a change of variables

N(w;f,va)= ί
Jφa(Γι(

f-\w)

since z G φa(f~ι(w)) implies z £
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From (12.d) we deduce the estimate

φ*β"~ι < Sup

We conclude that

(i-N2)"-1
n-l

N(w;f,va)<C(l-\a\2)nf (l - \zf)β»-'

<C(l-\a\2)"N(w;f,o)

with C depending on n and p.

Proof of Theorem 3. Under the hypotheses of the Theorem it suffices
(recalling (15)) to show that for each fixed ξ e 3Bn and p > 0 that

Urn

By the Hardy-Stein identity (10) this is equivalent to

(21) lim

Let ξ and p be fixed and define Ω = /(B") and Ωp = f{Dpζ). Let C
be the constant in (19) of Lemma 2 and define a function h by

h(w,a) = C(l - |α |TG Ω (w;/(0)) + GΩp(w;/(α)).

The Green function GΩ is harmonic on Ω \ {/(0)}, while GΩ is harmonic
on Ω p\{/(α)} and 0 on Ω\Ωp. It follows from Lemma 2 and the
majorization principle (6) that N(w; /, va) < h(w) on Ω \ Ωp. Since Λ has
a logarithmic pole at /(α) it now follows from the maximum principle
that N(w; f, va) < h(w) on Ωp, and hence N(w; /, va) < h(w) on all of Ω.

We now have

lim sup I N(w;f,va) dudv < lim sup / h(w,a) dudv

< limsup / GQ(w,f(a))dudv

This proves (21) as desired.
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