NECESSARY AND SUFFICIENT CONDITIONS FOR SIMPLE A-BASES

Carl Swenson and Calvin Long

Abstract

Let A be a set of m distinct integers with $m \geq 2$ and $0 \in A$. It is shown that A possesses a simple A-base if and only if A is a complete residue system modulo m and the elements of A are relatively prime.

The notions of simple and non-simple A-bases, due to de Bruijn, are defined as follows.

Definition 1. Let A be as above. The integral sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is called an A-base for the set of integers provided that every integer n can be represented uniquely in the form

$$
n=\sum_{i=1}^{r(n)} a_{i} b_{i}, \quad a_{i} \in A \forall i .
$$

If (with possible rearrangement) B can be written in the form $B=$ $\left\{d_{i} m^{i-1}\right\}_{i \geq 1}$ where the d_{i} are integers, then it is called a simple A-base.

The notion of an A-base was generalized by Long and Woo to that of an \mathfrak{N}-base where $\mathfrak{\mathscr { H }}=\left\{A_{i}\right\}$ and each A_{i} is a set of m_{i} distinct integers with $0 \in A_{i}$ and $m_{i} \geq 2$ for all i. The definition is as follows.

Definition 2. Let \mathfrak{N} be as above. The integral sequence $B=\left\{b_{i}\right\}_{i \geq 1}$ is called an \mathfrak{U}-base for the set of integers provided every integer n can be written uniquely in the form

$$
n=\sum_{i=1}^{r(n)} a_{i} b_{i}, \quad a_{i} \in A_{i} \forall i .
$$

If (with possible rearrangement) B can be written in the form $B=$ $\left\{d_{i} M_{i-1}\right\}_{i \geq 1}$ where the d_{i} are integers and where $M_{0}=1$ and $M_{i}=$ $\prod_{j=1}^{i} m_{j}$ for $i \geq 1$, then it is called a simple \mathscr{N}-base.

De Bruijn has pointed out that it is not yet known for which A 's there exist simple A-bases nor it is known for which A 's there exist non-simple A-bases. He gives several examples and then observes that if A has a simple A-base it is necessary that A form a complete residue system
modulo m and that the elements of A be relatively prime. He also observes that it is necessary that $\left(d_{i}, m\right)=1$ for all i.

Long and Woo have given several sets of sufficient conditions for both simple and non-simple A-bases and \mathfrak{N}-bases, but no necessary and sufficient conditions.

In the present paper, we shown that the necessary conditions of de Bruijn for the existence of simple A-bases are also sufficient. Necessary and sufficient conditions for the existence of simple \mathfrak{A}-bases are still lacking.

The results of de Bruijn noted above are contained in [1] and those of Long and Woo appear in [3].

Before proving the main theorem a lemma will be needed.
Lemma. Let $m \geq 2$ be an integer and let A be a complete residue system modulo m. If $0 \in A$ and the elements of A are relatively prime, then every integer n can be represented in the form

$$
\begin{equation*}
n=a_{1} d_{1}+a_{2} d_{2} m+a_{3} d_{3} m^{2}+\cdots+a_{s} d_{s} m^{s-1} \tag{1}
\end{equation*}
$$

where $s>1$ and $d_{1}, d_{2}, \ldots, d_{m}$ are integers with $\left(d_{i}, m\right)=1$ and $a_{i} \in A$ for all i.

Proof. Of course, zero is trivially representable in the desired form. For $n \neq 0$, we distinguish two cases.

Case 1. $(m, n)=1$.
Since A is a complete residue system modulo m, there exists $a \in A$ such that $n \equiv a(\bmod m)$. We set $a_{1}=a$ and denote the remaining elements of A by $a_{2}, a_{3}, \ldots, a_{m}$. Since $(n, m)=1$ and $n \equiv a_{1}(\bmod m)$, it follows that $\left(a_{1}, m\right)=1$. Thus, since $\left(a_{1}, a_{2}, \ldots, a_{m}\right)=1$, it follows that $\left(a_{1}, a_{2} m, a_{3} m^{2}, \ldots, a_{m} m^{m-1}\right)=1$ and hence that the diophantine equation

$$
\begin{equation*}
n=a_{1} x_{1}+a_{2} m x_{2}+a_{3} m^{2} x_{3}+\cdots+a_{m} m^{m-1} x \tag{2}
\end{equation*}
$$

has a solution $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{m}^{\prime}\right)$. This implies that $a_{1} d_{1}^{\prime} \equiv n(\bmod m)$ and hence that $\left(d_{1}^{\prime}, m\right)=1$. For $2 \leq k \leq m$, set $e_{k}=\left(d_{k}^{\prime}, a_{1}\right)$. Then

$$
\left(\frac{d_{k}^{\prime}}{e_{k}}, \frac{a_{1}}{e_{k}}\right)=1
$$

and it follows from Dirichlet's theorem that there exist infinitely many primes of the form

$$
\frac{d_{k}^{\prime}}{e_{k}}-\frac{a_{1}}{e_{k}} \cdot r
$$

where r is an integer. Hence, we may choose r_{k} such that $d_{k}^{\prime}-a_{1} r_{k}=p e_{k}$ where p is a prime and $\left(p e_{k}, m\right)=1$. Setting $d_{k}=d_{k}^{\prime}-a_{1} r_{k}$ we have that $\left(d_{k}, m\right)=1$ for $2 \leq k \leq m$. Setting

$$
d_{1}=d_{1}^{\prime}+a_{2} r_{2} m+a_{3} r_{3} m^{2}+\cdots+a_{m} r_{m} m^{m-1}
$$

it follows that $\left(d_{1}, m\right)=1$ since $\left(d_{1}^{\prime}, m\right)=1$. Thus, $\left(d_{i}, m\right)=1$ for $1 \leq i$ $\leq m$ and

$$
\begin{aligned}
a_{1} d_{1}+ & a_{2} d_{2} m+a_{3} d_{3} m^{2}+\cdots+a_{m} d_{m} m^{m-1} \\
= & a_{1}\left(d_{1}^{\prime}+a_{2} r_{2} m+a_{3} r_{3} m^{2}+\cdots+a_{m} r_{m} m^{m-1}\right) \\
& +a_{2}\left(d_{2}^{\prime}-a_{1} r_{2}\right) m+a_{3}\left(d_{3}^{\prime}-a_{1} r_{3}\right) m^{2} \\
& +\cdots+a_{m}\left(d_{m}^{\prime}-a_{1} r_{m}\right) m^{m-1} \\
= & a_{1} d_{1}^{\prime}+a_{2} d_{2}^{\prime} m+a_{3} d_{3}^{\prime} m^{2}+\cdots+a_{m} d_{m}^{\prime} m^{m-1}=n
\end{aligned}
$$

since, as noted above, $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{m}^{\prime}\right)$ satisfies (2).
Case 2. $(m, n)>1$.
It suffices to consider only the case where all prime factors of n divide m. For, if $n=n_{1} n_{2}$ with $\left(n_{1}, m\right)=1$ and

$$
n_{2}=a_{1} d_{1}^{\prime}+a_{2} d_{2}^{\prime} m+a_{3} d_{3}^{\prime} m^{2}+\cdots+a_{m} d_{m}^{\prime} m^{m-1}
$$

with $\left(d_{i}^{\prime}, m\right)=1$ for all i, then

$$
\begin{aligned}
n & =n_{1} n_{2} \\
& =a_{1}\left(n_{1} d_{1}^{\prime}\right)+a_{2}\left(n_{1} d_{2}^{\prime}\right) m+a_{3}\left(n_{1} d_{3}^{\prime}\right) m^{2}+\cdots+a_{m}\left(n_{1} d_{m}^{\prime}\right) m^{m-1} \\
& =a_{1} d_{1}+a_{2} d_{2} m+a_{3} d_{3} m^{2}+\cdots+a_{m} d_{m} m^{m-1}
\end{aligned}
$$

with $d_{i}=n_{1} d_{i}^{\prime}$ and hence $\left(d_{i}, m\right)=1$ for all i. Thus, assuming that all prime factors of n divide m, there exists $t>1$, such that $n \mid m^{t-1}$. Let

$$
A^{\prime}=a \oplus m A \oplus m^{2} A \oplus \cdots \oplus m^{t-1} A
$$

where

$$
k A=\{b \mid b=k a, a \in A\}
$$

and

$$
A \oplus B=\{c \mid c=a+b, a \in A, b \in B\}
$$

with $|A \oplus B|=|A||B|$. It is easy to see that A^{\prime} forms a complete residue system modulo m^{t}. Thus, we can choose $\alpha \in A^{\prime}$ such that

$$
\begin{equation*}
n \equiv \alpha \quad\left(\bmod m^{t}\right) \tag{3}
\end{equation*}
$$

and there exists an integer q such that

$$
\begin{equation*}
n=\alpha+q m^{t} . \tag{4}
\end{equation*}
$$

Since $\alpha \in A^{\prime}$, we can write

$$
\begin{equation*}
\alpha=a_{\alpha, 1}+a_{\alpha, 2} m+a_{\alpha, 3} m^{2}+\cdots+a_{\alpha, t} m^{t-1} \tag{5}
\end{equation*}
$$

with $a_{\alpha, i} \in A$ for all i. Since $n \mid m^{t-1}$, (4) implies that $n \mid \alpha$ and hence that

$$
1=\frac{\alpha}{n}+\frac{m^{t}}{n} \cdot q
$$

where α / n and m^{t} / n are integers. This implies that $(\alpha / n, q)=1$ and hence, again by Dirichlet's theorem, there exists an integer s such that $q+(\alpha / n) s$ is a prime and is relatively prime to m. Thus, by case 1 , there exist d_{i}^{\prime} with $\left(d_{i}, m\right)=1$ for $1 \leq i \leq m$ such that

$$
\begin{equation*}
q+\frac{\alpha}{n} \cdot s=a_{1}^{\prime} d_{1}^{\prime}+a_{2}^{\prime} d_{2}^{\prime} m+\cdots+a_{m}^{\prime} d_{m}^{\prime} m^{m-1} \tag{6}
\end{equation*}
$$

where $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}$ are the elements of A in some order. Moreover,

$$
\frac{\alpha}{n}\left(1-\frac{m^{t}}{n} \cdot s\right)+\frac{m^{t}}{n}\left(q+\frac{\alpha}{n} \cdot s\right)=\frac{\alpha}{n}+\frac{m^{t}}{n} \cdot q=1
$$

and hence

$$
\begin{equation*}
n=\alpha\left(1-\frac{m^{t}}{n} \cdot s\right)+m^{t}\left(q+\frac{\alpha}{n} \cdot s\right) . \tag{7}
\end{equation*}
$$

Since $n \mid m^{t-1}$, it follows that $m \mid\left(m^{t} / n\right)$ and hence that

$$
1=\left(1-\frac{m^{t}}{n} \cdot s, m\right)
$$

Thus, from (5), (6), and (7), we have

$$
\begin{aligned}
n= & \alpha\left(1-\frac{m^{t}}{n} \cdot s\right)+m^{t}\left(q+\frac{\alpha}{n} \cdot s\right) \\
= & a_{\alpha, 1}\left(1-\frac{m^{t}}{n} \cdot s\right)+a_{\alpha, 2}\left(1-\frac{m^{t}}{n} \cdot s\right)+\cdots+a_{\alpha, t}\left(1-\frac{m^{t}}{n} \cdot s\right) \\
& +a_{1}^{\prime} d_{1}^{\prime} m^{t}+a_{2}^{\prime} d_{2}^{\prime} m^{t+1}+a_{3}^{\prime} d_{3}^{\prime} m^{t+2}+\cdots+a_{m}^{\prime} d_{m}^{\prime} m^{m+t-1} \\
= & a_{1} d_{1}+a_{2} d_{2} m+a_{3} d_{3} m^{2}+\cdots+a_{m+t} d_{m+t} m^{m+t-1}
\end{aligned}
$$

where $d_{i}=1-\left(m^{t} / n\right) \cdot s$ and $a_{i}=a_{\alpha, i}$ for $1 \leq i \leq t$ and $d_{i+t}=d_{i}^{\prime}$ and $a_{i+t}=a_{i}^{\prime}$ for $1 \leq i \leq m$. Since, $a_{i} \in A$ and $\left(d_{i}, m\right)=1$ for all i, this is a representation in the desired form and the proof is complete.

We now prove the main result.
Theorem. Let A be a set of m distinct integers with $0 \in A$ and $m \geq 2$. Then A has an A-base if and only if A is a complete residue system modulo m and the elements of A are relatively prime.

Proof. First let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and assume that A has a simple A-base, $B=\left\{d_{i} m^{i-1}\right\}_{i \geq 1}$. Then every integer n can be represented in the form

$$
\begin{equation*}
n=\sum_{i=1}^{r(n)} a_{n, i} d_{i} m^{i-1}, a_{n, i} \in A \forall i . \tag{8}
\end{equation*}
$$

Since $n \equiv a_{n, 1} d_{1}(\bmod m)$ and each of $0,1, \ldots, m-1$ is represented in the form (8), it follows that $\left\{a_{1} d_{1}, a_{2} d_{1}, \ldots, a_{m} d_{1}\right\}$ forms a complete residue system modulo m and hence that $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ also forms a complete residue system modulo m and that $\left(d_{1}, m\right)=1$. The argument can be repeated, and this leads to ($\left.d_{i}, m\right)=1$ for all $i \geq 1$. Also, if $\left(a_{1}, a_{2}, \ldots, a_{m}\right)=d>1$, then only multiples of d can be represented in (8). This is a contradiction and so $\left(a_{1}, a_{2}, \ldots, a_{m}\right)=1$ as claimed.

Now suppose that the elements of A are relatively prime and form a complete residue system modulo m. We must show that there exists an integral sequence $\left\{d_{i}\right\}_{i \geq 1}$ with $\left(d_{i}, m\right)=1$ for all i such that every integer n is uniquely representable in the form (8). Of course, 0 is trivially representable in the desired form. Also, by the lemma, 1 can be represented in the desired form and will, in fact, appear in the sum

$$
S_{1}=d_{1} A \oplus d_{2} m A \oplus d_{3} m^{2} A \oplus \cdots \oplus d_{s_{1}} m^{s_{1}-1} A
$$

for suitable integers $d_{1}, d_{2}, \ldots, d_{s_{1}}$ and $s_{1}>1 . S_{1}$ is easily seen to be a complete residue system modulo $m^{s_{1}}$ since A is a complete residue system modulo m and $\left(d_{i}, m\right)=1$ for $1 \leq i \leq s_{1}$. Of course, all elements of S_{1} are represented in the desired form. Let r_{1} be the integer of least absolute value such that $r_{1} \notin S_{1}$. If there are two such values, r and $-r$, we set $r_{1}=r$. Since S_{1} is a complete residue system modulo $m^{s_{1}}$, there exists $s \in S_{1}$, such that $r_{1} \equiv s\left(\bmod m^{s_{1}}\right)$. Thus, $r_{1}=s+q m^{s_{1}}$ for some integer q and, by the lemma, there exists an integer $s_{2}>1$ and integers $d_{s_{1}+i}$ with ($\left.d_{s_{1}+i}, m\right)=1$ for $1 \leq i \leq s_{2}$ such that

$$
q=a_{q, 1} d_{s_{1}+1}+a_{q, 2} d_{s_{1}+2} m+\cdots+a_{q, s} d_{s_{1}+s_{2}} \cdot m^{s_{2}-1}
$$

with $a_{q, i} \in A$ for $1 \leq i \leq s_{2}$. Also, since $s \in S_{1}$,

$$
s=a_{s, 1} d_{1}+a_{s, 2} d_{2} m+\cdots+a_{s, s_{1}} d_{s_{1}} m^{s_{1}-1}
$$

with $a_{s, j} \in A$ for $1 \leq j \leq s_{1}$. But then

$$
\begin{aligned}
r_{1}= & s+q m^{s_{1}} \\
= & a_{s, 1} d_{1}+a_{s, 2} d_{2} m+\cdots+a_{s, s_{1}} d_{s_{1}} m^{s_{1}-1} \\
& +a_{q, 1} d_{s_{1}+1} m^{s}+\cdots+a_{q, s_{2}} d_{s_{1}+s_{2}} m^{s_{1}+s_{2}-1}
\end{aligned}
$$

which is a representation of r_{1} in the desired form. Now from the set

$$
S_{2}=d_{1} A \oplus d_{2} m A \oplus d_{3} m^{2} A \oplus \cdots \oplus d_{s_{1}+s_{2}} m^{s_{1}+s_{2}-1} A
$$

Note that $S_{1} \subset S_{2}$ since $0 \in A$ and also note that all members of S_{2} are represented in the desired form. We now iterate with r_{2} as the integer of least absolute value not in S_{2}, and so on. In this way, we build our A-base step by step and it is clear that any particular integer n will be properly represented after at most $2|n|$ steps. Since it is clear that such representations are unique, the proof is complete.

References

[1] N. G. De Bruijn, On bases for the set of integers, Publ. Math. (Debrecen), 1 (1950), 232-242.
[2] \longrightarrow , Some direct decompositions of the set of integers, Math. Comp., 18 (1964), 537-546.
[3] C. T. Long and N. Woo, On bases for the set of integers, Duke Math. J., 38 (1971), 538-590.

Received March 18, 1985 and in revised form November 21, 1985.
Seattle University
Seattle, WA 98122

