RANGE OF GATEAUX DIFFERENTIABLE OPERATORS AND LOCAL EXPANSIONS

JONG SOOK BAE AND SANGSUK YIE

Let X and Y be Banach spaces, and P: $X \to Y$ a Gateaux differentiable operator having closed graph. Suppose that there is a continuous function $c: [0, \infty) \to (0, \infty)$ satisfying

$$dP_x(\overline{B}(0;1)) \supseteq \overline{B}(0;c(||x||)).$$

Then it is shown that for any K > 0 (possibly $K = \infty$), P(B(0; K)) contains $B(P(0); \int_0^K c(s) ds)$. Similar results are obtained for local expansions and locally strongly ϕ -accretive operators. These results extend a number of known theorems by giving the precise geometric estimations for normal solvability of Px = y.

1. Introduction. Let P be a nonlinear operator from a Banach space X into a Banach space Y. Many authors (see [3], [4], [6], [7], [10], [12], [13], [14] and [15]) have studied solvability of the equation Px = y, for $y \in Y$, a considerable number of which involve local or infinitesimal assumptions on the operator P, by showing that P is surjective. However, in many cases, in general P need not be surjective, although for some $y \in Y$, the equation Px = y is solvable. For example, let P be a Gateaux differentiable operator having closed graph such that for each $x \in X$,

$$dP_{x}(\overline{B}(0;1)) \supseteq \overline{B}(0;c(||x||))$$

where $c: [0, \infty) \to (0, \infty)$ is a continuous function. In [13], Ray and Walker showed that P is surjective, where c is nonincreasing and $\int_0^{\infty} c(s) ds = \infty$. However, although c is not nonincreasing and $\int_0^{\infty} c(s) ds < \infty$, intuitively we may expect that for any K > 0 (possibly $K = \infty$), P(B(0; K)) contains $B(P(0); \int_0^K c(s) ds)$ by considering an elementary integral equation, so that for any $y \in B(P(0); \int_0^K c(s) ds) \subseteq Y$, Px = yhas a solution x in $B(0; K) \subseteq X$.

In this paper, we show that the fact mentioned above holds, and such an idea can be applied to local expansions and locally strongly ϕ -accretive operators similarly. For this purpose, in §2, we give a fixed point theorem which is a basic tool in proving theorems in §3. And in §3, we apply this result to nonlinear operators. 2. A fixed point theorem. In this section we give a fixed point theorem which is a basic tool in proving theorems in the next section. Actually our theorem is based on the following well-known Caristi-Kirk-Browder fixed point theorem [5], which is an equivalent formulation of Ekeland's minimization theorem [8, 9].

THEOREM 2.1. Let (M, d) be a complete metric space and ϕ be a lower semicontinuous (l.s.c.) function from M to $R \cup \{\infty\}, \neq \infty$, bounded from below. Let g be a selfmap of M satisfying,

(2.1)
$$d(x,g(x)) + \phi(g(x)) \le \phi(x)$$

for all $x \in M$. Then g has a fixed point in M.

THEOREM 2.2. Let (M, d) be a complete metric space, and ψ be a l.s.c. function from M into $[0, \infty)$. Let c be a continuous nonincreasing function from $[0, \infty)$ into $(0, \infty)$, and let $x_0 \in M$ be fixed. Further suppose that there exist $z \in M$ and K > 0 (possibly $K = \infty$) satisfying $\int_{d(x_0, z)}^K c(s) ds \ge$ $\psi(z)$ (when $K = \infty$, $\int_{d(x_0, z)}^\infty c(s) ds > \psi(z)$). If g is a selfmap of M satisfying

(2.2)
$$c(d(x_0, x))d(x, g(x)) \le \psi(x) - \psi(g(x))$$

whenever $x \in M$ with $\int_{d(x_0, x)}^K c(s) ds \ge \psi(x)$, then g has a fixed point in M.

If $\int_0^{\infty} c(s) ds = \infty$, then Theorem 2.2 is the same as Theorem 2.1 of [13], which is actually equivalent to Ekeland's theorem [8, 9] (see [11]). Theorem 2.2 is a slightly extended version of Theorem 2.1, but they are actually equivalent in logic. The advantage of Theorem 2.2 is that we need not examine the inequality (2.2) for all $x \in M$, that is, if for suitable $x \in M$ (2.2) holds, we have the desired conclusion. In fact, in Theorem 2.1, by putting $A = \{x \in M; d(x, z) \le \phi(z) - \phi(x)\}$ for some $z \in M$ with $\phi(z) < \infty$, we have $g(A) \subseteq A$ and g has a fixed point in A. Also this fact gives the basic idea of the proof of Theorem 2.2.

Proof of Theorem 2.2. Now we construct a new function $\phi: M \to [0, \infty]$, which is $\neq \infty$, l.s.c. and satisfies (2.1), so that by applying Theorem 2.1, g has a fixed point in M. If $K = \infty$ and $\int_0^\infty c(s) ds = \infty$, then Park and Bae [11] showed that the equality

$$\int_{d(x_0,x)}^{d(x_0,x)+\phi(x)} c(s) \, ds = \psi(x)$$

gives ϕ which is a desired one. Therefore we may assume that $K < \infty$ (if $K = \infty$ and $\int_0^\infty c(s) ds < \infty$, then the similar method well do). Now

define ϕ as follows: if $\int_{d(x_0,x)}^K c(s) ds \ge \psi(x)$, then put $\phi(x)$ satisfying $\int_{d(x_0,x)}^{d(x_0,x)+\phi(x)} c(s) ds = \psi(x)$, and if $\int_{d(x_0,x)}^K c(s) ds < \psi(x)$, then put $\phi(x) = \infty$.

To show that ϕ is l.s.c., let $x_n \to x$ and $\lim \phi(x_n) = t$. If $t = \infty$, then there is nothing to prove, so that we may assume that $t < \infty$. Now we can choose a subsequence $\{x_{n_k}\}$ such that $\lim \phi(x_{n_k}) = t$. Then since $\lim d(x_n, x_0) = d(x_0, x)$, we have

$$\int_{d(x_0, x)}^{d(x_0, x)+t} c(s) \, ds = \lim \int_{d(x_0, x)}^{d(x_0, x)+\phi(x_{n_k})} c(s) \, ds$$
$$= \lim \psi(x_{n_k}) \ge \psi(x),$$

and $d(x_0, x) + t = \lim (d(x_0, x) + \phi(x_{n_k})) \le K$. Therefore $\phi(x) \le t$, and consequently ϕ is l.s.c.

To prove that ϕ satisfies (2.1), it suffices to prove that

$$d(x, y) + \phi(y) \le \phi(x)$$

whenever $\int_{d(x_0, x)}^{K} c(s) ds \ge \psi(x)$ and

$$c(d(x_0, x))d(x, y) \leq \psi(x) - \psi(y),$$

since if $\phi(x) = \infty$, then (2.1) is trivially true. Suppose that the latter case holds. Since c is nonincreasing,

$$\int_{d(x_0,x)}^{d(x_0,x)+d(x,y)} c(s) \, ds \le c(d(x_0,x))d(x,y).$$

Therefore by assuming $\phi(y) < \infty$, we have

$$\int_{d(x_0,x)}^{d(x_0,x)+d(x,y)} c(s) \, ds \le \int_{d(x_0,x)}^{d(x_0,x)+\phi(x)} c(s) \, ds$$
$$-\int_{d(x_0,y)}^{d(x_0,y)+\phi(y)} c(s) \, ds.$$

Since $d(x_0, y) \le d(x_0, x) + d(x, y)$ and c is nonincreasing,

$$\int_{d(x_0,x)+d(x,y)}^{d(x_0,x)+d(x,y)} c(s) \, ds + \int_{d(x_0,x)+d(x,y)}^{d(x_0,x)+d(x,y)+\phi(y)} c(s) \, ds$$

$$\leq \int_{d(x_0,x)}^{d(x_0,x)+\phi(x)} c(s) \, ds,$$

which shows that $d(x, y) + \phi(y) \le \phi(x)$. In the above case actually $\phi(y) < \infty$. To see this, suppose that $\phi(y) = \infty$. Then we can find $\varepsilon > 0$ such that $\int_{d(x_0, y)}^{K+\varepsilon} c(s) ds \le \psi(y)$, and hence the above inequalities give

$$\int_{d(x_0,x)}^{K+\varepsilon} c(s) \, ds \leq \int_{d(x_0,x)}^{d(x_0,x)+\phi(x)} c(s) \, ds,$$

which is a contradiction to the fact that $\phi(x) < \infty$.

As a direct consequence of Theorem 2.2, we have the following Corollary by putting c is constant.

COROLLARY 2.3. Let (M, d) be a complete metric space, ϕ a l.s.c. function from M into $[0, \infty)$ and let $x_0 \in M$ be fixed. Suppose that there exist $z \in M$, K > 0 and c > 0 such that $c(K - d(x_0, z)) = \phi(z)$. If g is a selfmap of M satisfying

$$cd(x,g(x)) \le \phi(x) - \phi(g(x))$$

for all $x \in M$ with $c(K - d(x_0, x)) \ge \phi(x)$, then g has a fixed point in M.

Note that when $z = x_0$, Corollary 2.3 is the same as Theorem 2.1 by considering the set $A = \{x \in M; cd(x, z) \le \phi(z) - \phi(x)\}$, and $g(A) \subseteq A$.

3. Range of operators. In this section we apply Theorem 2.2 to Gateaux differentiable operators, local expansions and locally strongly ϕ -accretive operators. We begin with the Gateaux differentiable operators.

Let X and Y be Banach spaces, and P a mapping from an open subset D of X to Y. We say that P is Gateaux differentiable if, for each $x \in D$, there is a function dP_x : $X \to Y$ satisfying

$$\lim_{t\to 0^+}\frac{P(x+ty)-P(x)}{t}=dP_x(y), \qquad y\in X.$$

Easy examples show that Gateaux differentiable operators need not be continuous. Note that we do not require that dP_x is linear. However, it follows from the definition that dP_x is homogeneous, that is, $dP_x(ty) = t dP_x(y)$ for all $t \ge 0$.

We say that an operator $P: D \to Y$ has closed graph if $\{x_n\} \subseteq D$ with $x_n \to x \in D$ and $Px_n \to y$ as $n \to \infty$, it follows that Px = y. We denote by B(w; r) the set $\{y; ||y - w|| < r\}$, and $\overline{B}(w; r)$ its closure. Also conveniently we set $B(w; \infty) = X$ (if $w \in X$).

Now we state our first theorem. The techniques used here are analogous to those of Ray and Walker [13].

THEOREM 3.1. Let X and Y be Banach spaces, and P a Gateaux 'differentiable mapping from $B(0; K) \subseteq X$ to Y having closed graph, where K > 0. Let c: $[0, K) \rightarrow (0, \infty)$ be a continuous nonincreasing function for which, for each $x \in B(0; K)$,

(3.1) $dP_x(\overline{B}(0;1)) \supseteq \overline{B}(0;c(||x||)).$

Then P(B(0; K)) contains $B(P(0); \int_0^K c(s) ds)$.

We remark that Theorem 3.1 shows that actually P is an open mapping, therefore it gives Theorem 3.2 of Cramer and Ray [6] and Theorem 2.2 of Ray [12]. But in order to prove these they used the maximal principle of Brezis and Browder [2], however our basic tool is Theorem 2.2, which is an equivalent formulation of Ekeland [8, 9]. Also Theorem 3.1 can be compared with Theorem 3.1 of Ray and Walker [13] and Theorem 2.4 of [12], which treat only the case $K = \infty$ and $\int_0^{\infty} c(s) ds$ $= \infty$; in this case Theorem 3.1 is that of [13], which extends Theorem 4 of [15]. Moreover, in Theorem 3.4 we will show that the function c need not be nonincreasing. The advantage of our formulation here is that our results contain the range of operators explicitly and we do not assume that the domain of P is the whole space X.

Proof of Theorem 3.1. Let $w \in B(P(0); \int_0^K c(s) ds)$, that is, $||w - P(0)|| < \int_0^K c(s) ds$. We can choose 0 < q < 1 satisfying

(3.2)
$$(1-q)^{-1} \|w-P(0)\| < \int_0^K c(s) \, ds.$$

Also we can take a sufficiently small $\varepsilon > 0$ satisfying

$$(1-q)^{-1} \|w-P(0)\| \leq \int_0^{K-2\varepsilon} c(s) \, ds.$$

Define a new metric ρ on the set $M = \overline{B}(0; K - \varepsilon)$ by

$$\rho(x, y) = \max\{\|x - y\|, c(0)^{-1}(1 + q)^{-1}\|P(x) - P(y)\|\}.$$

Since P has closed graph, (M, ρ) is a complete metric space. Set $\psi(x) = (1 - q)^{-1} ||Px - w||$, so that $\psi: (M, \rho) \to [0, \infty)$ is continuous and $\psi(0) \le \int_0^{K-2\varepsilon} c(s) ds$.

Now we claim that $w \in P(\overline{B}(0; K - 2\varepsilon))$. We proceed by contradiction and suppose that $w \notin P(\overline{B}(0; K - 2\varepsilon))$. For any $x \in M \setminus \overline{B}(0; K - 2\varepsilon)$, we have $\int_{\rho(0,x)}^{K-2\varepsilon} c(s) ds < 0 \le \psi(x)$, since $\rho(0,x) \ge ||x|| > K - 2\varepsilon$. In this case set $g(x) = 0 \ (\neq x)$. For $x \in \overline{B}(0; K - 2\varepsilon)$, set $v = ||w - Px||^{-1}c(||x||)(w - Px)$. Then by (3.1), there is a $u \in \overline{B}(0; 1) \subseteq X$ such that $dP_x(u) = v$ and so, if $h = c(||x||)^{-1}||w - Px||u$, then $dP_x(h) = w - Px$. Since P is Gateaux differentiable, we may choose $t \in (0, 1]$ so small that $x + th \in \overline{B}(0; K - \varepsilon) = M$ and

$$||P(x + th) - P(x) - tdP_x(h)|| \le qt||w - Px||.$$

By setting g(x) = x + th, this implies $g(x) \neq x$ and

(3.3)
$$||P(g(x)) - P(x) - t(w - Px)|| \le qt||w - Px||$$

and

(3.4)
$$c(||x||)||g(x) - x|| \le t||w - Px||.$$

From (3.3), we have

(3.5)
$$||P(g(x)) - P(x)|| \le (1+q)t||w - Px||$$

and

$$||P(g(x)) - w|| - (1 - t)||Px - w|| \le qt||w - Px||,$$

which implies

(3.6)
$$(1-q)t||Px-w|| \le ||Px-w|| - ||P(g(x)) - w||.$$

Combining (3.5) and (3.6), we have

(3.7)
$$(1+q)^{-1} \| P(g(x)) - P(x) \| \le \psi(x) - \psi(g(x))$$

(3.8)
$$c(||x||)||g(x) - x|| \le \psi(x) - \psi(g(x))$$

Here we may assume that the domain of c is $[0, \infty)$ by putting $c(s) = c(K - 2\varepsilon)$ when $s > K - 2\varepsilon$ without affecting our argument of the proof. Now if $\rho(x, g(x)) = ||x - g(x)||$, then, since $||x|| \le \rho(0, x)$, (3.8) gives (2.2), while if $\rho(x, g(x)) = c(0)^{-1}(1 + q)^{-1}||P(x) - P(g(x))||$, then, since c is nonincreasing,

$$c(||x||)\rho(x,g(x)) = \frac{c(||x||)}{c(0)(1+q)} ||Px - P(g(x))||$$

$$\leq (1+q)^{-1} ||P(x) - P(g(x))|| \leq \psi(x) - \psi(g(x))$$

by (3.7), so again (2.2) holds. Thus by Theorem 2.2, g has a fixed point in M, a contradiction, and hence consequently $w \in P(\overline{B}(0; K - 2\varepsilon)) \subseteq P(B(0; K))$.

Analogous estimations for range of local expansions can be stated by the following theorem, which gives an extended version of Theorem 3.3 of [13] which also generalizes a result of Browder ([4], Theorem 4.10).

THEOREM 3.2. Let X and Y be Banach spaces, P an open mapping from $B(0; K) \subseteq X (K > 0)$ to Y having closed graph, and let $c: [0, K) \rightarrow (0, \infty)$ be a continuous nonincreasing function. Suppose for each $x \in B(0; K)$, there is an $\varepsilon > 0$ such that, if $y \in B(x; \varepsilon) \cap B(0; K)$, then

(3.9)
$$c(\max\{||x||, ||y||\})||x - y|| \le ||Px - Py||.$$

Then P(B(0; K)) contains $B(P(0); \int_0^K c(s) ds)$.

294

Proof. Let $w \in B(P(0); \int_0^K c(s) ds)$, that is, $||w - P(0)|| < \int_0^K c(s) ds$. Then we can choose $\varepsilon_1 > 0$ so small that $||w - P(0)|| \le \int_{\varepsilon_1}^{K-\varepsilon_1} c(s) ds$ holds.

Introduce a new metric ρ on the set $M = \overline{B}(0; K - \varepsilon_1)$ by setting $\rho(x, y) = \max\{||x - y||, c(0)^{-1}||Px - Py||\}$, so (M, ρ) is complete, and set $\psi(x) = ||w - Px||$. Let $\overline{c}(s) = c(s + \varepsilon_1)$. Then $\psi(0) \leq \int_{\varepsilon_1}^{K-\varepsilon_1} c(s) ds = \int_0^{K-2\varepsilon_1} \overline{c}(s) ds$. Now we claim that $w \in P(\overline{B}(0; K - 2\varepsilon_1))$. As in the proof of Theorem 3.1, we suppose $w \notin P(\overline{B}(0; K - 2\varepsilon_1))$ and obtain a contradiction. Now we define a mapping $g: M \to M$ by setting g(x) = 0 $(\neq x)$ when $x \in M \setminus \overline{B}(0; K - 2\varepsilon_1)$; note that in this case $\int_{\rho(0, x)}^{K-2\varepsilon_1} \overline{c}(s) ds < 0 \leq \psi(x)$, and if $x \in \overline{B}(0; K - 2\varepsilon_1)$, then choose $\varepsilon > 0$ so small that $\varepsilon \leq \varepsilon_1$ and (3.9) holds. Actually the condition (3.9) can be replaced by the condition that if $||x - y|| < \varepsilon$, then

$$\bar{c}(||x||)||x-y|| \le ||Px-Py||.$$

Since P is an open mapping

$$P(B(x;\varepsilon)) \cap \{tPx + (1-t)w; 0 \le t < 1\} \neq \emptyset$$

and hence there is a $g(x) \in B(x; \varepsilon)$ such that $P(g(x)) \in \{tPx + (1-t)w; 0 \le t < 1\}$, so that $g(x) \ne x$ and $g(x) \in M$. Since $\|P(g(x)) - P(x)\| = \|Px - w\| - \|P(g(x)) - w\| = \psi(x) - \psi(g(x)),$

it follows that

$$\bar{c}(||x||)||g(x) - x|| \le \psi(x) - \psi(g(x))$$

and

$$\bar{c}(\|x\|)c(0)^{-1}\|P(g(x)) - Px\| \le \psi(x) - \psi(g(x)),$$

and hence (2.2) holds by assuming that the domain of \bar{c} is $[0, \infty)$ as in the proof of Theorem 3.1. Thus by Theorem 2.2, g has a fixed point in M, which contradicts to the construction of g(x).

Theorem 3.2 can be applied to the range of locally strongly ϕ -accretive operators. Let X and Y be Banach spaces with Y* the dual of Y, and let $\phi: X \to Y^*$ be a mapping such that

$$\phi(X)$$
 is dense in Y^* , for each $x \in X$ and each $\xi \ge 0$
 $\|\phi(x)\| \le \|x\|$ and $\phi(\xi x) = \xi \phi(x)$.

A mapping P from X to Y is said to be strongly ϕ -accretive if there exists a constant c > 0 such that, for any $x, y \in X$,

$$(Px - Py, \phi(x - y)) \ge c ||x - y||^{2}.$$

The ϕ -accretive mappings were introduced in an effort to unify the theories for monotone mappings (when $Y = X^*$) and for accretive mappings (when Y = X). Many authors (see [3], [4], [7], [10], [13], [16] and [17]) have studied domain invariance or surjectivity of accretive operators. The following theorem gives an improvement of Theorem 4.11 of [4], Corollary 2.2 of [6] and Theorem 3.4 of [13].

THEOREM 3.3. Let X and Y be Banach spaces, and P an open mapping from $B(0; K) \subseteq X$ (K > 0) to Y having closed graph. Let c: $[0, K) \rightarrow$ $(0, \infty)$ be continuous nonincreasing for which, for any $x \in B(0; K)$, there is an $\varepsilon > 0$ such that for every $y \in B(x; \varepsilon) \cap B(0; K)$,

$$(3.10) \quad (Px - Py, \phi(x - y)) \ge c \left(\max\{ \|x\|, \|y\|\} \right) \|x - y\|^2.$$

Then $P(B(0; K))$ contains $B(P(0); \int_0^K c(s) \, ds).$

Proof. It is easy to show that (3.10) implies (3.9), so that Theorem 3.3 follows from Theorem 3.2.

In Theorem 3.3, if P is locally lipschitzian, and if Y can be renormed so that Y is Frechet differentiable and Y^* is strictly convex, that is, the duality mapping $J: Y \to Y^*$ is single-valued and continuous, then Downing and Ray [7] show that P is automatically an open mapping. Also if Y = X and ϕ is the duality mapping, and if P is continuous, then P is an open mapping by [16] and [17]. Also Theorem 3.3 can be applied to multivalued locally strongly ϕ -accretive mappings as in [7].

Note that the continuity of c in Theorem 2.2 and Theorems 3.1–3.3 can be replaced by the piecewise continuity of c without affecting results of those theorems.

Simple geometric intuition and integral equation suggest that c need not be nonincreasing in Theorems 3.1–3.3. Actually by using easy geometric estimation we can prove that such a condition can be removed in the following Theorem 3.4. In fact, Torrejon [17] proved that in Theorem 3.2, if $K = \infty$ and $\int_0^{\infty} c(s) ds = \infty$, then the condition that c is nonincreasing is not necessary.

THEOREM 3.4. The conclusions of Theorems 3.1-3.3 hold without the assumption that c is nonincreasing.

Proof. We may assume that P(0) = 0 after parallel transformation. Since c is continuous, for any given $\varepsilon > 0$, there is a partition

$$0 = K_0 < K_1 < \cdots < K_n < K$$

of [0, K] such that by putting

$$m_i = \inf\{c(s); K_{i-1} \le s \le K_i\}, \qquad 1 \le i \le n,$$

the inequality

$$\sum_{i=1}^n m_i (K_i - K_{i-1}) \ge \int_0^K c(s) \, ds - \varepsilon$$

holds. Now we will prove that $P(B(0; K_n))$ contains $B(0; \int_0^K c(s) ds - \epsilon)$, and hence we complete the proof since ϵ is arbitrary. For this purpose, it suffices to prove that for any given $w \in Y$ with ||w|| = 1,

(3.11)
the segment
$$\{tw; 0 \le t < M_k\} \subseteq P(B(0; K_k))$$

for any $k, 1 \le k \le n$, where
 $M_k = \sum_{i=1}^k m_i (K_i - K_{i-1}).$

Then for k = n, we have $\{tw; 0 \le t < M_n\} \subseteq P(B(0; K_n))$, and this implies $B(0; \int_0^K c(s) ds - \varepsilon) \subseteq B(0; M_n) \subseteq P(B(0; K_n))$.

First note that if c is nonincreasing (in particular, c is a constant function), then the theorem holds by Theorems 3.1-3.3. Therefore if k = 1, then (3.11) is trivially true. Suppose that (3.11) is not true for some $k \ge 2$, and k is the smallest integer for which (3.11) does not hold. Then there is a t_0 with $M_{k-1} \le t_0 < M_k$ such that $t_0 w \notin P(B(0; K_k))$, but $\{tw; 0 \le t < M_{k-1}\} \subseteq P(B(0; K_{k-1}))$. Now choose an $\varepsilon_1 > 0$ so small that $\varepsilon_1 < M_k - t_0$. Take r > 0 such that $m_k r < \varepsilon_1/4$, and set $m = \min\{m_1, m_2, \ldots, m_k\} > 0$. Then note that, by Theorems 3.1-3.3,

(3.12) if
$$||x|| < K_{k-1} + r$$
, then $P(B(x;r)) \supseteq B(P(x);mr)$

and

(3.13) if
$$K_{k-1} + r \le ||x|| \le K_k - r$$
,

then $P(B(x;r)) \supseteq B(P(x);m_kr)$.

(3.12) and (3.13) are possible, since P satisfies the conditions of Theorems 3.1–3.3, respectively, by setting c(s) = m in case (3.12) and $c(s) = m_k$ in case (3.13) on B(x; r).

Also take $\varepsilon_2 > 0$ so small that $\varepsilon_2 < \min\{\varepsilon_1/4, rm\}$. Then since $\{tw; 0 \le t < M_{k-1}\} \subseteq P(B(0; K_{k-1}))$, we can take $x_1 \in B(0; K_{k-1})$ so that $Px_1 = t_1w$, where $t_1 = M_{k-1} - 2^{-1}\varepsilon_2$. Also by (3.12), we can choose $x_2 \in B(x_1; r)$ so that $Px_2 = t_2w$, where $t_2 = t_1 + rm - 2^{-2}\varepsilon_2$. Continue this process, we assume that x_j and t_j be chosen for $j \ge 2$ with $||x_j|| \le K_k - r$ for all $i \le j$. Then if $||x_j|| < K_{k-1} + r$, then by (3.12) there exists

 $x_{j+1} \in B(x_j; r)$ such that $Px_{j+1} = t_{j+1}w$, where $t_{j+1} = t_j + rm - 2^{-j-1}\varepsilon_2$, and if $K_{k-1} + r \le ||x_j|| \le K_k - r$, then by (3.13) there exists $x_{j+1} \in B(x_j; r)$ such that $Px_{j+1} = t_{j+1}w$, where $t_{j+1} = t_j + rm_k - 2^{-j-1}\varepsilon_2$. We can continue the above process unless $||x_j|| > K_k - r$. Now we claim that there is a *j* such that $t_j \le t_0 < t_{j+1}$ with $||x_i|| \le K_k - r$ for all $i \le j$, so that $t_0w \in P(B(x_j; r)) \subseteq P(B(0; K_k))$, which is a contradiction.

To prove our claim, suppose that $||x_j|| \le K_k - r$ for all j = 1, 2, ...Then for $j \ge 2$, we have

$$t_{j} \geq t_{j-1} + rm - 2^{-j}\varepsilon_{2} \quad (\text{since } m \leq m_{k})$$

$$\vdots$$

$$\geq t_{1} + (j-1)rm - (2^{-2} + \dots + 2^{-j})\varepsilon_{2}$$

$$\geq M_{k-1} + (j-1)rm - \varepsilon_{2} \quad (\text{since } t_{1} = M_{k-1} - 2^{-1}\varepsilon_{2}).$$

Since rm > 0, for some sufficiently large j, we can have $t_0 < t_{j+1}$. Also since the sequence $\{t_i\}$ is increasing, our claim is proved. Now suppose that for some j, $||x_{j+1}|| > K_k - r$ and $||x_i|| \le K_k - r$ for all $i \le j$. Since $||x_i - x_{i+1}|| < r$ $(1 \le i \le j)$ and $rm_k < \epsilon_1/4 \le (M_k - M_{k-1})/4$, we have $4r < K_k - K_{k-1}$, so that there is a j_0 with $1 \le j_0 < j - 1$ satisfying $||x_{j_0}|| < K_{k-1} + r$ and $K_{k-1} + r \le ||x_i|| \le K_k - r$ for all $j_0 + 1 \le i \le j$. Then we have $||x_{j+1} - x_{j_0+1}|| > K_k - K_{k-1} - 3r$, and hence $(j - j_0)r > K_k - K_{k-1} - 3r$. Note that $t_i < t_{i+1}$ for all $1 \le i \le j$, and $t_{i+1} = t_i + rm_k - 2^{-i-1}\epsilon_2$ for all $j_0 + 1 \le i \le j$. Therefore we have

$$t_{j+1} = t_j + rm_k - 2^{-j-1}\varepsilon_2$$

$$\vdots$$

$$> t_{j_0+1} + (j - j_0)rm_k - 2^{-j_0}\varepsilon_2$$

$$> t_1 + (K_k - K_{k-1} - 3r)m_k - 2^{-j_0}\varepsilon_2$$

$$> M_{k-1} + M_k - M_{k-1} - 3rm_k - \varepsilon_2$$

$$> M_k - \varepsilon_1 > t_0.$$

so that we complete the proof.

We list here one final conclusion as the following

THEOREM 3.5. Let X and Y be Banach spaces, and P an operator from X to Y having closed graph. Let c: $[0, \infty) \rightarrow (0, \infty)$ be a continuous function for which one of the following conditions holds.

(a) P is Gateaux differentiable and for each $x \in X$, (3.1) holds.

- (b) P is an open mapping and for each $x \in X$, there is an $\varepsilon > 0$ such that for every $||x y|| < \varepsilon$, (3.9) holds.
- (c) P is an open mapping and for each $x \in X$, there is an $\varepsilon > 0$ such that for every $||x y|| < \varepsilon$, (3.10) holds.

Then for any K > 0 (possibly $K = \infty$), P(B(0; K)) contains $B(P(0); \int_0^K c(s) ds)$, in particular, if $\int_0^\infty c(s) ds = \infty$, then P is surjective.

As a final remark, the condition (3.2) can be applied to the following extended version of Theorem 2 of [14]. The proof of the following theorem follows from (3.2) and Lemma of [14]. There is no significant variation in the proof, and so we omit it.

THEOREM 3.6. Let X and Y be Banach spaces, and let P and Q be Gateaux differentiable mappings from $B(0; K) \subseteq X$ (K > 0, possibly $K = \infty$) to Y. Let c: $[0, K) \rightarrow (0, \infty)$ be a continuous function. Suppose for each $x \in B(0; K)$, that

(a) dQ_x is a bounded linear operator from X to Y, and

(b) $dP_x(\overline{B}(0;1)) \supseteq \overline{B}(0;c(||x||)).$

Suppose in addition, for some $\mu \in (0, 1)$ and each $x \in X$ that (c) $c(||x||)^{-1} ||dQ_x|| < \mu$.

If the mapping R = P + Q has closed graph, then R(B(0; K)) contains $B(R(0); (1 - \mu) \int_0^K c(s) ds)$, in particular R is an open mapping. And if $\int_0^K c(s) ds = \infty$, then R(B(0; K)) = Y.

In the same situation of Theorem 3.6 Ray and Walker [14] showed that if P and Q have closed graphs, then so does P + Q. In [14], in order to prove that R is an open mapping, they used actually the Brezis and Browder principle [2], which was recently generalized in [1] and [18]. However, our Theorem 3.6 can be proved by using only Theorem 2.2 (actually Theorem 2.1 by assuming that c is a constant function) and combining Theorem 3.4, and it gives a precise estimation of range of operators.

References

- [1] M. Altman, A generalization of the Brezis-Browder principle on ordered sets, Nonlinear Analysis, TMA., 6 (1982), 157-165.
- [2] H. Brezis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 21 (1976), 355-364.
- [3] F. E. Browder, Normal solvability and φ-accretive mappings of Banach spaces, Bull. Amer. Math. Soc., 78 (1972), 186–192.

- [4] _____, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. Vol. 118, part 2, Amer. Math. Soc., Providence, RI, 1976.
- [5] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251.
- W. J. Cramer, Jr. and W. O. Ray. Solvability of nonlinear operator equations, Pacific J. Math., 95 (1981), 37-50.
- [7] D. J. Downing and W. O. Ray, Renorming and the theory of phi-accretive set-valued mappings, Pacific J. Math., 106 (1983), 73-85.
- [8] I. Ekeland, Sur les problems variationnels, Compte Rendus Acad. Soc. Paris, 275 (1972), 1057–1059.
- [9] _____, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1976), 443–474.
- [10] J. A. Park and S. Park, Surjectivity of φ-accretive operators, Proc. Amer. Math. Soc., 80 (1984), 289–292.
- [11] S. Park and J. S. Bae, On the Ray-Walker extension of the Caristi-Kirk fixed point theorem, to appear in Nonlinear Analysis, TMA.
- [12] W. O. Ray, Normally solvable nonlinear operators, Contemp. Math., 18 (1983), 155–165.
- [13] W. O. Ray and A. M. Walker, Mapping theorems for Gateaux differentiable and accretive operators, Nonlinear Analysis, TMA., 6 (1982), 423–433.
- [14] _____, Perturbations of normally solvable nonlinear operators, to appear.
- [15] I. Rosenholtz and W. O. Ray, Mapping theorems for differentiable operators, Bull. Acad. Polon. Sci. Ser. Math. Aston. Phys., 29 (1981), 265–273.
- [16] R. Schöneberg, On the domain invariance theorem for accretive mappings, J. London Math. Soc., 24 (1981), 548-554.
- [17] R. Torrejon, A note on locally expansive and locally accretive operators, Canad. Math. Bull., 26 (1983), 228–232.
- [18] M. Turinici, A generalization of Altman's ordering principle, Proc. Amer. Math. Soc., 90 (1984), 128–132.

Received June 22, 1985. Partially supported by a grant from the Korea Science and Engineering Foundation, 1984–5.

CHUNGNAM NATIONAL UNIVERSITY DAEJEON 300-31, KOREA

÷

AND

SOONG JUN UNIVERSITY SEOUL 151, KOREA