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SUBSETS OF HYPERSIMPLE SETS

R. G. DOWNEY

Structural properties of r.e. sets often have degree theoretic conse-
quences, particularly concerning degrees of supersets. It is our intention
to show that such properties can have interesting ramifications on the
degrees of subsets, by showing that no hypersimple r.e. set has the
universal splitting property (USP). We also show that there are, however,
simple sets (indeed, low and promptly simple sets) with USP and thus
USP is not invariant under automorphisms of the lattice of r.e. sets.

1. Introduction. An r.e. sequence of disjoint nonempty canonical
finite sets is called a strong array. Post [Po] defined an r.e. set A to be
hypersimple if it was coinfinite and given any infinite strong array
{Dx}x€ΞW, then for some x, Dx<zA. Hypersimple sets were first con-
structed by Dekker [De] who showed that they exist in each r.e. degree,
and have since been extensively studied.

A pair of r.e. sets Av A2 is said to split an r.e. set A (written
Aλ U A2 = A) if Ax U A2 = A and Ax Π A2= 0. Following Lerman and
Remmel [LR1, 2] we shall say an r.e. set A has the universal splitting

property (USP) if given any r.e. set B <TA there is an r.e. splitting of
A = Ax U A 2 with Aλ=τB. Sets with and without USP have recently
been analysed in several papers, for example [AS2, AF, Dol,2, DW,
LR1,2]. Lerman and Remmel [LR2] showed that the degrees containing
non-USP r.e. sets were dense in the r.e. degrees. In [Dol], the author
improved this to show that in fact every nonzero r.e. degree contained a
non-USP r.e. set. The main result of this paper is an extension of this:

THEOREM, (i) No hypersimple r.e. set has USP.

(ii) Indeed, if A is hypersimple and B is an r.e. set with 0 < τ B < TA

then there exists an r.e. set Q with Q < TB and such that if Ax U A2 = A is

an r.e. splitting of A then AXΨ TQ.

(iii) In particular if Ax U A2 = A is an r.e. splitting of a hypersimple

set then Aλ is non-USP.

We feel that this result is quite interesting since it connects two
apparently unrelated notions and means that properties of supersets of r.e.
sets can affect degrees of subsets.
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As a companion result, we shall prove that no obvious lattice theo-
retic extension seems possible. To obtain the sharpest formulation, say A
has the SUSP (strong USP) if given any pair of r.e. sets with Bλ Θ B2

= TA there exist r.e. sets AVA2 with A = Aλ U A2 and Ai = τBi

for i = 1,2. Recall from Maass [Ma], that A is promptly simple if
card(ω — A) = oo and there exists a recursive function / such that We

infinite implies that for some s, 3x(x e (We>s+1 - Wes) Π Af{x)).
Our result here is:

THEOREM. There exist low promptly simple SUSP r.e. sets.

As a corollary, following some work of Maass, we see that (S)USP is
not invariant under automorphisms of the lattice of r.e. sets.

The author wishes to thank Jeff Remmel for several helpful conversa-
tions regarding this material. He also wishes to thank the referee for
finding several errors in an early draft of this paper.

2. Notation and conventions. Our notation and terminology is for
the most part standard and follows Soare [Sol, 2,3], subject to several
conventions we now describe. We denote r.e. sets by upper case roman
letters (e.g. £/, F, W,...) and Γ-functional by upper case greek letters
(Φ, Γ, Δ,.. .). We denote the use function of a computation by u(-). This
is the maximum element used in a computation (-). We suppose that if
Φ(A; x)i then u(Φ(A;x)) > x.

If {Φs} and {As} are approximations we shall suppose that if
Φs(As;x)i and Φt(At;x)i then u(Φs(As; x)) < u(Φt(At;x)). We re-
mark that all sets and degrees etc. will be r.e. unless specifically stated
otherwise. We let " U " denote union for disjoint sets so that A U B = C
means A U B = C and A Π B = 0. Also (, > will denote a standard
pairing. For an (r.e.) set A, A{e) denotes {(e9x):x e ω}. We let A[x] =
[z:z < x&z G A}. Finally we adopt the convention that all computa-
tions etc. are bounded by s at stage s + 1.

3. Results. In [Dol], the author showed that every nonzero r.e.
degree contained a non-USP r.e. set. At the time, we felt that the proof
was slightly unusual since what it really showed was the following:

Let A = f(ω) be a 1-1 enumeration of an r.e. nonrecursive set. Define
the "filled in" set B associated with A as follows:

Stage 0. Set Bo = 0 and bi0 = i for all / G ω.
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Stages + 1. Set Bs+1 = BSU {6,, ,:/(*) < i < f(s) + s}, bi>s+1 = bUs

for i < f(s) and bt s+ι = bi+s+hs otherwise.

Then in [Dol] we proved:

THEOREM 3.1 ([Dol]). IfB is constructed as above, then B is non-USP.

Our reason for feeling that this proof was slightly unusual was that
construction of a nonsplitting witness—an r.e. set C such that if E and F
are r.e. sets with E U F = B then C Φ τ E—was virtually independent of
our construction of B.

It thus seems reasonable to conjecture that perhaps the proof of [Dol]
turned on a property of B rather than the particular construction of B.
Now it is easy to see that B is hypersimple. As our first result we shall
show that hypersimplicity is enough to ensure a set is non-USP. We use a
modification of the techniques of [Dol]. We show:

THEOREM 3.2. (i) No hypersimple r.e. set has USP.
(ii) Indeed, if A is hypersimple and B is an r.e. set with 0 < TB <TA

then there exists an r.e. set Q <TB such that if Ax U A2 = A is an r.e.
splitting of A, then AXΦ TQ.

(iii) In particular, if Aγ U A2 is an r.e. splitting of a hypersimple set,
then Ax is non-USP.

Proof. Let A be a given hypersimple r.e. set and B an r.e. set with
0 < TB <TA. Let g(ω) = B be a 1-1 enumeration of B. We shall build
a nonsplitting witness Q for A with Q < τ B by simple permitting as in
[Dol]. Let (Ve, We, Te, Φe) list all 4-tuples consisting of disjoint pairs of r.e.
sets and pairs of functionals. Please note here that we are using disjoint
pairs of r.e. sets (Ve, We) and we shall thus know that at no stage of the
construction can Ves Π Wes Φ 0. We must ensure Q satisfies the require-
ments

Re: One of the following fails:
(ϊ)WeUVe = A.

(ii) Φe(We) = Q.
(iii) Te(Q) = We.
We shall now briefly discuss the strategy for the satisfaction of a

single Re. We shall satisfy the Re by followers. Each follower x is assigned
a target region T(x). T(x) will be a (finite) subset of ω. Define the "Q
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controllable" length of agreement via

l(e,s) = max{x:Vy < x{ΦttS(Wey, y) = Qs(y)&

< u(ΦetS(Wey, y)) -» Te,,(Q,;z) = We>,(z)&

Associated with the Re will be a marker M(e, s). Roughly speaking,
the position of M(e, s) will denote the part of Q currently devoted to
attempts to satisfy Rj for j < e. Our argument will be finite injury, and so
we shall suppose that beyond some stage s0 we need only change M(e, s)
for the sake of attacks on Re (and the Rj for j < e have ceased activity).
Also M(e, s) is monotone in both variables.

Now we attack Re as follows. First we wait for a number x to occur
in ω(e) such that

(i) l(e, s) > x, and
(ii) x > m^x{u(Tes(Qx;z)):z < M(e9s)}.

At this stage, we appoint x as a follower of Re and reset M(k, s + 1) to
be M(k, s + 1) = s + 1 for k > e, We then set Γ(x) = {z: M(e, s) < z
< M(e, 5 + 1)} and cancel all lower priority followers. There are now two
key observations.

Observation 1. For all stages t > s if we do not add any number < x
to Qt ~ Qs and if l(ej) > x, we know Wet[G] = Wes[G] where G =
u(Φe s(We s; x)). This will follow since we have reset M{k, s H- 1) to s + 1
for all k > e, and our conventions regarding w(-) ensure that all followers
of Rj for j > e appointed after stage s must exceed s 4- 1, and all the i?y

for 7 < e have ceased activity.

Observation 2. For all stages t > s if no number < x is added to
Qt- Qs, and if Te(Q) = Wς then Wςr[M(e,5)]= W;jM(e,s)]. This
follows by the same reasoning as Observation 1 since we specifically chose
x > max{ u(Tes(Qs; z)):z < M(e,s)}. In particular, provided Qs[x — 1]

= Q[x - 1] we know We[M(e,s)] = Wes[M(e,s)] (provided that it is
truly the case that Te(Q) = We).

Our eventual aim is to enumerate x into Q. To do so immediately
would be useless since although it might create a temporary disagreement
between <&eiS{Wes\ x) and Q€tS+ι(x)9 the fact that we have changed Qet[s]
allows Wet[G] Φ Wes[G] (where G = u(Φes(Wes; x))) for some t > s!

However, it is important to note that if we added x to Qt - Qs but
kept Qt[x - 1] unchanged then Observation 2 tells us that although
Wet[G] Φ WeJG] we do know that Weί[M(e,s)] = Wes[M{e,s)\ That
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is, We may change, but only above M(e, s). Thus as in [Dol], our idea is
not to enumerate x into Qt — Qs until a stage where it is impossible for
W€tt[G\ Φ WeJG) and yet W,ft[M(e,s)] = WeJM(e,s)].

For our purposes it would surely suffice to find a stage t > s such
that

(i) T(x) c An and
(ii) l(e,t) > JC, and

(iii) Qt[χ] = Qt[χ].
By Observation 1, if such a stage occurs, then if We and Ve truly split A
we know that Weί[G] = ^, 5 [G] and for all z if M(e,s) < z < G, then
z EL We Ίίί x €L Wes. (Any such z not in We s must have entered Ve.) In
our construction, when such a stage t occurs we shall declare x as
confirmed. We shall argue that once x is confirmed if we ever get a chance
to enumerate x into Q we shall ensure that

(a) either Φe(We; x) = 0 Φ 1 = β(x), or
(b) Γ e(β,; z) Φ We(z) for some z < M(e, s).

The remainder of the proof is an appeal to the hypersimplicity of A to
ensure that if Re fails to be met, infinitely many followers get confirmed.
(The {T(x)} form a strong array.) We then argue that if we do not get to
win a confirmed follower, then B is recursive contrary to hypothesis.

We shall now give the formal details of the argument although the
reader—especially the one familiar with [Dol]—may prefer to supply
these details for himself.

We shall say Re requires attention at stage s + 1 if e is least with one
of the following options holding.

(3.3) Re has a follower x which is confirmed and g(s) < x.
(3.4) Not (3.3), and there is a number x e ω(<?) such that
(a) l(e, s) > x, and
(b) x > max{u(Tes(Qs; z)); z < M(e,s)}.

CONSTRUCTION

Stage 0. All T(x) for x e ω are undefined. We set M(e, 0) = 0 for all

Stage 5 + 1 . Step 1. For each pair x and y, if x is a follower of i?y

and x is not already confirmed, then if
(i) T(x) c A,, and

(ii) l(y,5) > x,
declare x as confirmed.

Step 2. Find the least e (if any) such that Re requires attention.
Cancel all target regions and followers of Rj for j > e. Adopt the
appropriate case below.
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Case 1 (3.3) holds. Find the least such x. Set Qs+1 = Qs U {x}.

Cancel all followers y oί Re with j> Φ x.

Case 2 (3.4) holds. Appoint x as a follower of Re. Set M(A:, s 4- 1) =

s 4- 1 for A: > e. Now set Γ(x) = [z\M(e,s) < z < M(e,s 4- 1)}. Note

that Γ(JC) =* 0 .

End of Construction.

Verification. Evidently Q < τ B since numbers enter Qs+1 — Qs only

when smaller ones enter Bs+1 - Bs: to decide if x e g find the least stage

s where V/ > s(g(t) > x) then x e β iff JC e g J + 1 .

As in [Dol] the argument is finite injury. Let ^ 0 be the least stage

such that V/ < e Vs > s0 (Rj does not receive attention at stage s). Since

M(j\s) Φ M(j,s + 1) only when some Ri for i <j receives attention,

this means that V/ < e \/s > s0 (M(j\ s) = M(j\ s0)). Let M = M(e, s0)

= m&x{M(j,so):j < e). By our cancellation procedure—when the Rj

receive attention—we may suppose Re has no follower at stage s0.

LEMMA. // (3.3) holds for some follower x of Re at some stage sλ > s0

then

(i) Re is met at stage sx 4- 1,

(ii) Vr > sλ (Re does not require attention at stage t),

Proof. Let sx be the least stage > s0 where (3.3) pertains to any x

following Re. Now x was appointed at some stage s2 4- 1 with s0 + 1 <

s2 4- 1 < sλ (by (3.4)). By definition, we know that

(a) 1(^,^2) > x, and

(b) x > mzx{u(TeJQS2;z)):z < M(e,s2)}.

When x was appointed, we reset M(k,s2 4- 1) = s2 4- 1 for all k > e,

and we cancelled all followers of Rj for j > e. By choice of s0 and the

fact that the M(k, s) are clearly monotone, it follows that

(3.5) β,J*2 + l] = β,a[*2 + l]

The important point here is that after stage s2 4- 1 followers that are

appointed must exceed s2 4- 1. Also since sx is the least stage at which

(3.3) pertains we also know that no numbers < s2 4- 1 have entered

QSi - QS2 for the sake of Re.

Now since (3.3) pertains to x it follows that x must be confirmed,

and so there is a stage / with s2 4- 1 < t < sλ with

(i)l(έ?,ί) > x, and

(ii) T(x) c Ar
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Now by (3.5) and the facts that l(e, s2) > x and l(e, t) > x, we see

However, we specifically chose T(x) as

T(x) = {z:M(e,s2) < z <s2 + 1}.

Thus as We and Ve are disjoint and T(x) c A, it must be that

(3.7) For all z e We if z < u(Φet(Wet; x)) and z $ JFβ>,
then z < M(e, s2).

The points to note here are that since l(e, t) > x we must have that

A,[u] = W ς > ] U Fe>,[M] where u = M ( Φ e j / ( ^ / , x ) ) ,

and furthermore T(x) c >4Γ

Now by choice of x in (3.4) we know that

(3.8) x>u(TejQSi;y)) for all y < M(e,s2).

By (3.5) we know that this means that

(3.9) x > u(TejQSι; y)) for all y < M(e,s2).

When (3.3) pertains and so Re receives attention via x at stage sΎ + 1
we not only add x to Q but also cancel all other followers of Re. By
choice of s0 and sx this means that QSι[x - 1] = β[x - 1]. By (3.5) and
(3.9) this ensures that

(3.10) For all y < M(e9s2), TejQS2;y) = T.jQ^ y) = Tβ(Q;y).

Now (3.3) pertains to x at stage sv There are two cases.

Case 1. 3q(t < q < sλ&l(e,q) < x). In this case the only possibility
is that some number z < M(e, s2) has entered WeSχ - Wer (Again we use
the disjointness of We and Ve here.) But now (3.10) ensures that

Case 2. \fq(t < q < sx-+ l{e,q) > x). By (3.6) and (3.7) we know
that

0 = We

hence we create a disagreement



306 R. G. DOWNEY

This disagreement will remain unless

Φ We e,S2; x))}
for some (least) s3 > sv But if this occurs, by (3.7) we know
We S3[M(e,s2)]Φ We Si[M(e,s2)] and hence for some z < M(e, s2) we
know

Te(Q;z)ΦWe(z).

It follows that Re is met. Also since l(e,s) < M(e,s2 + 1) for all
s > sλ + 1 it follows that Re will never again receive attention. This
ensures that M(e,sλ) = M(e,s) for all s > sλ as well. Our result now
follows.

Conclusion of the proof of (3.2). Thus it suffices to show that (3.3)
pertains. Suppose (3.3) does not pertain after stage s0, and Re receives
attention infinitely often or fails to be met. Then as l(e,s) -> oo (3.4)
must pertain at some stage sλ > s0. At this stage we appoint a pair
(Γ(x1),x1) consisting of a follower and its target region. In like fashion,
(3.4) must again pertain to eventually get an infinite increasing list

(τM>Xi)> {T(x2),x2)9...

with xx < x2 <

Evidently [T(xi)}i^ω is a strong array. Hence as A is hypersimple
for infinitely many xi we have T(xt) c A. As l(e, s) -» oo, each such x.
must eventually get confirmed. We show now that g(ω) = B is a recursive
set, contrary to hypothesis. Let z e ω. Let s = s(z) be the least stage with
s > s0 and such that there is a confirmed follower x > z of Re at stage s.
Then z e B iff z e Bs since (3.3) does not pertain. The result now
follows. D

It therefore follows that possessing a fairly sparse lattice of supersets
(e.g. a maximal set) imposes strong degree-theoretic restrictions on the
possible degrees of subsets. Further results along these lines were recently
obtained by Mike Stob and the author in [DS2]. These results concerned
splittings of maximal sets. In [DS2] it is shown—for example—that if a is
any nonzero r.e. degree there exist r.e. degrees b and c with 0 < b < a and
0 < c < a such that

(i) there exist r.e. disjoint sets C and D with deg(C) = c and C U D
maximal, and

(ii) there do not exist disjoint r.e. sets B and E with deg(2?) = b and
B U E maximal (or r-maximal or Λ/z-simple).
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We remark that (ii) and several extensions are established by techniques
along the lines of those of (3.2). We also remark that the degrees of halves
of splittings of maximal sets are particularly interesting, since in [DS2] it
is also shown that the r.e. nonrecursive sets A such that there is an r.e. B
with B Φ 0 with A Π B = 0 and A U B maximal, form an orbit in the
automorphism group of the lattice of r.e. sets. This is the first known
elementarily definable orbit (containing members in all high degrees)
satisfying degree theoretic properties like those in (i) and (ii) above.

Before we continue we would like to give one (final!) construction of
a non-USP set that we feel provides an interesting counterpoint to (3.2)
and the [Dol] construction, both of which seem to work because large
"blocks" of elements are put into A. Let B be any nonrecursive r.e. set.
Define A as follows:

Stage 0. Let /(ω) = B be a 1-1 enumeration of B. Let Ao = 0 and
bi0 = / for all i e ω.

Stages + 1. Set As+ι = As U {bf(s)s} and set

b =(bi,s foτ i<f(s)
* > + 1 \bi+f(s)+s+1, otherwise.

Here the reader should think of the bi s as markers placed on some,
but not all, members of As. Now define A = USAS. Then via exactly the
same argument as [Dol], A is non-USP.

It is interesting to speculate on other properties of A constructed as
above. Ambos-Spies [AS2] has shown that for a particular choice of B it is
possible to make A complete but to also have the property that if
Ax U A 2 = A is an r.e. splitting of A then one of Ax or A2 is low. In
particular the author would like to know if it is possible to choose B so
that A is speedable (cf. [So3]) but have the Ambos-Spies property that if
A1 U A 2 = A is an r.e. splitting of A then one of A1oτ A2 is low. (It is not
known if all speedable r.e. sets can be split into a pair of speedable
subsets. This is an apparently difficult open question due to Jeff Remmel.)

Returning now to the possible lattice properties of non-USP r.e. sets,
we might be tempted to conjecture that perhaps simple sets might be
non-USP or alternatively suggest that USP might be invariant under
automorphisms of the lattice of r.e. sets. To dispose of these possibilities,
we prove Theorem 3.11 below.

THEOREM 3.11. There exist low promptly simple SUSP r.e. sets.
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Proof, The proof of this result is rather more difficult than (3.2) and it
relies on a tree of strategies argument. We shall build A = U s As in stages
to satisfy card(ω — A) = oo and

Pe:card(We) = oo implies 3y,s(y e We,s+1 - W^Scy e As)

He:3^s(ΦefS(As;e)i) implies Φe(A;e)i

Ne:lί Φe(A) = We Θ Ve and Te(We Θ Fe) = A

then for some r.e. sets Qe, Rewe have

QeURe = A,Qe = τ We and iϊ, s τ Ve.

(Here we work over 4-tuρles (Φe, Te9 We, Ve) as in (3.2).) Thus Pe ensures
that A is promptly simple via the identity function, and He is the
standard lowness requirement as in [So2]. Thus for the He we define a
restraint

0 otherwise
and let R(e,s) = max{r(j\s):j < e}. Now, given that we argue the
positive restraints are finitary, and if we only add y to As+ι — As for the
sake of Py for j > e if y > R(e, s), the standard argument will show A is
low as in Soare [So2]. Hence we will not discuss these further, but refer
the reader to [So2] if he wishes further amplification. We also will not
consciously make card(ω — A) = oo but simply remark that this is a
simple enough matter to arrange (and will actually come out of the
construction).

The crucial dynamics of the construction involve the interaction of
the Ne requirements and the satisfaction of the Pe. We first briefly
attempt to describe our method of satisfaction of the Ne9 at least for a
single Ne.

Define the "A controllable" length of agreement as

l(e,s) = max{x : Vy < x[Te^(W^ Θ Vey, y) = As(y)

Our strategy was arrived at by a series of approximations, and it
would perhaps be useful to use this approach to describe our strategy. The
crudest attempt to satisfy the Ne is to define a recursive series of markers
x(e,0), x(e, 1),... and for x = x(ey i) to simply wait until the first stage
s occurs where l(e, s) > x. We then set s(x) = s and try to ensure that
(3.12) Vf > s(l(e, t) > l(e, s) implies

{Wjs(x)] = Wβ[s(x)] i« QeM = Qelx]))
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Of course we must treat Re and Ve similarly. Assuming that x(ej)
-> oo, (3.12) will clearly ensure that We = τ Qe.

We attempt to implement this strategy by monitoring the progress of
Wβtt[s(x)] and F^,[£(*)] at e-expansionary stages; that is, stages where
l(e, s) > ml(e, s) where ml(e, s) = max{l(e, t): t < s). The idea is then
that if Wet[s(x)] Φ Weq[s(x)]—where q = max{ί' < t& l(e, t') >
ml(e,t')}—hopefully we have arranged matters so that At[x] Φ A^x\
Then we can ensure <2^,[*] Φ Qe q[x] by enumerating into Qe some
element y < x with y e At - Aq.

The reader should note that even in this crude approximation, the fact
that At[x] Φ Aq[x] is really not enough. Perhaps y < x is the unique
element to enter At — Aq and y = x(e, j) for some x{e,j) < x. Now
since (3.12) is an "iff condition for it to be legal for us to add y into Qe,
it must also be the case that Wet[s(y)] Φ Weq[s(y)].

It is also important to note here that the dynamics of the construction
force us to proceed by first adding elements to A, then waiting until the
next e-expansionary stage to decide which sets Qe or Re to put these new
elements into. (In modern terminology this is essentially "closing a gap".)
The reason for this order is that we must wait to see which of We or Ve

changes to decide which set to place the appropriate elements into. (It
might seem feasible to alternatively wait till the end of a gap and see
which of W€ or Ve changes, and then perhaps add to A some further
elements as traces to the Ve and We change. This strategy seems to fail
since (for example) R(e, s) might change in intervening stages.)

Now even at the local level, if our strategy has any hope of working,
we must try to ensure that whenever WJ.s'( c)] has a chance of changing,
we need to also ensure that A[x] has a chance of changing also. This is
primarily achieved by two devices. First we use a sort of "waiting and
cancellation" procedure in some ways along the lines of a "contiguous
degree" construction (cf. Stob [St]). As in the confirmation procedure of
(3.2), this waiting and cancellation procedure attempts to clear A of
potentially injurious numbers z with z < u(Φes(As; g)) for all g < s(x)
and thus tries to force WJs(x)] to be able to change only if Qe[x]
changes. This type of device has been used in several other settings and its
origins may be traced back to Ladner [Ld2]. (In our construction this is
the reason for the b(a, s) function.) The second device we use is to replace
the single x(e, i) marker by a finite block {x(e,i91),...,x(e,i, n)} of
markers. Roughly speaking this is forced upon us because of the interac-
tions of We or Ve changes. The point is that the waiting-cancellation
procedure ensures us to some We or Ve change, but if both sets change,
perhaps We changes through s(x) and Ve changes through s(y), but y is
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very much smaller than x. This will be good from Re

9s point of view
(because it will be that A[y] changes) but is bad from QJs point of view
since we cannot use y (or y + 1, etc.) to add to Qe if We does not change
through s(y). The use of a block of markers essentially ensures that there
will be some appropriate element in At - Aq—"one from block x"—that
we shall be able to add to Qe. It is essentially possible to preset this block
in advance because we will know precisely the maximum number of
"injuries" any block can suffer in the same way as Post's simple set
construction.

The final problems we must overcome are due to our lack of knowl-
edge of which l(e,s) -> oo and thus how to combine strategies for the
various Ne. This problem is much the same as, say, a minimal pair
construction. We choose to overcome this problem using a tree of strate-
gies argument. We use T = 2 < ω to encode certain "guesses" as to the
behaviour of the various Nj for j < e and e e ω. Hence in particular in
the place of Qe and Re and x(e,i,n) we shall use certain "guessed"
versions which we denote by Qσ, Rσ and jc(σ, /, n(σ)) where σ has length
e + 1. It suffices to argue for some σ the "σ-strategy" is successful. For
more on tree arguments we refer the reader to [So3] and [So4, Chapter
XIV]. The conscious use of trees was introduced by Lachlan [La3].

We now give the formal details of the argument. We refer to σ £ 2 < ω

as guesses. Let lh(σ) denote the length of σ. Let σ c T denote σ is an
initial segment of T. We define the usual lexicographic ordering < L via
σ < L T iff σ c T or 3γ(γ Λ0 c σ & γ Λ l c T). Here we are denoting the
concatenation of σ and T by σ Λτ.

As we remarked earlier, for the waiting-cancellation strategy, it will be
convenient in the construction to make use of a marker Z?(σ, s). We refer
to this as the σ-boundary. Roughly speaking, the σ-boundary (for lh(σ) =
e + 1) indicates the amount of A that Ne believes is "covered" as far as
guess σ is concerned. Finally in the construction we shall use the word
"large fresh number". This is taken to mean a number to exceed all
numbers previously considered in the construction; and saves on notation.

We define a σ-stage by induction on lh(σ):
(i) Every stage s is an 0 -stage.

(ii) If s is a τ-stage and lh(τ) = e then if l(e, s) > max{l(e, t): t is a
τ-stage and t < s) and l(e, s) > b(τ Λ0, s) then s is a τ Λ0-stage.

Otherwise s is a r Λl-stage.
Let σs denote the unique path of length s such that s is a σ5-stage. We

shall say Pe requires attention at stage s + 1 if one of the following options
holds.
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(3.13) Pe has a follower x> R (e 9s) such that

(3.14) Pe has no follower x with x > R(e, s) such that

x has guess σs, and furthermore Pe has not been

declared satisfied.

The reader—especially the one already familiar with tree arguments
—should note that (3.13) means that Pe can receive attention via a
follower x with guess σ at other than σ-stages. This seems crucial if we are
needing to achieve prompt simplicity rather than just simplicity.

CONSTRUCTION.

Stage 0. Set Ao = Qσfi = Rσ>0 = 0 for all σ e 2 < ω . For all such σ,
set ft(σ, 0) = 0 and declare x(σ, i, j) and s(σ, i) as undefined for all / and

j
Stages + 1.
Step 1 (Cancellation). Cancel all followers with guess r, all x(τ, /, j)

and all J ( T , / ) for all τ £Lσs. For all such τ set i ? T 5 + 1 = 0 and

2 (Trace assignment). For each T Λ 0 C σ5, find the least / (if any)
with x(τ Λ0, i) defined but s(τ Λ0, /) not yet defined. Define j(τ Λ0, /) = z
where z = max{u(Γes(Wes Φ Ve>s; p)) :p < l(e, s)} for e = lh(τ).

Step 3 (Marker appointment). For each r Λ0 c σs define a new block
of markers (in order of T Λ 0 ) as follows.

Find the least i with block x(τΛ0,/) currently undefined. Find
n = 3s 4- 4 large fresh numbers j>1?..., yn and appoint the current marker
block as

x ( τ Λ 0 , / ) = {x(τA0,i,l),...,x(τA0J,n)}

with x(τ Λ0, /, j) = yΓ (The number 3,s + 4 is not critical here, it is simply
one we know will be large enough to ensure the block is not used up.) We
remark that we may in the next step add two further numbers (followers
of some Pj) to each such x(τ Λ0, i) we have defined in this step. This will
be done for technical convenience only.

REMARK. We remark that we should possibly use a notation
x(τ Λ0, i)(s) to indicate x(τ Λ0, i) at stage s, but we feel that this will be
clear from context, since once x(τ Λ0, /') is defined it remains fixed or else
becomes undefined later. Furthermore, after some finite stage we will soon
see that x(τ Λ0, /) remains fixed for "correct" r Λ0.
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Step 4. Find the least e such that Pe requires attention. Adopt the
appropriate case below.

Case 1 (Follower appointment). (3.14) holds; find a large fresh number
y and appoint y as a follower of Pe with guess σ where σ c σs and
lh(σ) = e + 1. Cancel all followers with guesses γ D σ and γ Φ σ. Now
for each r Λ0 c σ5 find the set JC(T Λ 0 , Ϊ) defined in Step 4, and enumerate
y and 7 + 1 into x(τ Λ0, /) (so that now x(τ Λ0, /) has 35 + 6 elements).
Go to Step 5.

Case 2 (Satisfaction). (3.13) holds. Enumerate x9 x + 1 and y into
yl5 + 1 — ̂ 45. Let x l 9 . . ., xm list those marker blocks currently defined and
satisfying Vz e χt(z > x + 1). (Remark: this will consist of those blocks
currently defined and appointed after the stage x was appointed.) For
each such block find the least two elements gi9 hi with

g i? ht e JC - ^ s (These will not be followers.)

Also enumerate {gf., Λ,.:l < 1 < m) into ^4J+1 - As. Cancel all (re-
maining) followers of Pj for j > e. Declare Pe as satisfied (forever).

REMARK. The reader should note that when some follower x of Pe is
enumerated into A we perhaps cancel some follower z > x. Now perhaps
z e x(y Λ0, j) for several y. It really will not matter whether or not we
regard z as still a member of x(y Λ0,7) after it is cancelled. The crucial
fact will be that z is no longer a follower once it is cancelled. For technical
reasons if jc(γ Λ0, j) is defined it is easiest to regard z as still a member of
χ("Y Λ0> j) but ask that z never be added to A unless z is added to A for
the sake of some Pk for k < e. A counting argument ensures that this is
possible.

Step 5 (Defining boundaries). Find a large fresh number z and define
b(τA0, s) = z for each τ Λ 0 c σs.

Step 6 (Recovery). In this step we attempt to build our splitting of A.
Thus for each σ = τ Λ 0 c σs perform the following recovery step: let
ls(σ, s) denote last σ-stage < s, namely

ls(σ, s) = max{0, t: t is a σ-stage and t < s}.

Let t = ls(σ, s) and let e = lh(τ). Now if x(τ Λ0, /) is currently defined
let mx(τΛ0,/) denote the largest member of x(τ Λ 0, /). Now find the
least i and j (if any) such that s(τA0,i) and s(τA0, j) were defined at
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stage t and

(i) As[mx(τΛ0,i)] Φ At[mx(rΛ0,ij\ and

WeJs(τA0,i)} Φ We>t[s(rA0,i)}, and

(ii) As[mx(τA0,j)]φAl[mx(τΛ0,j)] and

K,s[s(τA0,j)]ΦVjs(rA0j)},

There are several cases to consider:

Case 1. Neither / nor j exists. In this case set Qσ>s+1 = Qσ s U (As —

, , ,

Case 2. i exists but j does not. As in Case 1.

Case 3. j exists but i does not. In this case set Rσs+ι = Rσs U (As

- ( β σ s U i? σ J ) and Qσs+1 = β σ 5 . For the remaining cases we have that

/ and j both exist.

Case 4. i = j . In this case let yλ and y2 be the least two numbers to

enter As — Ar

We claim two such numbers exist, and in fact y2 = yx + 1 and yγ is a

follower, this being checked in the verification. We similarly claim that

not only are both yx and y2 < mx(τA0,i), but in fact yx and y2 are

members of x(τ A0, /).

Assuming this claim, we shall set Rσ s+1 = Rσ s U {yλ) and Qσ J + 1 =
βσf, U ( ^ , - ( β σ > J U Λσ,, + 1 )).

Case 5. i < j . In this case we claim that

some number in block x(τ Λ 0, j) entered As — At.

Let z be the least such number. We set Rσs+1 = RσSU {z} and
Qa,s + l = Qa,s U (A, - (QatS U Λσ >, + 1 )) .

Cα^e 6. 7 < Ϊ. As in Case 5 with the roles of Q and R reversed,

noting that some z in block x(τ Λ0, i) entered As — Ar

E N D OF CONSTRUCTION.

Verification. We first verify the Pe and He as these are fairly standard

arguments.

Let β denote the leftmost path. That is, 0 c β and γ C j δ implies

γ Λ 0 C j S i f 3 o o Λ ' ( ^ i s a γ A0-stage) otherwise γ A l c β. Now by construc-

tion (3.13) pertains to Pe at most once. Hence He will be met. By [So2] we

now argue that Pe is met. Let o <z β with lh(σ) = e 4- 1 and let s0 be a

stage good for σ, namely

(ϊ)Vs > so(σ <Lσs),

(ii) V/ < e \fs > sQ (s is a σ-stage implies P- does not receive

attention at stage s),
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(iii) V/ < e Vs > s0 ((3.13) does not pertain to Pj at stage s),
(iv) Vs > s0 Vj < e (r(j, s) = r{j)\
Without loss, we might as well suppose Pe has no followers. Now the

next follower x to be appointed to Pe is clearly uncancellable. Thus at the
least stage s 4- 1 > s0 when some y > x occurs in Wes+1 — Wes, we will
meet Pe.

The remainder of the verification is devoted to checking that our
apparatus manages to meet the Ne. Thus again let σ = τ A 0 c j 8 with
lh(σ) = e 4- 1 and let sQ be good for σ as above. First observe that by our
cancellation procedure we can suppose that x(σ,0) is undefined at stage
sQ. NOW by choice of sQ and σ it is clear that V/ V* > sQ \/s > t (x(σ, i)
defined at stage t implies x(σ, i) defined and unchanged at stage s).
Furthermore the same holds for s(σ, i). Moreover as l(e, s) -> oo we see
that for all / e ω, x(σj) and ^(σ, /) eventually become (permanently)
defined.

Suppose x(σ, i) is defined at stage t > s0. Then x(σ, i) is now fixed
and has at least 3/4-4 elements. These elements can only be added to A
because of the action of a Pj requirement, and by construction we only
add these elements to A (< 3 at a time) when some follower < mx{σj)
enters A. By the way we appoint followers, all followers appointed after
stage t must exceed mx(σ, /). A counting argument ensures that x(σ, i) <t
A (and so there are always markers in x(σ, ί) not yet in As at any s > s0).
The remainder of the proof is given by a sequence of lemmas.

(3.15) LEMMA. Let q and t be σ-stages with q > t > s0 and such that
s(σ, i) is defined at stage t 4- 1. Then At[mx(σ, i)] = Aq[mx(σ, /)] implies
(We,t

 Θ Vβ9t)[s(σ9i)] = (Wβfq Θ g W α , i ) ] .

REMARK. Before we begin the formal proof of this lemma, the reader
should note that the "guiding principle" in the verification of (3.15) and
later lemmata is that although there are lots of numbers (such as markers)
which can apparently injure computations due to their addition to A, they
are only added to A in response to—and at the same stage as—(smaller)
followers being added to A. Markers never initiate such "injury"; only
followers may do so.

Proof (of 3.15). Let t and q satisfy the hypotheses of the lemma.
Then it follows that there exist σ-stages tx and t2 with s0 < tλ + 1 < t2 < t
such mx(σ, i) was appointed at stage ^ 4 - 1 and s(σ, i) was appointed at
t2 + 1. Now at stage tx 4- 1 we set b(σ, tx + 1) to be large and fresh and
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in particular b(o, tx + 1) > mx(σ, i). (b(σ, tx + 1) is appointed in Step 5
after x(σ, i) has been appointed and completely defined.) By definition of
σ-stage t2 will be the least σ-stage with l(e, s) > b(σ, tx + 1). By choice of
s0 we know that any follower appointed at stages υ with tx + 1 < v < t2

must have guess τ where σ < L τ but σ ί r and τ ί o . Also, any
follower appointed at stage tx + 1 is in x(o9i) and so is < m(σ,/). By
cancellation in Step 1, this means that there are no followers z with

(3.16) mx(σ9i) < z < P where P = max^Φe>h(Ah\ y ) ) : y < s(σ,i)}.

Suppose that (3.15) fails. First we claim that there must be some
follower z with

(3.17) mx(σj) < z < N where N = max{u(Φe t(At; y)):y < s(σj)},

and such that z enters Aq — Ar

After all, N is also a use function so if Aq[N] = At[N] then for all
y < s(σ, i) we see Φet(At; y) = Φe,q(Aq; y) = {We%t θ V6yt){y). However,
if we suppose Aq[N] Φ At[N] by construction some follower < N must
enter Aq — Ar

We shall now argue that no such z can exist. Since z is uncancelled at
stage t and z < N9 z must have guess γ D σ and must have been
appointed at stage t3 4- 1 with t3 a σ-stage and by (3.16), t2< t3 < t. We
claim that since z still exists at stage t, it must be the case that

(3.18) Ah[mx(α9i)] = A,[mx(σ9i)].

If (3.18) fails then some follower < mx(σ,i) enters A after stage t3

but before stage t. Since any such follower must have higher priority than
z, its entry into A would cancel z (as a follower). But then (3.17) would
fail since z e Aq- Ar Hence (3.18) holds. Now since t3 was a σ-stage, we
know

(3.19) z > M where Af = max|w(Φe,/3(Λ3; >;)):>; ^ s(σ,/)j.

Again by the reasoning used to establish (3.16) there are no followers
g with mx(σ, i) < g < M. Now by (3.18) this means that

(3.20) Ah[M]=At[M].

This, in turn, implies that M = N (computations are unchanged) and
now we obtain the desired contradiction: (3.20) and (3.17) say that
z < N = M yet (3.18) says z > M. The lemma now follows. D
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(3.21) LEMMA. Let t and q be σstages with q > t > s0 and s(σ,i)
defined at stage t + 1. Then (We>t Θ Vet)[s(oJ)] = (WeA θ Veq)[s{oJ))
implies At[mx(σ, i)] = Aq[mx(σ, /)].

Proof. Suppose the lemma fails. Let t, q be as above. We know that if
At[mx(σ, i)] Φ Aq[mx(σ, i)] some (least) follower z < mx(σ, i) enters Aq

— Ar Let tλ < t be the σ-stage where s(a9i) was appointed at stage
^ + 1.

Now there exist σ-stages t2 and t3 with s0 < t2 < t3 < tx such that z
was appointed at stage t2 + 1 and t2 = ls(σ, t3). By the same reasoning as
(3.16), we know there is no follower g with

(3.22) z < g<P where P = max{ιι(Φe>,3(i4,3; y)):y < D)

where D = max{iι(Γβ>/3(»;fί3 Φ Ve^q)):q< z).

(3.22) follows because we reset b(σ, t2 4- 1) to exceed z. Now since z
is uncancelled at stage t, we know that no follower less than z can have
entered A between stages t2 and t, since the entry of such followers would
automatically cancel z. It follows that

(3.23) A,[P]=Ah[P].

But now (3.23) and the definition of P in (3.22) mean that

(3.24) (We, θ Ve>l)[D] = {We<h Φ VβJ[D].

Now as D < s(σ, i) since t3 < tv we see that the hypotheses of the
lemma mean

(3.25) (WβiheVβJ[D] = (JF# i ϊθ VeJ[D].

This means that the ^-computations involved in D in (3.22) are
unchanged at stage q, and in particular

(3.26) T€9h{W€th θ Vβth; z) = Te,q{We,q φ Ve^ z) = 0.

Therefore z £ Aq. This specifically contradicts the assumption that
z e Aq — Av and so establishes the lemma. D

If we put (3.21) and (3.15) together, summarizing, we see

(3.27) LEMMA. Let t and q be o-stages with so< t < q and s{oj)
defined at stage t. Then

(i) (We,q θ VttqM°,i)) * (K,, ® KιtM°,i)] iff Aq[mx(σ,i)] Φ
At[mx(σ, i)].
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(ii) If AqΦ Av the least numbers to enter Aq — At are y and y + 1

where y is a follower and for some least] < /, y + 1 = mx(σ, j).

(iii) Suppose AqΦ At and x(σ,i) is defined at stage t. Suppose further

that for j given by (ii) we have j < i. Then there exist at least two numbers

gi> hiΦy,y + 1 with gi9 ht e x(σ, i) and gi9 ht e Aq - Ar

(iv) The construction does not break down at Step 6 and Q U R = *A.

Proof, (i) simply combines (3.21) and (3.15). (ii) is an easy induction,

(iii) is exactly what the mechanics of the construction were set up to

ensure, and follows immediately by what happens in Step 4, Case 2 of the

construction. Finally (i) implies (iv). D

(3.28) LEMMA. We s τ Qσ and Ve^τ Rσ.

Proof. We verify that We = τ Qσ. The fact that Ve = τRσ is proved

mutatis mutandis. First Qe < τ We. To determine Qe[z] for z G ω , find the

least σ-stage t > s0 with s(σ, z) defined at stage t and Wet[s(o,z)\ =

We[s(σ, z)]. Direct analysis of Step 6 and (3.27)(i) imply that

Qσ,ί+ι[™x(σ>z)]= Qσ[nx(°>z)] a n d s o Qo,tΛA=Qo\A since z<
mx(σ, z).

The reverse direction is more difficult. We claim similarly that if t is

the least σ-stage with t > s0 and Qσ t+1[mx(σy z)] = Qσ[mx(σ, z)] then

We9t[s(σ9z)]=We[s(<>>z)]
Suppose not. Let q> t be the least σ-stage with Wet[s(σ,z)]Φ

Weq[s{σ,z)\ and let tx = ls(σ,^). By (3.27)(i) we see that Aq[mx(σ,z)]

Φ Ah[mx(σ, z)]. There exists some least g < z such that

lAh[mx(σ9g)] ΦAq[mx(σ9g)] and

\wJs(o,g)}ΦWe[s(°,g)].

By construction, Step 6, and (3.27)(iii) we know that for at least one

y e x(σ,g), we have y G Qσ,q+i " Qσ,r

 B u t then QσJ+1[mx(σ,z)] Φ

Qσ[mx(σ, z)] after all. (This is the whole point of the x(σ, g) in the

construction.) D

REMARK. We remark that A constructed as above has contiguous r.e.

degree (i.e. consists of a single r.e. w#-degree). This follows by (3.27)(i).

Not every r.e. set of contiguous degree is USP. Take for example a

hypersimple r.e. set of continguous degree. However, every r.e. contiguous

degree does contain an SUSP r.e. set. This is proved in [AF] where
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Ambos-Spies and Fejer actually show that an r.e. cylinder of contiguous

degree is SUSP. We do not know if every contiguous degree contains a

simple SUSP r.e. set.

(3.30) COROLLARY. (S)USP is not invariant under automorphisms of

the lattice of r.e. sets.

Proof. It is well known that there are promptly simple hypersimple

r.e. low sets. For example, by [AJSS], the deficiency set of a (low)

promptly simple r.e. set if (low and) promptly simple. By Dekker [De], the

deficiency set of an r.e. nonrecursive set is hypersimple.

Now let B be a hypersimple low promply simple r.e. set. By Theorem

(3.2) B is non-USP. Let A be an SUSP promptly simple low r.e. set given

by (3.11). By Maass [Ma] there is an automorphism of the lattice of r.e.

sets taking A to B. D

We remark that Martin's methods (cf. [Sol]) of constructing automor-

phisms appear sufficient to prove the above result directly if we do not

wish to use Maass's very powerful result [Ma] and hence to use the full

automorphism machinery.

We finally remark that in [Do2], [DS1] and [DW], stronger "nonsplit-

ting" properties of r.e. sets were examined. For example in [DW], Downey

and Welch construct r.e. sets A and B with 0 < TB < TA such that if

Ax LJ A2 = A is an r.e. splitting of A, then Ax < τ B implies Ax = τ 0. A

is said to have the antisplitting property. It is unclear if (for example)

maximal sets have the antisplitting property and this would seem an

interesting line of investigation to pursue.
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