RANGE OF GATEAUX DIFFERENTIABLE OPERATORS AND LOCAL EXPANSIONS

Jong Sook Bae and Sangsuk Yie

Abstract

Let X and Y be Banach spaces, and $P: X \rightarrow Y$ a Gateaux differentiable operator having closed graph. Suppose that there is a continuous function $c:[0, \infty) \rightarrow(0, \infty)$ satisfying $$
d P_{x}(\bar{B}(0 ; 1)) \supseteq \bar{B}(0 ; c(\|x\|)) .
$$

Then it is shown that for any $K>0$ (possibly $K=\infty$), $P(B(0 ; K)$) contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$. Similar results are obtained for local expansions and locally strongly ϕ-accretive operators. These results extend a number of known theorems by giving the precise geometric estimations for normal solvability of $P x=y$.

1. Introduction. Let P be a nonlinear operator from a Banach space X into a Banach space Y. Many authors (see [3], [4], [6], [7], [10], [12], [13], [14] and [15]) have studied solvability of the equation $P x=y$, for $y \in Y$, a considerable number of which involve local or infinitesimal assumptions on the operator P, by showing that P is surjective. However, in many cases, in general P need not be surjective, although for some $y \in Y$, the equation $P x=y$ is solvable. For example, let P be a Gateaux differentiable operator having closed graph such that for each $x \in X$,

$$
d P_{x}(\bar{B}(0 ; 1)) \supseteq \bar{B}(0 ; c(\|x\|))
$$

where $c:[0, \infty) \rightarrow(0, \infty)$ is a continuous function. In [13], Ray and Walker showed that P is surjective, where c is nonincreasing and $\int_{0}^{\infty} c(s) d s=\infty$. However, although c is not nonincreasing and $\int_{0}^{\infty} c(s) d s$ $<\infty$, intuitively we may expect that for any $K>0$ (possibly $K=\infty$), $P\left(B(0 ; K)\right.$) contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$ by considering an elementary integral equation, so that for any $y \in B\left(P(0) ; \int_{0}^{K} c(s) d s\right) \subseteq Y, P x=y$ has a solution x in $B(0 ; K) \subseteq X$.

In this paper, we show that the fact mentioned above holds, and such an idea can be applied to local expansions and locally strongly ϕ-accretive operators similarly. For this purpose, in §2, we give a fixed point theorem which is a basic tool in proving theorems in §3. And in §3, we apply this result to nonlinear operators.
2. A fixed point theorem. In this section we give a fixed point theorem which is a basic tool in proving theorems in the next section. Actually our theorem is based on the following well-known Caristi-KirkBrowder fixed point theorem [5], which is an equivalent formulation of Ekeland's minimization theorem [8, 9].

Theorem 2.1. Let (M, d) be a complete metric space and ϕ be a lower semicontinuous (l.s.c.) function from M to $R \cup\{\infty\}$, $\not \equiv \infty$, bounded from below. Let g be a selfmap of M satisfying,

$$
\begin{equation*}
d(x, g(x))+\phi(g(x)) \leq \phi(x) \tag{2.1}
\end{equation*}
$$

for all $x \in M$. Then g has a fixed point in M.
Theorem 2.2. Let (M, d) be a complete metric space, and ψ be a l.s.c. function from M into $[0, \infty)$. Let c be a continuous nonincreasing function from $[0, \infty)$ into $(0, \infty)$, and let $x_{0} \in M$ be fixed. Further suppose that there exist $z \in M$ and $K>0($ possibly $K=\infty)$ satisfying $\int_{d\left(x_{0}, z\right)}^{K} c(s) d s \geq$ $\psi(z)$ (when $\left.K=\infty, \int_{d\left(x_{0}, z\right)}^{\infty} c(s) d s>\psi(z)\right)$. If g is a selfmap of M satisfying

$$
\begin{equation*}
c\left(d\left(x_{0}, x\right)\right) d(x, g(x)) \leq \psi(x)-\psi(g(x)) \tag{2.2}
\end{equation*}
$$

whenever $x \in M$ with $\int_{d\left(x_{0}, x\right)}^{K} c(s) d s \geq \psi(x)$, then g has a fixed point in M.
If $\int_{0}^{\infty} c(s) d s=\infty$, then Theorem 2.2 is the same as Theorem 2.1 of [13], which is actually equivalent to Ekeland's theorem [8, 9] (see [11]). Theorem 2.2 is a slightly extended version of Theorem 2.1, but they are actually equivalent in logic. The advantage of Theorem 2.2 is that we need not examine the inequality (2.2) for all $x \in M$, that is, if for suitable $x \in M$ (2.2) holds, we have the desired conclusion. In fact, in Theorem 2.1, by putting $A=\{x \in M ; d(x, z) \leq \phi(z)-\phi(x)\}$ for some $z \in M$ with $\phi(z)<\infty$, we have $g(A) \subseteq A$ and g has a fixed point in A. Also this fact gives the basic idea of the proof of Theorem 2.2.

Proof of Theorem 2.2. Now we construct a new function $\phi: M \rightarrow$ $[0, \infty]$, which is $\not \equiv \infty$, l.s.c. and satisfies (2.1), so that by applying Theorem 2.1, g has a fixed point in M. If $K=\infty$ and $\int_{0}^{\infty} c(s) d s=\infty$, then Park and Bae [11] showed that the equality

$$
\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi(x)} c(s) d s=\psi(x)
$$

gives ϕ which is a desired one. Therefore we may assume that $K<\infty$ (if $K=\infty$ and $\int_{0}^{\infty} c(s) d s<\infty$, then the similar method well do). Now
define ϕ as follows: if $\int_{d\left(x_{0}, x\right)}^{K} c(s) d s \geq \psi(x)$, then put $\phi(x)$ satisfying $\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi(x)} c(s) d s=\psi(x)$, and if $\int_{d\left(x_{0}, x\right)}^{K} c(s) d s<\psi(x)$, then put $\phi(x)$ $=\infty$.

To show that ϕ is l.s.c., let $x_{n} \rightarrow x$ and $\lim \phi\left(x_{n}\right)=t$. If $t=\infty$, then there is nothing to prove, so that we may assume that $t<\infty$. Now we can choose a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim \phi\left(x_{n_{k}}\right)=t$. Then since $\lim d\left(x_{n}, x_{0}\right)=d\left(x_{0}, x\right)$, we have

$$
\begin{aligned}
\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+t} c(s) d s & =\lim \int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi\left(x_{n_{k}}\right)} c(s) d s \\
& =\lim \psi\left(x_{n_{k}}\right) \geq \psi(x),
\end{aligned}
$$

and $d\left(x_{0}, x\right)+t=\lim \left(d\left(x_{0}, x\right)+\phi\left(x_{n_{k}}\right)\right) \leq K$. Therefore $\phi(x) \leq t$, and consequently ϕ is 1.s.c.

To prove that ϕ satisfies (2.1), it suffices to prove that

$$
d(x, y)+\phi(y) \leq \phi(x)
$$

whenever $\int_{d\left(x_{0}, x\right)}^{K} c(s) d s \geq \psi(x)$ and

$$
c\left(d\left(x_{0}, x\right)\right) d(x, y) \leq \psi(x)-\psi(y)
$$

since if $\phi(x)=\infty$, then (2.1) is trivially true. Suppose that the latter case holds. Since c is nonincreasing,

$$
\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+d(x, y)} c(s) d s \leq c\left(d\left(x_{0}, x\right)\right) d(x, y)
$$

Therefore by assuming $\phi(y)<\infty$, we have

$$
\begin{aligned}
\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+d(x, y)} c(s) d s \leq & \int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi(x)} c(s) d s \\
& -\int_{d\left(x_{0}, y\right)}^{d\left(x_{0}, y\right)+\phi(y)} c(s) d s .
\end{aligned}
$$

Since $d\left(x_{0}, y\right) \leq d\left(x_{0}, x\right)+d(x, y)$ and c is nonincreasing,

$$
\begin{aligned}
\int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+d(x, y)} c(s) d s & +\int_{d\left(x_{0}, x\right)+d(x, y)}^{d\left(x_{0}, x\right)+d(x, y)+\phi(y)} c(s) d s \\
& \leq \int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi(x)} c(s) d s
\end{aligned}
$$

which shows that $d(x, y)+\phi(y) \leq \phi(x)$. In the above case actually $\phi(y)<\infty$. To see this, suppose that $\phi(y)=\infty$. Then we can find $\varepsilon>0$ such that $\int_{d\left(x_{0}, y\right)}^{K+\varepsilon} c(s) d s \leq \psi(y)$, and hence the above inequalities give

$$
\int_{d\left(x_{0}, x\right)}^{K+\varepsilon} c(s) d s \leq \int_{d\left(x_{0}, x\right)}^{d\left(x_{0}, x\right)+\phi(x)} c(s) d s
$$

which is a contradiction to the fact that $\phi(x)<\infty$.

As a direct consequence of Theorem 2.2, we have the following Corollary by putting c is constant.

Corollary 2.3. Let (M, d) be a complete metric space, ϕ a l.s.c. function from M into $[0, \infty)$ and let $x_{0} \in M$ be fixed. Suppose that there exist $z \in M, K>0$ and $c>0$ such that $c\left(K-d\left(x_{0}, z\right)\right)=\phi(z)$. If g is a selfmap of M satisfying

$$
c d(x, g(x)) \leq \phi(x)-\phi(g(x))
$$

for all $x \in M$ with $c\left(K-d\left(x_{0}, x\right)\right) \geq \phi(x)$, then g has a fixed point in M.
Note that when $z=x_{0}$, Corollary 2.3 is the same as Theorem 2.1 by considering the set $A=\{x \in M ; c d(x, z) \leq \phi(z)-\phi(x)\}$, and $g(A) \subseteq$ A.
3. Range of operators. In this section we apply Theorem 2.2 to Gateaux differentiable operators, local expansions and locally strongly ϕ-accretive operators. We begin with the Gateaux differentiable operators.

Let X and Y be Banach spaces, and P a mapping from an open subset D of X to Y. We say that P is Gateaux differentiable if, for each $x \in D$, there is a function $d P_{x}: X \rightarrow Y$ satisfying

$$
\lim _{t \rightarrow 0^{+}} \frac{P(x+t y)-P(x)}{t}=d P_{x}(y), \quad y \in X .
$$

Easy examples show that Gateaux differentiable operators need not be continuous. Note that we do not require that $d P_{x}$ is linear. However, it follows from the definition that $d P_{x}$ is homogeneous, that is, $d P_{x}(t y)=$ $t d P_{x}(y)$ for all $t \geq 0$.

We say that an operator $P: D \rightarrow Y$ has closed graph if $\left\{x_{n}\right\} \subseteq D$ with $x_{n} \rightarrow x \in D$ and $P x_{n} \rightarrow y$ as $n \rightarrow \infty$, it follows that $P x=y$. We denote by $B(w ; r)$ the set $\{y ;\|y-w\|<r\}$, and $\bar{B}(w ; r)$ its closure. Also conveniently we set $B(w ; \infty)=X$ (if $w \in X$).

Now we state our first theorem. The techniques used here are analogous to those of Ray and Walker [13].

Theorem 3.1. Let X and Y be Banach spaces, and P a Gateaux - differentiable mapping from $B(0 ; K) \subseteq X$ to Y having closed graph, where $K>0$. Let $c:[0, K) \rightarrow(0, \infty)$ be a continuous nonincreasing function for which, for each $x \in B(0 ; K)$,

$$
\begin{equation*}
d P_{x}(\bar{B}(0 ; 1)) \supseteq \bar{B}(0 ; c(\|x\|)) . \tag{3.1}
\end{equation*}
$$

Then $P(B(0 ; K))$ contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$.

We remark that Theorem 3.1 shows that actually P is an open mapping, therefore it gives Theorem 3.2 of Cramer and Ray [6] and Theorem 2.2 of Ray [12]. But in order to prove these they used the maximal principle of Brezis and Browder [2], however our basic tool is Theorem 2.2, which is an equivalent formulation of Ekeland [8, 9]. Also Theorem 3.1 can be compared with Theorem 3.1 of Ray and Walker [13] and Theorem 2.4 of [12], which treat only the case $K=\infty$ and $\int_{0}^{\infty} c(s) d s$ $=\infty$; in this case Theorem 3.1 is that of [13], which extends Theorem 4 of [15]. Moreover, in Theorem 3.4 we will show that the function c need not be nonincreasing. The advantage of our formulation here is that our results contain the range of operators explicitly and we do not assume that the domain of P is the whole space X.

Proof of Theorem 3.1. Let $w \in B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$, that is, $\| w-$ $P(0) \|<\int_{0}^{K} c(s) d s$. We can choose $0<q<1$ satisfying

$$
\begin{equation*}
(1-q)^{-1}\|w-P(0)\|<\int_{0}^{K} c(s) d s \tag{3.2}
\end{equation*}
$$

Also we can take a sufficiently small $\varepsilon>0$ satisfying

$$
(1-q)^{-1}\|w-P(0)\| \leq \int_{0}^{K-2 \varepsilon} c(s) d s
$$

Define a new metric ρ on the set $M=\bar{B}(0 ; K-\varepsilon)$ by

$$
\rho(x, y)=\max \left\{\|x-y\|, c(0)^{-1}(1+q)^{-1}\|P(x)-P(y)\|\right\} .
$$

Since P has closed graph, (M, ρ) is a complete metric space. Set $\psi(x)=$ $(1-q)^{-1}\|P x-w\|$, so that $\psi:(M, \rho) \rightarrow[0, \infty)$ is continuous and $\psi(0)$ $\leq \int_{0}^{K-2 \varepsilon} c(s) d s$.

Now we claim that $w \in P(\bar{B}(0 ; K-2 \varepsilon))$. We proceed by contradiction and suppose that $w \notin P(\bar{B}(0 ; K-2 \varepsilon))$. For any $x \in$ $M \backslash \bar{B}(0 ; K-2 \varepsilon)$, we have $\int_{\rho(0, x)}^{K-2 \varepsilon} c(s) d s<0 \leq \psi(x)$, since $\rho(0, x) \geq$ $\|x\|>K-2 \varepsilon$. In this case set $g(x)=0(\neq x)$. For $x \in \bar{B}(0 ; K-2 \varepsilon)$, set $v=\|w-P x\|^{-1} c(\|x\|)(w-P x)$. Then by (3.1), there is a $u \in$ $\bar{B}(0 ; 1) \subseteq X$ such that $d P_{x}(u)=v$ and so, if $h=c(\|x\|)^{-1}\|w-P x\| u$, then $d P_{x}(h)=w-P x$. Since P is Gateaux differentiable, we may choose $t \in(0,1]$ so small that $x+t h \in \bar{B}(0 ; K-\varepsilon)=M$ and

$$
\left\|P(x+t h)-P(x)-t d P_{x}(h)\right\| \leq q t\|w-P x\| .
$$

By setting $g(x)=x+t h$, this implies $g(x) \neq x$ and

$$
\begin{equation*}
\|P(g(x))-P(x)-t(w-P x)\| \leq q t\|w-P x\| \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
c(\|x\|)\|g(x)-x\| \leq t\|w-P x\| . \tag{3.4}
\end{equation*}
$$

From (3.3), we have

$$
\begin{equation*}
\|P(g(x))-P(x)\| \leq(1+q) t\|w-P x\| \tag{3.5}
\end{equation*}
$$

and

$$
\|P(g(x))-w\|-(1-t)\|P x-w\| \leq q t\|w-P x\|
$$

which implies

$$
\begin{equation*}
(1-q) t\|P x-w\| \leq\|P x-w\|-\|P(g(x))-w\| \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), we have

$$
\begin{equation*}
(1+q)^{-1}\|P(g(x))-P(x)\| \leq \psi(x)-\psi(g(x)) \tag{3.7}
\end{equation*}
$$

and combining (3.4) and (3.6), we get

$$
\begin{equation*}
c(\|x\|)\|g(x)-x\| \leq \psi(x)-\psi(g(x)) \tag{3.8}
\end{equation*}
$$

Here we may assume that the domain of c is $[0, \infty)$ by putting $c(s)=c(K-2 \varepsilon)$ when $s>K-2 \varepsilon$ without affecting our argument of the proof. Now if $\rho(x, g(x))=\|x-g(x)\|$, then, since $\|x\| \leq \rho(0, x)$, (3.8) gives (2.2), while if $\rho(x, g(x))=c(0)^{-1}(1+q)^{-1}\|P(x)-P(g(x))\|$, then, since c is nonincreasing,

$$
\begin{aligned}
c(\|x\|) \rho(x, g(x)) & =\frac{c(\|x\|)}{c(0)(1+q)}\|P x-P(g(x))\| \\
& \leq(1+q)^{-1}\|P(x)-P(g(x))\| \leq \psi(x)-\psi(g(x))
\end{aligned}
$$

by (3.7), so again (2.2) holds. Thus by Theorem 2.2, g has a fixed point in M, a contradiction, and hence consequently $w \in P(\widetilde{B}(0 ; K-2 \varepsilon)) \subseteq$ $P(B(0 ; K))$.

Analogous estimations for range of local expansions can be stated by the following theorem, which gives an extended version of Theorem 3.3 of [13] which also generalizes a result of Browder ([4], Theorem 4.10).

Theorem 3.2. Let X and Y be Banach spaces, P an open mapping from $B(0 ; K) \subseteq X(K>0)$ to Y having closed graph, and let $c:[0, K) \rightarrow(0, \infty)$ be a continuous nonincreasing function. Suppose for each $x \in B(0 ; K)$, there is an $\varepsilon>0$ such that, if $y \in B(x ; \varepsilon) \cap B(0 ; K)$, then

$$
\begin{equation*}
c(\max \{\|x\|,\|y\|\})\|x-y\| \leq\|P x-P y\| \tag{3.9}
\end{equation*}
$$

Then $P(B(0 ; K))$ contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$.

Proof. Let $w \in B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$, that is, $\|w-P(0)\|<\int_{0}^{K} c(s) d s$. Then we can choose $\varepsilon_{1}>0$ so small that $\|w-P(0)\| \leq \int_{\varepsilon_{1}}^{K-\varepsilon_{1}} c(s) d s$ holds.

Introduce a new metric ρ on the set $M=\bar{B}\left(0 ; K-\varepsilon_{1}\right)$ by setting $\rho(x, y)=\max \left\{\|x-y\|, c(0)^{-1}\|P x-P y\|\right\}$, so (M, ρ) is complete, and set $\psi(x)=\|w-P x\|$. Let $\bar{c}(s)=c\left(s+\varepsilon_{1}\right)$. Then $\psi(0) \leq \int_{\varepsilon_{1}}^{K-\varepsilon_{1}} c(s) d s=$ $\int_{0}^{K-2 \varepsilon_{1}} \bar{c}(s) d s$. Now we claim that $w \in P\left(\bar{B}\left(0 ; K-2 \varepsilon_{1}\right)\right)$. As in the proof of Theorem 3.1, we suppose $w \notin P\left(\bar{B}\left(0 ; K-2 \varepsilon_{1}\right)\right)$ and obtain a contradiction. Now we define a mapping $g: M \rightarrow M$ by setting $g(x)=0$ $(\neq x)$ when $x \in M \backslash \bar{B}\left(0 ; K-2 \varepsilon_{1}\right)$; note that in this case $\int_{\rho(0, x)}^{K-2 \varepsilon_{1}} \bar{c}(s) d s$ $<0 \leq \psi(x)$, and if $x \in \bar{B}\left(0 ; K-2 \varepsilon_{1}\right)$, then choose $\varepsilon>0$ so small that $\varepsilon \leq \varepsilon_{1}$ and (3.9) holds. Actually the condition (3.9) can be replaced by the condition that if $\|x-y\|<\varepsilon$, then

$$
\bar{c}(\|x\|)\|x-y\| \leq\|P x-P y\| .
$$

Since P is an open mapping

$$
P(B(x ; \varepsilon)) \cap\{t P x+(1-t) w ; 0 \leq t<1\} \neq \varnothing
$$

and hence there is a $g(x) \in B(x ; \varepsilon)$ such that $P(g(x)) \in\{t P x+$ $(1-t) w ; 0 \leq t<1\}$, so that $g(x) \neq x$ and $g(x) \in M$. Since

$$
\|P(g(x))-P(x)\|=\|P x-w\|-\|P(g(x))-w\|=\psi(x)-\psi(g(x))
$$

it follows that

$$
\bar{c}(\|x\|)\|g(x)-x\| \leq \psi(x)-\psi(g(x))
$$

and

$$
\bar{c}(\|x\|) c(0)^{-1}\|P(g(x))-P x\| \leq \psi(x)-\psi(g(x))
$$

and hence (2.2) holds by assuming that the domain of \bar{c} is $[0, \infty)$ as in the proof of Theorem 3.1. Thus by Theorem 2.2, g has a fixed point in M, which contradicts to the construction of $g(x)$.

Theorem 3.2 can be applied to the range of locally strongly ϕ-accretive operators. Let X and Y be Banach spaces with Y^{*} the dual of Y, and let $\phi: X \rightarrow Y^{*}$ be a mapping such that

$$
\begin{aligned}
& \phi(X) \text { is dense in } Y^{*}, \text { for each } x \in X \text { and each } \xi \geq 0 \\
& \|\phi(x)\| \leq\|x\| \text { and } \phi(\xi x)=\xi \phi(x)
\end{aligned}
$$

A mapping P from X to Y is said to be strongly ϕ-accretive if there exists a constant $c>0$ such that, for any $x, y \in X$,

$$
(P x-P y, \phi(x-y)) \geq c\|x-y\|^{2}
$$

The ϕ-accretive mappings were introduced in an effort to unify the theories for monotone mappings (when $Y=X^{*}$) and for accretive mappings (when $Y=X$). Many authors (see [3], [4], [7], [10], [13], [16] and [17]) have studied domain invariance or surjectivity of accretive operators. The following theorem gives an improvement of Theorem 4.11 of [4], Corollary 2.2 of [6] and Theorem 3.4 of [13].

Theorem 3.3. Let X and Y be Banach spaces, and P an open mapping from $B(0 ; K) \subseteq X(K>0)$ to Y having closed graph. Let $c:[0, K) \rightarrow$ $(0, \infty)$ be continuous nonincreasing for which, for any $x \in B(0 ; K)$, there is an $\varepsilon>0$ such that for every $y \in B(x ; \varepsilon) \cap B(0 ; K)$,

$$
\begin{equation*}
(P x-P y, \phi(x-y)) \geq c(\max \{\|x\|,\|y\|\})\|x-y\|^{2} . \tag{3.10}
\end{equation*}
$$

Then $P(B(0 ; K))$ contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$.
Proof. It is easy to show that (3.10) implies (3.9), so that Theorem 3.3 follows from Theorem 3.2.

In Theorem 3.3, if P is locally lipschitzian, and if Y can be renormed so that Y is Frechet differentiable and Y^{*} is strictly convex, that is, the duality mapping $J: Y \rightarrow Y^{*}$ is single-valued and continuous, then Downing and Ray [7] show that P is automatically an open mapping. Also if $Y=X$ and ϕ is the duality mapping, and if P is continuous, then P is an open mapping by [16] and [17]. Also Theorem 3.3 can be applied to multivalued locally strongly ϕ-accretive mappings as in [7].

Note that the continuity of c in Theorem 2.2 and Theorems 3.1-3.3 can be replaced by the piecewise continuity of c without affecting results of those theorems.

Simple geometric intuition and integral equation suggest that c need not be nonincreasing in Theorems 3.1-3.3. Actually by using easy geometric estimation we can prove that such a condition can be removed in the following Theorem 3.4. In fact, Torrejon [17] proved that in Theorem 3.2, if $K=\infty$ and $\int_{0}^{\infty} c(s) d s=\infty$, then the condition that c is nonincreasing is not necessary.

Theorem 3.4. The conclusions of Theorems 3.1-3.3 hold without the assumption that c is nonincreasing.

Proof. We may assume that $P(0)=0$ after parallel transformation. Since c is continuous, for any given $\varepsilon>0$, there is a partition

$$
0=K_{0}<K_{1}<\cdots<K_{n}<K
$$

of $[0, K]$ such that by putting

$$
m_{i}=\inf \left\{c(s) ; K_{i-1} \leq s \leq K_{i}\right\}, \quad 1 \leq i \leq n
$$

the inequality

$$
\sum_{i=1}^{n} m_{i}\left(K_{i}-K_{i-1}\right) \geq \int_{0}^{K} c(s) d s-\varepsilon
$$

holds. Now we will prove that $P\left(B\left(0 ; K_{n}\right)\right)$ contains $B\left(0 ; \int_{0}^{K} c(s) d s-\varepsilon\right)$, and hence we complete the proof since ε is arbitrary. For this purpose, it suffices to prove that for any given $w \in Y$ with $\|w\|=1$,

$$
\text { the segment }\left\{t w ; 0 \leq t<M_{k}\right\} \subseteq P\left(B\left(0 ; K_{k}\right)\right)
$$

for any $k, 1 \leq k \leq n$, where

$$
\begin{equation*}
M_{k}=\sum_{i=1}^{k} m_{i}\left(K_{i}-K_{i-1}\right) \tag{3.11}
\end{equation*}
$$

Then for $k=n$, we have $\left\{t w ; 0 \leq t<M_{n}\right\} \subseteq P\left(B\left(0 ; K_{n}\right)\right)$, and this implies $B\left(0 ; \int_{0}^{K} c(s) d s-\varepsilon\right) \subseteq B\left(0 ; M_{n}\right) \subseteq P\left(B\left(0 ; K_{n}\right)\right)$.

First note that if c is nonincreasing (in particular, c is a constant function), then the theorem holds by Theorems 3.1-3.3. Therefore if $k=1$, then (3.11) is trivially true. Suppose that (3.11) is not true for some $k \geq 2$, and k is the smallest integer for which (3.11) does not hold. Then there is a t_{0} with $M_{k-1} \leq t_{0}<M_{k}$ such that $t_{0} w \notin P\left(B\left(0 ; K_{k}\right)\right)$, but $\left\{t w ; 0 \leq t<M_{k-1}\right\} \subseteq P\left(B\left(0 ; K_{k-1}\right)\right)$. Now choose an $\varepsilon_{1}>0$ so small that $\varepsilon_{1}<M_{k}-t_{0}$. Take $r>0$ such that $m_{k} r<\varepsilon_{1} / 4$, and set $m=$ $\min \left\{m_{1}, m_{2}, \ldots, m_{k}\right\}>0$. Then note that, by Theorems 3.1-3.3,

$$
\begin{equation*}
\text { if }\|x\|<K_{k-1}+r, \text { then } P(B(x ; r)) \supseteq B(P(x) ; m r) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
& \text { if } K_{k-1}+r \leq\|x\| \leq K_{k}-r \tag{3.13}\\
& \qquad \text { then } P(B(x ; r)) \supseteq B\left(P(x) ; m_{k} r\right) .
\end{align*}
$$

(3.12) and (3.13) are possible, since P satisfies the conditions of Theorems 3.1-3.3, respectively, by setting $c(s)=m$ in case (3.12) and $c(s)=m_{k}$ in case (3.13) on $B(x ; r)$.

Also take $\varepsilon_{2}>0$ so small that $\varepsilon_{2}<\min \left\{\varepsilon_{1} / 4, r m\right\}$. Then since $\{t w$; $\left.0 \leq t<M_{k-1}\right\} \subseteq P\left(B\left(0 ; K_{k-1}\right)\right)$, we can take $x_{1} \in B\left(0 ; K_{k-1}\right)$ so that $P x_{1}=t_{1} w$, where $t_{1}=M_{k-1}-2^{-1} \varepsilon_{2}$. Also by (3.12), we can choose $x_{2} \in B\left(x_{1} ; r\right)$ so that $P x_{2}=t_{2} w$, where $t_{2}=t_{1}+r m-2^{-2} \varepsilon_{2}$. Continue this process, we assume that x_{j} and t_{j} be chosen for $j \geq 2$ with $\left\|x_{i}\right\| \leq K_{k}$ $-r$ for all $i \leq j$. Then if $\left\|x_{j}\right\|<K_{k-1}+r$, then by (3.12) there exists
$x_{j+1} \in B\left(x_{j} ; r\right)$ such that $P x_{j+1}=t_{j+1} w$, where $t_{j+1}=t_{j}+r m-$ $2^{-j-1} \varepsilon_{2}$, and if $K_{k-1}+r \leq\left\|x_{j}\right\| \leq K_{k}-r$, then by (3.13) there exists $x_{j+1} \in B\left(x_{j} ; r\right)$ such that $P x_{j+1}=t_{j+1} w$, where $t_{j+1}=t_{j}+r m_{k}-$ $2^{-j-1} \varepsilon_{2}$. We can continue the above process unless $\left\|x_{j}\right\|>K_{k}-r$. Now we claim that there is a j such that $t_{j} \leq t_{0}<t_{j+1}$ with $\left\|x_{i}\right\| \leq K_{k}-r$ for all $i \leq j$, so that $t_{0} w \in P\left(B\left(x_{j} ; r\right)\right) \subseteq P\left(B\left(0 ; K_{k}\right)\right)$, which is a contradiction.

To prove our claim, suppose that $\left\|x_{j}\right\| \leq K_{k}-r$ for all $j=1,2, \ldots$ Then for $j \geq 2$, we have

$$
\begin{aligned}
t_{j} & \geq t_{j-1}+r m-2^{-j} \varepsilon_{2} \quad\left(\text { since } m \leq m_{k}\right) \\
& \vdots \\
& \geq t_{1}+(j-1) r m-\left(2^{-2}+\cdots+2^{-j}\right) \varepsilon_{2} \\
& \geq M_{k-1}+(j-1) r m-\varepsilon_{2} \quad\left(\text { since } t_{1}=M_{k-1}-2^{-1} \varepsilon_{2}\right)
\end{aligned}
$$

Since $r m>0$, for some sufficiently large j, we can have $t_{0}<t_{j+1}$. Also since the sequence $\left\{t_{i}\right\}$ is increasing, our claim is proved. Now suppose that for some $j,\left\|x_{j+1}\right\|>K_{k}-r$ and $\left\|x_{i}\right\| \leq K_{k}-r$ for all $i \leq j$. Since $\left\|x_{i}-x_{i+1}\right\|<r(1 \leq i \leq j)$ and $r m_{k}<\varepsilon_{1} / 4 \leq\left(M_{k}-M_{k-1}\right) / 4$, we have $4 r<K_{k}-K_{k-1}$, so that there is a j_{0} with $1 \leq j_{0}<j-1$ satisfying $\left\|x_{j_{0}}\right\|<K_{k-1}+r$ and $K_{k-1}+r \leq\left\|x_{i}\right\| \leq K_{k}-r$ for all $j_{0}+1 \leq i \leq j$. Then we have $\left\|x_{j+1}-x_{j_{0}+1}\right\|>K_{k}-K_{k-1}-3 r$, and hence $\left(j-j_{0}\right) r>$ $K_{k}-K_{k-1}-3 r$. Note that $t_{i}<t_{i+1}$ for all $1 \leq i \leq j$, and $t_{i+1}=t_{i}+$ $r m_{k}-2^{-i-1} \varepsilon_{2}$ for all $j_{0}+1 \leq i \leq j$. Therefore we have

$$
\begin{aligned}
t_{j+1} & =t_{j}+r m_{k}-2^{-j-1} \varepsilon_{2} \\
& \vdots \\
& >t_{j_{0}+1}+\left(j-j_{0}\right) r m_{k}-2^{-j_{0}} \varepsilon_{2} \\
& >t_{1}+\left(K_{k}-K_{k-1}-3 r\right) m_{k}-2^{-j_{0}} \varepsilon_{2} \\
& >M_{k-1}+M_{k}-M_{k-1}-3 r m_{k}-\varepsilon_{2} \\
& >M_{k}-\varepsilon_{1}>t_{0} .
\end{aligned}
$$

so that we complete the proof.
We list here one final conclusion as the following
Theorem 3.5. Let X and Y be Banach spaces, and P an operator from X to Y having closed graph. Let $c:[0, \infty) \rightarrow(0, \infty)$ be a continuous function for which one of the following conditions holds.
(a) P is Gateaux differentiable and for each $x \in X$, (3.1) holds.
(b) P is an open mapping and for each $x \in X$, there is an $\varepsilon>0$ such that for every $\|x-y\|<\varepsilon$, (3.9) holds.
(c) P is an open mapping and for each $x \in X$, there is an $\varepsilon>0$ such that for every $\|x-y\|<\varepsilon$, (3.10) holds.
Then for any $K>0$ (possibly $K=\infty$), $\quad P(B(0 ; K))$ contains $B\left(P(0) ; \int_{0}^{K} c(s) d s\right)$, in particular, if $\int_{0}^{\infty} c(s) d s=\infty$, then P is surjective.

As a final remark, the condition (3.2) can be applied to the following extended version of Theorem 2 of [14]. The proof of the following theorem follows from (3.2) and Lemma of [14]. There is no significant variation in the proof, and so we omit it.

Theorem 3.6. Let X and Y be Banach spaces, and let P and Q be Gateaux differentiable mappings from $B(0 ; K) \subseteq X(K>0$, possibly $K=$ $\infty)$ to Y. Let $c:[0, K) \rightarrow(0, \infty)$ be a continuous function. Suppose for each $x \in B(0 ; K)$, that
(a) $d Q_{x}$ is a bounded linear operator from X to Y, and
(b) $d P_{x}(\bar{B}(0 ; 1)) \supseteq \bar{B}(0 ; c(\|x\|))$.

Suppose in addition, for some $\mu \in(0,1)$ and each $x \in X$ that
(c) $c(\|x\|)^{-1}\left\|d Q_{x}\right\|<\mu$.

If the mapping $R=P+Q$ has closed graph, then $R(B(0 ; K)$) contains $B\left(R(0) ;(1-\mu) \int_{0}^{K} c(s) d s\right)$, in particular R is an open mapping. And if $\int_{0}^{K} c(s) d s=\infty$, then $R(B(0 ; K))=Y$.

In the same situation of Theorem 3.6 Ray and Walker [14] showed that if P and Q have closed graphs, then so does $P+Q$. In [14], in order to prove that R is an open mapping, they used actually the Brezis and Browder principle [2], which was recently generalized in [1] and [18]. However, our Theorem 3.6 can be proved by using only Theorem 2.2 (actually Theorem 2.1 by assuming that c is a constant function) and combining Theorem 3.4, and it gives a precise estimation of range of operators.

References

[1] M. Altman, A generalization of the Brezis-Browder principle on ordered sets, Nonlinear Analysis, TMA., 6 (1982), 157-165.
[2] H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 21 (1976), 355-364.
[3] F. E. Browder, Normal solvability and ϕ-accretive mappings of Banach spaces, Bull. Amer. Math. Soc., 78 (1972), 186-192.
[4] _ Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. Vol. 118, part 2, Amer. Math. Soc., Providence, RI, 1976.
[5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241-251.
[6] W. J. Cramer, Jr. and W. O. Ray. Solvability of nonlinear operator equations, Pacific J. Math., 95 (1981), 37-50.
[7] D. J. Downing and W. O. Ray, Renorming and the theory of phi-accretive set-valued mappings, Pacific J. Math., 106 (1983), 73-85.
[8] I. Ekeland, Sur les problems variationnels, Compte Rendus Acad. Soc. Paris, 275 (1972), 1057-1059.
[9] , Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1976), 443-474.
[10] J. A. Park and S. Park, Surjectivity of ϕ-accretive operators, Proc. Amer. Math. Soc., 80 (1984), 289-292.
[11] S. Park and J. S. Bae, On the Ray-Walker extension of the Caristi-Kirk fixed point theorem, to appear in Nonlinear Analysis, TMA.
[12] W. O. Ray, Normally solvable nonlinear operators, Contemp. Math., 18 (1983), 155-165.
[13] W. O. Ray and A. M. Walker, Mapping theorems for Gateaux differentiable and accretive operators, Nonlinear Analysis, TMA., 6 (1982), 423-433.
[14] ___, Perturbations of normally solvable nonlinear operators, to appear.
[15] I. Rosenholtz and W. O. Ray, Mapping theorems for differentiable operators, Bull. Acad. Polon. Sci. Ser. Math. Aston. Phys., 29 (1981), 265-273.
[16] R. Schöneberg, On the domain invariance theorem for accretive mappings, J. London Math. Soc., 24 (1981), 548-554.
[17] R. Torrejon, A note on locally expansive and locally accretive operators, Canad. Math. Bull., 26 (1983), 228-232.
[18] M. Turinici, A generalization of Altman's ordering principle, Proc. Amer. Math. Soc., 90 (1984), 128-132.

Received June 22, 1985. Partially supported by a grant from the Korea Science and Engineering Foundation, 1984-5.

Chungnam National University
Daejeon 300-31, Korea
AND
Soong Jun University
Seoul 151, Korea

