# UNIQUENESS OF STRONG SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS IN THE PLANE WITH DETERMINISTIC BOUNDARY PROCESS 

J. Yен


#### Abstract

Under the assumption of the existence of a weak solution and the pathwise uniqueness of solutions, existence and uniqueness of a strong solution to the stochastic differential system of non Markovian type in the plane


$$
\begin{aligned}
d X_{z} & =\alpha(z, X) d B_{z}+\beta(z, X) d z \quad \text { for } z \in \mathbf{R}_{+}^{2} \\
\partial X & =x
\end{aligned}
$$

is obtained where $x$ is a continuous real valued function on $\partial \mathbf{R}_{+}^{2}$.

1. Introduction. Consider a stochastic differential equation of non-Markovian type in the plane

$$
\begin{equation*}
d X_{z}=\alpha(z, X) d B_{z}+\beta(z, X) d z \tag{1.0}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
X_{s, t}-X_{0, t}-X_{s, 0}+X_{0,0}=\int_{R_{z}} \alpha(\zeta, X) d B_{\zeta}+\int_{R_{z}} \beta(\zeta, X) d \zeta \tag{1.1}
\end{equation*}
$$

for $z=(s, t) \in \mathbf{R}_{+}^{2}$ and $R_{z}=[0, s] \times[0, t]$ where $B$ is an $\left\{\mathfrak{F}_{z}\right\}$-Brownian motion on an equipped probability space ( $\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}$ ) with $\partial B=0, \partial B$ being the restriction of $B$ to the boundary $\partial \mathbf{R}_{+}^{2}$ of $\mathbf{R}_{+}^{2}$, and consider the boundary condition

$$
\begin{equation*}
\partial X=x \tag{1.2}
\end{equation*}
$$

where $x$ is a fixed element in the space $\partial W$ of all continuos real valued functions on $\partial \mathbf{R}_{+}^{2}$. Let $W$ be the space of all continuous real valued functions on $\mathbf{R}_{+}^{2}$. The coefficients $\alpha$ and $\beta$ are real valued functions on $\mathbf{R}_{+}^{2} \times W$ satisfying certain measurability conditions that imply that for each $\omega \in \Omega, \alpha(z, X(\cdot, \omega))$ and $\beta(z, X(\cdot, \omega))$ depend only on that part of the sample function $X(\cdot, \omega)$ which precedes $z$ in the sense of the partial ordering of $\mathbf{R}_{+}^{2}$. We refer to $[\mathbf{8}]$ or $[\mathbf{1 0}]$ for these measurability conditions.

In this article, by an equipped probability space we mean a complete probability measure space ( $\Omega, \mathfrak{F}, P$ ) with an increasing and right continuous family $\left\{\mathfrak{F}_{z}, z \in \mathbf{R}_{+}^{2}\right\}$ of sub- $\sigma$-fields of $\mathfrak{F}$, each containing all the null
sets in $(\Omega, \mathfrak{F}, P)$. We do not assume the conditional independence of $\mathfrak{F}_{z}^{1}=\sigma\left(\bigcup_{\nu \in \mathbf{R}_{+}} \mathfrak{F}_{s, \nu}\right)$ and $\mathfrak{F}_{z}^{2}=\sigma\left(\bigcup_{u \in \mathbf{R}_{+}} \mathfrak{F}_{u, t}\right)$ relative to $\mathfrak{F}_{z}$ for $z=(s, t)$ $\in \mathbf{R}_{z}^{2}$ since this condition is not needed for the existence of our stochastic integrals with respect to an $\left\{\mathfrak{F}_{z}\right\}$-Brownian motion.

Definition 1. By a solution of the stochastic differential equation (1.1) we mean a pair of 2-parameter stochastic processes $(X, B)$ on an equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ such that $B$ is an $\left\{\mathfrak{F}_{z}\right\}$ Brownian motion with $\partial B=0, X$ is an $\left\{\mathfrak{F}_{z}\right\}$-adapted process whose sample functions are all continuous on $\mathbf{R}_{+}^{2}$ and the stochastic integrals in (1.1) exist and satisfy (1.1) with probability 1.

Definition 2. We say that the stochastic differential equation (1.1) satisfies the pathwise uniqueness condition if whenever $(X, B)$ and $\left(X^{\prime}, B\right)$ with the same $B$ are two solutions of (1.1) on the same equipped probability space and $\partial X=\partial X^{\prime}$ then $X=X^{\prime}$.

Let $\mathfrak{B}(W)$ be the $\sigma$-field generated by the cylinder sets in $W$. With respect to the metric of uniform convergence on the compact subsets of $\mathbf{R}_{+}^{2}, W$ is a complete separable metric space and the $\sigma$-field of the Borel sets in $W$ is equal to $\mathfrak{B}(W)$. Let $m_{W}$ be the Wiener measure on ( $W, \mathfrak{B}(W)$ ) concentrated on those elements of $W$ which vanish on $\partial \mathbf{R}_{+}^{2}$. For $z \in \mathbf{R}_{+}^{2}$, let $\mathfrak{B}_{z}(W)$ be the $\sigma$-field generated by the cylinder sets $\{w \in W ; w(\zeta) \in E\}$ where $E \in \mathfrak{B}(\mathbf{R})$ and $\zeta \leq z$. We write $\mathfrak{B}_{z}(W)^{*}$ for the $\sigma$-field generated by $\mathfrak{B}_{z}(W)$ and the subsets of the null sets in ( $\left.W, \mathfrak{B}(W), m_{W}\right)$.

Definition 3. A solution ( $X, B$ ) of (1.1) on an equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ is called a strong solution of the boundary value problem (1.1) and (1.2) if there exists a transformation $F$ of $W$ into $W$ such that
$1^{\circ}$ for every $z \in \mathbf{R}_{+}^{2}, F$ is $\mathfrak{B}_{z}(W)^{*} / \mathfrak{B}_{z}(W)$ measurable,
$2^{\circ} \quad X(\cdot, \omega)=F[B(\cdot, \omega)]$ for a.e. $\omega \in \Omega$.
In [8] we showed that if the coefficients $\alpha$ and $\beta$ in (1.1) satisfy a certain Lipschitz condition then (1.1) satisfies the pathwise uniqueness condition. There we also showed that under the Lipschitz condition and an order of growth condition on $\alpha$ and $\beta$ a strong solution exists for (1.1) with a nondeterministic boundary condition. In the present paper we study the independence of the transformation $F$ in Definition 3 from the equipped probability space ( $\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}$ ). The main result is the following theorem.

Theorem. Let $x \in \partial W$ be fixed. Suppose the stochastic differential system (1.1) and (1.2) has a solution on some equipped probability space and (1.1) satisfies the pathwise uniqueness condition. Then there exists a transformation $F$ of $W$ into $W$, unique up to a null set in $\left(W, \mathfrak{B}(W), m_{W}\right)$, such that
$1^{\circ}$ for every $z \in \mathbf{R}_{+}^{2}, F$ is $\mathfrak{B}_{z}(W)^{*} / \mathfrak{B}_{z}(W)$ measurable,
$2^{\circ}$ if $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ is an equipped probability space on which there exists an $\left\{\mathfrak{F}_{z}\right\}$-Brownian motion $B$ with $\partial B=0$, then $X \equiv F[B]$ is a solution of the stochastic differential system (1.1) and (1.2) on the equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$.
$3^{\circ}$ any solution $(X, B)$ of the differential system (1.1) and (1.2) satisfies $X=F[B]$.

The proof of this theorem is given in §3. In constructing a unique strong solution we adopt Ikeda and Watanabe's approach in [7].
2. Some lemmas for the construction of a unique strong solution. In what follows we write $W_{i}, i=0,1$ and 2 for copies of $W$. Let $(X, B)$ be a solution to the stochastic differential system (1.1) and (1.2) on an equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ and let $Q$ be the probability distribution of $(X, B)$ on the measurable space $\left(W_{1} \times W_{0}, \mathfrak{B}\left(W_{1} \times W_{0}\right)\right)$ where $\mathfrak{B}\left(W_{1} \times W_{0}\right)$ is the $\sigma$-field of the Borel sets in $W_{1} \times W_{0}$ in its product topology.

Let $\pi$ be the projection of $W_{1} \times W_{0}$ onto $W_{0}$. The probability distribution on ( $W_{0}, \mathfrak{B}\left(W_{0}\right)$ ) of the transformation $\pi$ defined on the probability space $\left(W_{1} \times W_{0}, \mathfrak{B}\left(W_{1} \times W_{0}\right), Q\right)$ is then the Wiener measure $m_{W}$.

Let $Q^{(\cdot)}$ with $Q^{w_{0}}\left(A_{1}\right)$ for $\left(A_{1}, w_{0}\right) \in \mathfrak{B}\left(W_{1}\right) \times W_{0}$ be a regular conditional probability of $Q$ under $\pi$, i.e.,
(C.1) for every $w_{0} \in W_{0}, Q^{w_{0}}$ is a probability measure on $\left(W_{1}, \mathfrak{B}\left(W_{1}\right)\right)$.
(C.2) for every $A_{1} \in \mathfrak{B}\left(W_{1}\right)$, $Q^{(\cdot)}\left(A_{1}\right)$ is $\mathfrak{B}\left(W_{0}\right)$ measurable,
(C.3) for every $A_{1} \in \mathfrak{B}\left(W_{1}\right)$ and $A_{0} \in \mathfrak{B}\left(W_{0}\right)$

$$
Q\left(A_{1} \times A_{0}\right)=\int_{A_{0}} Q^{w_{0}}\left(A_{1}\right) m_{W}\left(d w_{0}\right)
$$

From these defining properties of the regular conditional probability follows that if $\mathfrak{C}_{1}=\left\{W_{1}, \phi\right\}$ and $A_{1} \in \mathfrak{B}\left(W_{1}\right)$ then

$$
\begin{align*}
& Q\left(A_{1} \times W_{0} \mid \mathfrak{C}_{1} \otimes \mathfrak{B}\left(W_{0}\right)\right)\left(w_{1}, w_{0}\right)=Q^{w_{0}}\left(A_{1}\right)  \tag{2.0}\\
& \quad \text { for all } w_{1} \in W_{1} \text { for a.e. } w_{0} \text { in }\left(W_{0}, \mathfrak{B}\left(W_{0}\right), m_{W}\right) .
\end{align*}
$$

The existence of a regular conditional probability $Q^{(\cdot)}$ is ensured by the fact that both the domain $W_{1} \times W_{0}$ and the image space $W_{0}$ of the transformation $\pi$ are complete separable metric spaces (see Parthasarathy [4]). The following lemma is an extension of Neveu's proof in [3] for a lemma by Yamada and Watanabe [7].

Lemma 1. For $z=(s, t) \in \mathbf{R}_{+}^{2}$, let

$$
\begin{aligned}
& \mathfrak{B}_{z}^{0}(W)=\mathfrak{B}_{z}(W), \\
& \mathfrak{B}_{z}^{1}(W)=\sigma\{w(u, v), u \in[0, s], v \in[0, \infty), w \in W\}, \\
& \mathfrak{B}_{z}^{2}(W)=\sigma\{w(u, v), u \in[0, \infty), v \in[0, t], w \in W\}, \\
& \mathfrak{B}_{z}^{3}(W)=\sigma\{w(u, v), u \in[0, s] \text { or } v \in[0, t], w \in W\} .
\end{aligned}
$$

Then for every $A_{1} \in \mathfrak{B}_{z}^{j}\left(W_{1}\right), Q^{(\cdot)}\left(A_{1}\right)$ is $\mathfrak{B}_{z}^{j}\left(W_{0}\right)^{*}$ measurable for $j=0$, 1,2 or 3.

Proof. Let

$$
\begin{aligned}
& \mathfrak{B}_{z}^{4}(W)=\sigma\{w(u, v)-w(0, v)-w(u, t)+w(0, t), \\
& u<s, t<v, w \in W\}, \\
& \mathfrak{B}_{z}^{5}(W)=\sigma\{w(u, v)-w(s, v)-w(u, 0)+w(s, 0), \\
& s<u, v<t, w \in W\}, \\
& \mathfrak{B}_{z}^{6}(W)=\sigma\{w(u, v)-w(s, v)-w(u, t)+w(s, t), \\
& s<u,<v, w \in W\} .
\end{aligned}
$$

Consider the case where $A_{1} \in \mathfrak{B}_{z}^{3}\left(W_{1}\right)$. Let us show that $\mathfrak{B}_{z}^{3}\left(W_{1}\right) \otimes$ $\mathfrak{B}_{z}^{3}\left(W_{0}\right)$ and $\mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{6}\left(W_{0}\right)$ are independent with respect to $Q$. Now for a transformation $\psi$ of $\Omega$ into $W_{1} \times W_{0}$ defined by

$$
\psi(\omega)=(X(\cdot, \omega), B(\cdot, \omega)) \in W_{1} \times W_{0} \quad \text { for } \omega \in \Omega
$$

we have

$$
\psi^{-1}\left(\mathfrak{B}_{z}^{3}\left(W_{1}\right) \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right)\right) \subset \mathfrak{F}_{z}^{1} \vee \mathfrak{F}_{z}^{2}
$$

and, denoting $z=(s, t)$,

$$
\begin{aligned}
\psi^{-1}\left(\mathfrak{๒}_{1}\right. & \left.\otimes \mathfrak{B}_{z}^{6}\left(W_{0}\right)\right) \\
& =\sigma\{B(u, v)-B(s, v)-B(u, t)+B(s, t), s \leq u, t \leq v\}
\end{aligned}
$$

The two $\sigma$-fields on the right sides of the last two expressions are independent with respect to $P$ since $B$ is an $\left\{\mathfrak{B}_{z}\right\}$-Brownian motion on $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$. This then implies the independence of $\mathfrak{B}_{z}^{3}\left(W_{1}\right) \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right)$ and $\mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{6}\left(W_{0}\right)$ with respect to $Q$.

According to a well known theorem in probability theory, if $\mathfrak{A}_{1}, \mathfrak{U}_{2}$ and $\mathscr{H}_{3}$ are sub- $\sigma$-fields of $\mathfrak{N}$ in a probability space $(S, \mathfrak{X}, \mu)$ such that $\mathfrak{N}_{1} \vee \mathfrak{A}_{2}$ and $\mathfrak{A}_{3}$ are independent, then

$$
\mu\left(A_{1} \mid \mathfrak{U}_{2}\right)=\mu\left(A_{1} \mid \mathfrak{U}_{2} \vee \mathfrak{U}_{3}\right) \quad \text { for any } A_{1} \in \mathfrak{U}_{1} .
$$

With $\mathfrak{A}_{1}=\mathfrak{B}_{z}^{3}\left(W_{1}\right) \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right), \quad \mathfrak{A}_{2}=\mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right)$ and $\mathfrak{A}_{3}=\mathfrak{C}_{1} \otimes$ $\mathfrak{B}_{z}^{6}\left(W_{0}\right)$ and noting $\mathfrak{B}_{z}^{3}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{6}\left(W_{0}\right)=\mathfrak{B}\left(W_{0}\right)$, we have for our $A_{1} \in$ $\mathfrak{B}_{z}^{3}\left(W_{1}\right)$

$$
\begin{aligned}
& Q\left(A_{1} \times W_{0} \mid \mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right)\right)\left(w_{1}, w_{0}\right) \\
& \quad=Q\left(A_{1} \times W_{0} \mid \mathfrak{C}_{1} \otimes \mathfrak{B}\left(W_{0}\right)\right)\left(w_{1}, w_{0}\right) \\
& \text { for a.e. }\left(w_{1}, w_{0}\right) \text { in }\left(W_{1} \times W_{0}, \mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{3}\left(W_{0}\right), Q\right) \\
& \text { i.e., for all } w_{1} \in W \text { for a.e. } w_{0} \text { in }\left(W_{0}, \mathfrak{B}_{z}^{3}\left(W_{0}\right), m_{W}\right) .
\end{aligned}
$$

From this and from (2.0), we have the $\mathfrak{B}_{2}^{3}\left(W_{0}\right)^{*}$-measurability of $Q^{(\cdot)}\left(A_{1}\right)$.
Next consider the case where $A_{1} \in \mathfrak{B}_{z}^{0}\left(W_{1}\right)$. For $\psi$ as defined above we have

$$
\psi^{-1}\left(\mathfrak{F}_{z}^{0}\left(W_{1}\right) \otimes \mathfrak{F}_{z}^{0}\left(W_{0}\right)\right) \subset \mathfrak{F}_{z}
$$

and, denoting $z=(s, t)$,

$$
\begin{aligned}
& \psi^{-1}\left(\mathfrak{C}_{1} \otimes\right.\left.\left(\mathfrak{B}_{z}^{4}\left(W_{0}\right) \vee \mathfrak{F}_{z}^{5}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{6}\left(W_{0}\right)\right)\right) \\
&=\sigma\left\{B\left(u^{\prime}, v^{\prime}\right)-B\left(u, v^{\prime}\right)-B\left(u^{\prime}, v\right)+B(u, v) \text { where } s<u\right. \\
& \quad \text { or } t\left.<v \text { and } u<u^{\prime} \text { and } v<v^{\prime}\right\} .
\end{aligned}
$$

The two $\sigma$-fields on the right sides of the last two expressions are independent with respect to $P$ since $B$ is an $\left\{\mathfrak{F}_{z}\right\}$-Brownian motion on $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$. Therefore $\mathfrak{B}_{z}^{0}\left(W_{1}\right) \times \mathfrak{B}_{z}^{0}\left(W_{0}\right)$ and

$$
\mathfrak{C}_{1} \otimes\left(\mathfrak{B}_{z}^{4}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{5}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{6}\left(W_{0}\right)\right)
$$

are independent with respect to $Q$. With

$$
\mathfrak{A}_{1}=\mathfrak{B}_{z}^{0}\left(W_{1}\right) \otimes \mathfrak{B}_{z}^{0}\left(W_{0}\right), \mathfrak{U}_{2}=\mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{0}\left(W_{0}\right)
$$

and $\mathfrak{A}_{3}=\mathfrak{C}_{1} \otimes\left(\mathfrak{B}_{z}^{4}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{5}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{6}\left(W_{0}\right)\right)$ and noting

$$
\mathfrak{B}_{z}^{0}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{4}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{5}\left(W_{0}\right) \vee \mathfrak{B}_{z}^{6}\left(W_{0}\right)=\mathfrak{B}\left(W_{0}\right)
$$

we have for $A_{1} \in \mathfrak{B}_{z}^{0}\left(W_{1}\right)$

$$
Q\left(A_{1} \times W_{0} \mid \mathfrak{C}_{1} \otimes \mathfrak{B}_{z}^{0}\left(W_{0}\right)\right)=Q\left(A_{1} \times W_{0} \mid \mathfrak{C}_{1} \otimes \mathfrak{B}\left(W_{0}\right)\right) .
$$

From this and from (2.0) follows the $\mathfrak{B}_{z}^{0}\left(W_{0}\right)^{*}$-measurability of $Q^{(\cdot)}\left(A_{1}\right)$.
The case where $A_{1} \in \mathfrak{B}_{z}^{j}\left(W_{1}\right)$ where $j=1$ or 2 can be treated likewise.

Let $x \in \partial W$ be fixed. For $i=1$ and 2 , let $\left(X_{i}, B_{l}\right)$ be a solution of the stochastic differential system (1.1) and (1.2) on an equipped probability space $\left(\Omega_{i}, \mathfrak{F}_{i}, P_{i} ; \mathfrak{F}_{i, z}\right)$. Let $Q_{i}$ be the probability distribution of $\left(X_{i}, B_{i}\right)$ on $\left(W_{1} \times W_{0}, \mathfrak{B}\left(W_{i} \times W_{0}\right)\right)$ and let $Q_{i}^{w_{0}}\left(A_{i}\right),\left(A_{i}, w_{0}\right) \in \mathfrak{B}\left(W_{i}\right) \times$ $W_{0}$, be a regular conditional probability of $Q_{\imath}$ under the projection $\pi_{i}$ of $W_{i} \times W_{0}$ onto $W_{0}$.

Let $\Omega=W_{1} \times W_{2} \times W_{0}$. On $\mathfrak{B}(\Omega)=\mathfrak{B}\left(W_{1} \times W_{2} \times W_{0}\right)$ define a probability measure $P$ by setting

$$
\begin{align*}
& P\left(A_{1} \times A_{2} \times A_{0}\right)=\int_{A_{0}} Q_{1}^{w_{0}}\left(A_{1}\right) Q_{2}^{w_{0}}\left(A_{2}\right) m_{W}\left(d w_{0}\right)  \tag{2.1}\\
& \quad \text { for } A_{i} \in \mathfrak{B}\left(W_{i}\right), \quad i=0,1,2
\end{align*}
$$

Let $\mathfrak{F}$ be the completion of $\mathfrak{B}(\Omega)$ with respect to $P$ and let $\mathfrak{N}$ be the collection of the null sets in $(\Omega, \mathfrak{F}, P)$. Then let

$$
\mathfrak{B}_{z}=\mathfrak{B}_{z}\left(W_{1}\right) \otimes \mathfrak{B}_{z}\left(W_{2}\right) \otimes \mathfrak{B}_{z}\left(W_{0}\right)
$$

and

$$
\begin{equation*}
\mathfrak{F}_{z}=\bigcup_{\varepsilon>0} \sigma\left(\mathfrak{B}_{s+\varepsilon, t+\varepsilon} \cup \mathfrak{R}\right) \quad \text { for } z=(s, t) \in \mathbf{R}_{+}^{2} \tag{2.2}
\end{equation*}
$$

We then have an equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$.
Lemma 2. On the equipped probability space ( $\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}$ ) defined by (2.1) and (2.2), let a 2-parameter stochastic process $B_{0}$ be defined by setting

$$
\begin{equation*}
B_{0}(z, \omega)=w_{0}(z) \quad \text { for } \omega=\left(w_{1}, w_{2}, w_{0}\right) \in \Omega \tag{2.3}
\end{equation*}
$$

Then $B_{0}$ is an $\left\{\mathfrak{F}_{z}\right\}$-Brownian motion on $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ with $\partial B_{0}=0$.
Proof. Clearly $B_{0}$ is an $\left\{\mathfrak{F}_{z}\right\}$-adapted stochastic process with continuous sample functions and $\partial B_{0}=0$. Thus, to show that $B_{0}$ is an $\left\{\mathfrak{F}_{z}\right\}$ Brownian motion it remains to show that for $z<z^{\prime}$

$$
E\left[\exp \left\{i u B_{0}\left(\left(z, z^{\prime}\right]\right)\right\} \mid \mathfrak{F}_{z}^{1} \vee \mathfrak{F}_{z}^{2}\right]=\exp \left\{-\frac{u^{2}}{2} m_{L}\left(\left(z, z^{\prime}\right]\right)\right\} \quad \text { for } \mathbf{u} \in R
$$

where

$$
B_{0}\left(\left(z, z^{\prime}\right]\right)=B_{0}\left(s^{\prime}, t^{\prime}\right)-B_{0}\left(s, t^{\prime}\right)-B_{0}\left(s^{\prime}, t\right)+B_{0}(s, t)
$$

for $z=(s, t)$ and $z^{\prime}=\left(s^{\prime}, t^{\prime}\right)$ and $m_{L}$ is the Lebesgue measure on $\mathbf{R}^{2}$. For this, it is sufficient to show that for every $A_{i} \in \mathfrak{P}_{z}^{3}\left(W_{i}\right), i=0,1$ and 2

$$
\begin{align*}
& \mathbf{E}\left[\exp \left\{i u B_{0}\left(\left(z, z^{\prime}\right]\right)\right\} 1_{A_{1} \times A_{2} \times A_{0}}\right]  \tag{2.4}\\
& \quad=\exp \left\{-\frac{u^{2}}{2} m_{L}\left(\left(z, z^{\prime}\right]\right)\right\} P\left(A_{1} \times A_{2} \times A_{0}\right)
\end{align*}
$$

Now by (2.1) and (2.3), the left side of (2.4) is equal to

$$
\int_{W_{0}} \exp \left\{i u w_{0}\left(\left(z, z^{\prime}\right]\right)\right\} Q_{1}^{w_{0}}\left(A_{1}\right) Q_{2}^{w_{0}}\left(A_{2}\right) 1_{A_{0}}\left(w_{0}\right) m_{W}\left(d w_{0}\right)
$$

Since $Q_{i}^{w_{0}}\left(A_{i}\right)$ is a $\mathfrak{B}_{z}^{3}\left(W_{0}\right)^{*}$-measurable function of $w_{0} \in W_{0}$ for our $A_{i} \in \mathfrak{B}_{z}^{3}\left(W_{i}\right)$ for $i=1$ and 2 by Lemma 1 , we have the independence of $w_{0}\left(\left(z, z^{\prime}\right]\right)$ and $Q_{1}^{w_{0}}\left(A_{2}\right) Q_{2}^{w_{0}}\left(A_{2}\right) 1_{A_{0}}\left(W_{0}\right)$ as random variables on $\left(W_{0}, \mathfrak{B}\left(W_{0}\right)^{*}, m_{W}\right)$ where $\mathfrak{B}\left(W_{0}\right)^{*}$ is the completion of $\mathfrak{B}\left(W_{0}\right)$ with respect to $m_{W}$. The last integral is then equal to

$$
\begin{aligned}
& \int_{W_{0}} \exp \left\{i u w_{0}\left(\left(z, z^{\prime}\right]\right)\right\} m_{W}\left(d w_{0}\right) \cdot \int_{A_{0}} Q_{1}^{w_{0}}\left(A_{1}\right) Q_{2}^{w_{0}}\left(A_{2}\right) m_{W}\left(d w_{0}\right) \\
& \quad=\exp \left\{-\frac{u^{2}}{2} m_{L}\left(\left(z, z^{\prime}\right]\right)\right\} P\left(A_{1} \times A_{2} \times A_{0}\right)
\end{aligned}
$$

which is equal to the right side of (2.4). This completes the proof.
Lemma 3. Let $\mu$ and $\nu$ be two probability measures on $(S, \mathfrak{B}(S)$ ) where $S$ is a complete separable metric space and $\mathfrak{B}(S)$ is the $\sigma$-field of Borel sets in $S$. Let $D$ be the diagbonal in $S \times S$, i.e.,

$$
D=\left\{\left(s_{1}, s_{2}\right) \in S \times S ; s_{1}=s_{2}\right\}
$$

If $(\mu \times \nu)(D)=1$, then there exists a unique $s_{0} \in S$ such that $\mu\left(\left\{s_{0}\right\}\right)=$ $\nu\left(\left\{s_{0}\right\}\right)=1$.

Proof. Let $\rho$ be the metric on $S$. Then $\rho\left(s_{1}, s_{2}\right)$ for $s_{1}, s_{2} \in S$ is a continuous function on $S \times S$ in its product topology and is thus $\mathfrak{B}(S \times S)$ measurable. Then the diagonal $D$ being the subset of $S \times S$ on which $\rho$ is equal to 0 is a member of $\mathfrak{B}(S \times S)$. Thus $(\mu \times \nu)(D)$ is defined.

Suppose $(\mu \times \nu)(D)=1$. If $\mu \neq \nu$ on $\mathfrak{B}(S)$ then there exists $A \in$ $\mathfrak{B}(S)$ such that $\mu(A) \neq \nu(A)$, say $\mu(A)>\nu(A)$. Then $\nu\left(A^{c}\right)>0$ so that $(\mu \times \nu)\left(A \times A^{c}\right)=\mu(A) \nu\left(A^{c}\right)>0$.

But $\left(A \times A^{c}\right) \cap D=\varnothing$ and this implies $(\mu \times \nu)\left(A \times A^{c}\right)=0$, contradicting the last inequality. Therefore $\mu=\nu$ on $\mathfrak{B}(S)$.

If there exists $A \in \mathfrak{B}(S)$ such that $\mu(A) \in(0,1)$ then $\mu\left(A^{c}\right) \in(0,1)$ also so that

$$
(\mu \times \nu)\left(A \times A^{c}\right)=\mu(A) \mu\left(A^{c}\right) \in(0,1)
$$

But this contradicts the equality $(\mu \times \nu)\left(A \times A^{c}\right)=0$ which is implied by $\left(A \times A^{c}\right) \cap D=\varnothing$. Therefore no $A \in \mathfrak{B}(S)$ can have $\mu(A) \in(0,1)$ and consequently $\mu(A)=0$ or 1 for every $A \in \mathfrak{B}(S)$.

Since a separable metric space is a Lindelöf space, for every positive integer $n$ there exist countably many closed spheres in $S$, each with diameter $n^{-1}$, whose union is $S$. The $\mu$-measure of each of these spheres is either 0 or 1 . No two spheres with $\mu$-measure 1 can be disjoint for otherwise we would have $\mu(S) \geq 2$. Let $K_{n}$ be the closed set which is the intersection of all those spheres with $\mu$-measure 1 . Then $\mu\left(K_{n}\right)=1$ and the diameter $\delta\left(K_{n}\right) \leq 1 / n$. Consider the sequence of closed sets $K_{n}$, $n=1,2, \cdots$. By the same reason as above $K_{n} \cap K_{m} \neq \varnothing$ for $n \neq m$. If we let $C_{n}=\bigcap_{m=1}^{n} K_{m}$ then we have a decreasing sequence of closed sets $C_{n}, n=1,2, \cdots$ with $\mu\left(C_{n}\right)=1$ and $\delta\left(C_{n}\right) \leq n^{-1}$ for every $n$. Since $S$ is a complete metric space and $\delta\left(C_{n}\right) \downarrow 0$ as $n \rightarrow \infty$ there exists $s_{0} \in S$ such that $\bigcap_{n=1}^{\infty} C_{n}=\left\{s_{0}\right\}$. Then $\mu\left(\left\{s_{0}\right\}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=1$. Since $\mu(S)=1$ such $s_{0} \in S$ is unique.
3. Proof of the Theorem. With fixed $x \in \partial W$ assume that the stochastic differential system (1.1) and (1.2) has a solution on some equipped probability space and assume that (1.1) satisfies the pathwise uniqueness condition.

For $i=1$ and 2 let $\left(X_{i}, B_{i}\right)$ be a solution of (1.1) and (1.2) on an equipped probability space $\left(\Omega_{i}, \mathfrak{F}_{i}, P_{i} ; \mathfrak{F}_{i, z}\right)$. Let $Q_{i}, Q_{i}^{w_{o}}\left(A_{i}\right)$ and $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ be as in the construction in $\S 2$ following the proof of Lemma 1.

Let $B_{0}$ be the $\left\{\mathfrak{B}_{z}\right\}$-Brownian motion on the equipped probability space $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ defined by (2.3). Introduce two 2-parameter stochastic processes $Y_{i}$ for $i=1$ and 2 on $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ by setting

$$
\begin{equation*}
Y_{i}(z, \omega)=w_{i}(z) \quad \text { for } z \in \mathbf{R}_{+}^{2} \quad \text { and } \quad \omega=\left(w_{1}, w_{2}, w_{0}\right) \in \Omega . \tag{3.1}
\end{equation*}
$$

Then $\left(Y_{i}, B_{0}\right)$ and $\left(X_{i}, B_{i}\right)$ have the same probability distribution $Q_{i}$ on ( $W_{i} \times W_{0}, \mathfrak{B}\left(W_{i} \times W_{0}\right)$ ) so that $\left(Y_{i}, B_{0}\right)$ is a solution of (1.1) and (1.2) on $\left(\Omega, \mathfrak{F}, P ; \mathfrak{F}_{z}\right)$ for $i=1$ and 2 . Thus by the pathwise uniqueness condition we have $Y_{1}=Y_{2}$, i.e.,

$$
Y_{1}(\cdot, \omega)=Y_{2}(\cdot, \omega) \quad \text { for a.e. } \omega \text { in }(\Omega, \mathfrak{F}, P)
$$

in other words,

$$
w_{1}=w_{2} \quad \text { for } P \text { a.e. } \omega=\left(w_{1}, w_{2}, w_{0}\right) \in \Omega
$$

Since $P$ is defined by (2.1), this implies that there exists a null set $N_{0}$ in ( $\left.W_{0}, \mathfrak{B}\left(W_{0}\right), m_{W}\right)$ such that

$$
\begin{equation*}
\left(Q_{1}^{w_{0}} \times Q_{2}^{w_{0}}\right)\left\{\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2} ; w_{1}=w_{2}\right\}=1 \quad \text { for } w_{0} \in N_{0}^{c} \tag{3.2}
\end{equation*}
$$

Since $W_{1}$ and $W_{2}$ are copies of $W$ which is a complete separable metric space (3.2) implies according to Lemma 3 that for every $w_{0} \in N_{0}^{c}$ there exists a unique $w \in W$ such that

$$
\begin{equation*}
Q_{1}^{w_{0}}(\{w\})=Q_{2}^{w_{0}}(\{w\})=1 \tag{3.3}
\end{equation*}
$$

Let $F$ be a function defined by

$$
\begin{equation*}
F\left(w_{0}\right)=w \quad \text { for } w_{0} \in N_{0}^{c} \tag{3.4}
\end{equation*}
$$

where $w$ on the right side is the unique element in $W$ satisfying (3.3) for our $w_{0} \in N_{0}^{c}$. Thus

$$
Q_{1}^{w_{0}}=Q_{2}^{w_{0}}=\delta_{F\left(w_{0}\right)} \quad \text { on } \mathfrak{B}(W) \text { for } w_{0} \in N_{0}^{c}
$$

Let us verify that $F$ satisfies the condition $1^{\circ}$ in our Theorem. Thus, for $z \in \mathbf{R}_{+}^{2}$, let $A \in \mathfrak{B}_{z}(W)$. Then

$$
\begin{aligned}
F^{-1}(A) & =\left\{w_{0} \in W_{0} ; Q_{1}^{w_{0}}(\{w\})=1 \text { for some } w \in A\right\} \\
& =\left\{w_{0} \in W_{0} ; Q_{1}^{w_{0}}(A)=1\right\}
\end{aligned}
$$

According to Lemma $1, A \in \mathfrak{B}_{z}(W)$ implies that $\mathfrak{B}_{z}\left(W_{0}\right)^{*}$-measurability of $Q_{1}^{w_{0}}(A)$ as a function of $w_{0} \in W_{0}$. Thus $F^{-1}(A) \in B_{z}\left(W_{0}\right)^{*}$, i.e., $F$ is $\mathfrak{B}_{z}\left(W_{0}\right)^{*} / \mathfrak{B}_{z}(W)$ measurable.

To verify the condition $3^{\circ}$ in the Theorem, note that from (3.4), (3.1) and (2.3)

$$
F\left[B_{0}(\cdot, \omega)\right]=Y_{i}(\cdot, \omega) \quad \text { for } B_{0}(\cdot, \omega) \in N_{0}^{c} \text { for } i=1 \text { and } 2
$$

Then since $B_{0}$ and $Y_{i}$ are the images of $B_{i}$ and $X_{t}$ in $\Omega=W_{1} \times W_{2} \times W_{0}$ the last equality implies

$$
F\left[B_{i}\left(\cdot, \omega_{i}\right)\right]=X_{i}\left(\cdot, \omega_{i}\right) \text { for a.e. } \omega_{i} \text { in }\left(\Omega_{i}, \mathfrak{F}_{i}, P_{i}\right) \text { for } i=1 \text { and } 2
$$

proving $3^{\circ}$. Note also that since $F$ is common to $i=1$ and 2 and is defined up to a null set in $\left(W_{0}, \mathfrak{B}\left(W_{0}\right), m_{W}\right)$, we have the uniqueness of $F$ up to a null set in $\left(W, \mathfrak{B}(W), m_{W}\right)$.

Finally if $\left(\Omega_{3}, \mathfrak{F}_{3}, P_{3} ; \mathfrak{F}_{3, z}\right)$ is an equipped probability space on which there exists an $\left\{\mathfrak{F}_{3, z}\right\}$-Brownian motion $B_{3}$ with $\partial B_{3}=0$, then
( $X_{3}, B_{3}$ ) with $X_{3}$ defined by $X_{3}=F\left[B_{3}\right]$ has the same probability distribution on ( $W \times W, \mathfrak{B}(W \times W)$ ) as $\left(Y_{1}, B_{0}\right)$ so that ( $X_{3}, B_{3}$ ) is a solution of (1.1) and (1.2) on $\left(\Omega_{3}, \mathfrak{F}_{3}, P_{3} ; \mathfrak{F}_{3, z}\right)$. Thus condition $2^{\circ}$ of the Theorem is satisfied. This completes the proof.

## References

[1] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math., 134 (1975), 111-183.
[2] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, (1981), North-Holland, New York.
[3] J. Neveu, Integrales stochastiques et applications, Cours de troisieme cycle, (1971-72), Universite Paris VI.
[4] K. R. Parthasarathy, Probability Measures on Metric Spaces, (1967), Academic Press, New York.
[5] P. Priouret, Processus de Diffusion et Equations Differentielles Stochastiques, Lecture Notes in Mathematics vol. 390 (1974), Springer-Verlag.
[6] C. Tudor, On the existence and the uniqueness of solutions to stochastic integral equations with two-dimensional time parameter, Rev. Roum. Math. Pures et Appl., 24 (1979), 817-827.
[7] T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11-1 (1970), 155-167.
[8] J. Yeh, Existence of strong solutions for stochastic differential equations in the plane, Pacific J. Math., 97 (1981), 217-247.
[9] , Existence of weak solutions to stochastic differential equations in the plane with continuous coefficients, Trans. Amer. Math. Soc., 290 (1985), 345-361.
[10] $\qquad$ Two-Parameter Stochastic Differential Equations, Real and stochastic Analysis, edited by M. M. Rao, (1986), John Wiley and Sons.

Received February 5, 1986.

University of California
Irvine, CA 92717

