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UNIQUENESS OF STRONG SOLUTIONS

TO STOCHASTIC DIFFERENTIAL EQUATIONS

IN THE PLANE WITH

DETERMINISTIC BOUNDARY PROCESS

J.YEH

Under the assumption of the existence of a weak solution and the
pathwise uniqueness of solutions, existence and uniqueness of a strong
solution to the stochastic differential system of non Markovian type in
the plane

dXz - a(z, X) dBz -f β(z, X) dz for z e R2

+,

dX= x
is obtained where x is a continuous real valued function on 3R2

+.

1. Introduction. Consider a stochastic differential equation of
non-Markovian type in the plane

(1.0) dXz = a{z, X) dBz + β(z, X) dz

i.e.,

(1.1) XSit - XOtt - XSf0 + X0>0 = / α(f, X)dBζ + f β(L X)dζ
JRZ

 JRZ

for z = (s, t) e R2

+ and Rz = [0, s] X [0, /] where B is an {g2}-Brownian
motion on an equipped probability space (Ω, $, P; £?z) with 35 = 0, dB
being the restriction of B to the boundary 9R+ of R+, and consider the
boundary condition

(1.2) dX=x

where x is a fixed element in the space dW of all continuos real valued
functions on 9R+. Let W be the space of all continuous real valued
functions on R2

+. The coefficients a and β are real valued functions on
R^X W satisfying certain measurability conditions that imply that for
each ω e Ω, a(z, X(-,ω)) and β(z, X(-,ω)) depend only on that part of
the sample function X(-,ω) which precedes z in the sense of the partial
ordering of R2

+. We refer to [8] or [10] for these measurability conditions.
In this article, by an equipped probability space we mean a complete

probability measure space (Ω, g, P) with an increasing and right continu-
ous family {g z, z e R2

+} of sub-σ-fields of g, each containing all the null
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sets in (Ω, g, P). We do not assume the conditional independence of
Si = o ( U , e R + S,,,) and g 2 = σ(UM e R + gM,,) relative to g z for z = (j, t)
e R2 since this condition is not needed for the existence of our stochastic
integrals with respect to an { gz}-Brownian motion.

DEFINITION 1. By a solution of the stochastic differential equation
(1.1) we mean a pair of 2-parameter stochastic processes (X, B) on an
equipped probability space (Ω, g ,P; $ z ) such that B is an {Sz}-
Brownian motion with dB = 0, X is an {gz}-adapted process whose
sample functions are all continuous on R+ and the stochastic integrals in
(1.1) exist and satisfy (1.1) with probability 1.

DEFINITION 2. We say that the stochastic differential equation (1.1)
satisfies the pathwise uniqueness condition if whenever (X, B) and (X', B)
with the same B are two solutions of (1.1) on the same equipped
probability space and dX = dX' then X = X'.

Let 33(W) be the σ-field generated by the cylinder sets in W. With
respect to the metric of uniform convergence on the compact subsets of
R+, W is a complete separable metric space and the σ-field of the Borel
sets in W is equal to 33(W). Let mw be the Wiener measure on
(W, 33(W)) concentrated on those elements of W which vanish on 3R2

+.
For z e R2^ let 33z(fF) be the σ-field generated by the cylinder sets
( w G f f ; w(ξ) e E) where E e 33(R) and ζ < z. We write 1&Z{W)* for
the σ-field generated by 98Z(W) and the subsets of the null sets in

DEFINITION 3. A solution (X, B) of (1.1) on an equipped probability
space (Ω, g, P; g z ) is called a strong solution of the boundary value
problem (1.1) and (1.2) if there exists a transformation F of W into W
such that

1° for every z e R2

+, F is 33Z(W) */33z(HO measurable,
2° X( ,ω) = F[B( ,ω)] for a.e. ω e Ω.
In [8] we showed that if the coefficients a and β in (1.1) satisfy a

certain Lipschitz condition then (1.1) satisfies the pathwise uniqueness
condition. There we also showed that under the Lipschitz condition and
an order of growth condition on a and β a strong solution exists for (1.1)
with a nondeterministic boundary condition. In the present paper we
study the independence of the transformation F in Definition 3 from the
equipped probability space (Ω, S> P; g z ). The main result is the following
theorem.
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THEOREM. Let x e dW be fixed. Suppose the stochastic differential

system (1.1) and (1.2) has a solution on some equipped probability space and

(1.1) satisfies the pathwise uniqueness condition. Then there exists a trans-

formation F of W into W, unique up to a null set in {W, 33(W), mw), such

that

1° for every z e R2

+, F is %Z(W)*/%Z(W) measurable,

2° if (Ω, g, P; g z ) is an equipped probability space on which there

exists an { gZ}-Brownian motion B with dB = 0, then X = F[B]

is a solution of the stochastic differential system (1.1) and (1.2) on

the equipped probability space (Ω, g, P; g z ) .

3° any solution (X,B) of the differential system (1.1) and (1.2)

satisfies X = F[B].

The proof of this theorem is given in §3. In constructing a unique

strong solution we adopt Ikeda and Watanabe's approach in [7].

2. Some lemmas for the construction of a unique strong solution. In

what follows we write Wi9 i = 0, 1 and 2 for copies of W. Let (X, B) be a

solution to the stochastic differential system (1.1) and (1.2) on an equipped

probability space (Ω, g, P; g z ) and let Q be the probability distribution

of (X, B) on the measurable space (Wι X Wθ9 ίβ(W1 X Wo)) where
<$>(Wι X Wo) is the σ-field of the Borel sets in Wx X Wo in its product

topology.

Let 77 be the projection of Wγ X Wo onto Wo. The probability

distribution on (W099$(W0)) of the transformation π defined on the

probability space (Wι X Wo,
 <ϋ(Wι X WQ)9Q) is then the Wiener mea-

sure mw.

Let Q() with QWQ{AX) for (Avw0) e »(H^) X Wo be a regular

conditional probability of 2 under π, i.e.,

(C.I) for every w0 G W Ô, β ^ is a probabihty measure on (W

(C.2) for every Aλ e 93(WΊ)> β ( } ( ^ i ) is 93(»o) measurable,

(C.3) for every Aλ e SB(W\) and ^ 0

From these defining properties of the regular conditional probability

follows that if Kx = {W l 9φ) and Ax e » ( ^ ) then

(2.0) Q(Aτ X JFolKx

for all wx e Ŵ  for a.e. w0 in (tF 0 , »(>F 0 ),
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The existence of a regular conditional probability β ( < ) is ensured by the
fact that both the domain Wλ X Wo and the image space Wo of the
transformation π are complete separable metric spaces (see Parthasarathy
[4]). The following lemma is an extension of Neveu's proof in [3] for a
lemma by Yamada and Watanabe [7].

LEMMA 1. For z = (s, t) e R2

+, let

σ{w(u,v),ue [ 0 , j ] , ι ; ε [ θ , o o ) , w e W}9

®2

z(W) = σ{w(u,v),ue [0 ,oo) , ι ;e [0,/],w€= W),

%l(W) = σ{w(u,v), U<E [0yS] O Γ U G [0, ί ] , w e W).

Then for every Ax e »ί(Wi), β ( \A) is ®i(Wo)* measurable for j = 0,
1, 2 or 3.

Proof. Let

= σ{ w(u, v) - w(0, v) - w(u, t) + w(0, /) ,

u < s, t < v, w e

σ{w(w,ϋ) - W(J,U) - w(i/,0 + w(s,t),

s < u9 < v,w ^ W}.

Consider the case where Ax e ^1{WX). Let us show that ^l{Wλ) 0
93^(ίΓ0) and dx 0 93^(^O) a r e independent with respect to Q. Now for a
transformation ψ of Ω into W1 X Wo defined by

ψ(ω) = (-Y( ,ω), Λ( ,ω)) e ίΓj X JF0 for ω e Q,

we have

and, denoting z = (s, t),

- 5 ( ί , u ) - B ( « , ί ) + 5 ( ί , ί ) , 5 < u, t < υ).
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The two σ-fields on the right sides of the last two expressions are
independent with respect to P since B is an (33Z}-Brownian motion on
(Ω, g, P; S z). This then implies the independence of S ^ W ) ® %l(W0)
and ©! ® 93*(WO) with respect to Q.

According to a well known theorem in probability theory, if 2ί1? 3ί2

and 213 are sub-σ-fields of 91 in a probability space (S, 2ί,μ) such that
9ίx V 2ί2 and 213 are independent, then

With %x = &KWJ Q %l(W0), %2 = ©x 0 %l(W0) and » 3 = ©! ®
F0) and noting %\(W0) V 93f(^0) = $ T O > we have for our Ax e

i.e., for all wx e fΓfor a.e. w0 in (ίF0, ©K^o), mw)-

From this and from (2.0), we have the 93^(^0)*-measurability of Q('\A1).
Next consider the case where Aλ e 95^(l^i). For ψ as defined above

we have

and, denoting z = (s, t),

v &z{w0) v

«', v') - B(u,υ') - B(u',v) + B{u,υ) where s < u

or t < v and M < u' and υ < v'}.

The two σ-fields on the right sides of the last two expressions are
independent with respect to P since B is an (gz}-Brownian motion on
(Ω, 2f, P; %z). Therefore » ? T O X 93°(^O) and

V 332

5(ίF0) V

are independent with respect to Q. With

and 9ί3 = ®x ® (93^(fF0) V »^(FF0) V ^%W0)) and noting
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we have for Ax e 9

Q(AX XW I E ^ %o

z(wo)) = β(Λ x w0

From this and from (2.0) follows the 23^ΪF0)*-measurability of Q{'\AX).

The case where Ax e 95 ̂ '(W )̂ where y = 1 or 2 can be treated

likewise. •

Let x G 3ff be fixed. For i = 1 and 2, let (Xι9Bt) be a solution of
the stochastic differential system (1.1) and (1.2) on an equipped probabil-
ity space (Ω/? g ^ P ; 3 / z ) . Let Q be the probability distribution of
(Xi9 Bt) on (HT, X W09 S&(wt X ^ 0 )) and let Q^{At\ (Ai9 w0) e » ( ^ ) X
W ,̂ be a regular conditional probability of Qt under the projection ττ of
Wι X ίΓ0 onto Wo.

Let Ω = ^ X ^ 2 X ΪΓ0. On »(Ω) = © ( ^ X Ŵ 2 X ΪΓ0) define a
probability measure P by setting

(2.1) P(A1XA2XA0)= f QP

i = 0,1,2.

Let g b^ the completion of 95(Ω) with respect to P and let 91 be the
collection of the null sets in (Ω, g, P). Then let

and

(2.2) g z = Uσ(»,+ ε, / + εU%) forz=(ί,/)GR2

+.
ε>0

We then have an equipped probability space (Ω, g, P; g z ).

LEMMA 2. On the equipped probability space (Ω, g, P; $ 2 ) defined by

(2.1) αfld (2.2), /eί ̂  2-parameter stochastic process Bo be defined by setting

(2.3) # 0 ( z > ω ) = w o( z ) / o r ω = (wi>w2,w0) G Ω.

77ΪCT JB0 is an { %2}-Brownian motion on (Ω, g, P; g 2 ) with dB0 = 0.

Proof. Clearly Bo is an { g z } -adapted stochastic process with continu-

ous sample functions and dB0 = 0. Thus, to show that BQ is an {S z }-

Brownian motion it remains to show that for z < z'
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where

B0{(z9 z']) = B0{s\ f) - B0(s, t') - J»o(*', 0 + B0(s, t)

for z = (s, t) and z9 = (s\ t') and mL is the Lebesgue measure on R2. For
this, it is sufficient to show that for every At e 93̂ ( WQ, * = 0,1 and 2

(2.4)

= exp{- yifiL((z,z'])}p(^ X A2 X

Now by (2.1) and (2.3), the left side of (2.4) is equal to

Since QJ°(Ai) is a 93^(ϊJ^)*-measurable function of w0 & Wo for our
^ί e ® z ( ^ ) f°Γ ί# == 1 a n d 2 by Lemma 1, we have the independence of
wo((z, z']) and βΓ0(^2)β20(^2)l/i iWo) a s random variables on
(W09 %(W0)*, mw) where 33(IFO)* is the completion of %(W0) with
respect to mw. The last integral is then equal to

f exp{iuwo{(z,z'])}mw(dwo)

= exp|- y mL((z, z'])}p(Λ X A2 X i40)

which is equal to the right side of (2.4). This completes the proof. D

LEMMA 3. Let μ and v be two probability measures on (S, 33(5)) where
S is a complete separable metric space and 93(5) is the σ-field of Borel sets
in S. Let D be the diagbonal in S X S, i.e.,

D = {(s1,s2) e S X S; sx = s2}.

If (μ X v)(D) = 1, then there exists a unique s0 e S such that μ({s0}) =

Proof. Let p be the metric on S. Then p(svs2) for sl9s2^S
is a continuous function on S X S in its product topology and is thus
93(5 X S) measurable. Then the diagonal D being the subset of S X S
on which p is equal to 0 is a member of 9 ( S X S). Thus (μ X *0(Z>) is
defined.

Suppose (μ X *>)(!>) = 1. If μ # 7 on 93(5) then there exists ^ e
93(5) such that μ(A) Φ v{A\ say μ(Λ) > v{A). Then ^(^4C) > 0 so that

(μ X v)(A X Ac) = μ(^ί)^(^lc) > 0.
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But (A X Ac) Γ) D = 0 and this implies (μ X v){A X Ac) = 0, con-
tradicting the last inequality. Therefore μ = v on 93(5).

If there exists A G 93(5) such that μ(A) G (0,1) then μ(,4c) G (0,1)
also so that

But this contradicts the equality (μ X v)(A X 4̂C) = 0 which is implied by
(A X Ac) ΠD = 0. Therefore no A G 93(5) can have μ(Λ) G (0,1) and
consequently μ{A) = 0 or 1 for every A G 93(5).

Since a separable metric space is a Lindelof space, for every positive
integer n there exist countably many closed spheres in 5, each with
diameter Λ" 1 , whose union is 5. The μ-measure of each of these spheres is
either 0 or 1. No two spheres with μ-measure 1 can be disjoint for
otherwise we would have μ(5) > 2. Let Kn be the closed set which is the
intersection of all those spheres with μ-measure 1. Then μ(Kn) = 1 and
the diameter 8(Kn) < 1/n. Consider the sequence of closed sets Kn9

n = 1,2, . By the same reason as above Kn Π Km Φ 0 for n Φ m. If
we let Cn = (Ym=ιKm then we have a decreasing sequence of closed sets
Cn9 n = 1,2, with μ(Cn) = 1 and 8(Cn) < n'1 for every n. Since 5 is
a complete metric space and δ(C n ) |0asf l->oo there exists s0 ^ 5 such
that Π?=1CM = K } . Then μ({s0}) = ]imn_>^μ(Cn) = 1. Since μ(5) = 1
such s0 G 5 is unique. D

3. Proof of the Theorem. With fixed JC G dW assume that the
stochastic differential system (1.1) and (1.2) has a solution on some
equipped probability space and assume that (1.1) satisfies the pathwise
uniqueness condition.

For / = 1 and 2 let (Xi9 Bt) be a solution of (1.1) and (1.2) on an
equipped probability space (Ω,., g,.,^.; g / z ) . Let β/?βΓ°(^/) and
(Ω, g , P ; δ z ) be as in the construction in §2 following the proof of
Lemma 1.

Let Bo be the {93Z}-Brownian motion on the equipped probability
space (Ω, g> P; g 2) defined by (2.3). Introduce two 2-ρarameter stochas-
tic processes Yt for / = 1 and 2 on (Ω, g, P; g z ) by setting

(3.1) Yi{z,ω) = Wi{z) forzGR 2

+ and ω = (wl9w29w0) G Ω.

Then {Yυ Bo) and (Xt, Bt) have the same probability distribution Qt on
(Wi X Wo, 93(W^ X Wo)) so that {Yt, Bo) is a solution of (1.1) and (1.2) on
(Ω, g, P; g z ) for i = 1 and 2. Thus by the pathwise uniqueness condition
we have Yx = Y2, i.e.,

7 1 ( . , ω ) = 72( ,ω) fora .e .ωin(Ω,g,P),
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in other words,

w1 = w2 for P a.e. ω = (w 1 ?w 2 ?w 0) G Ω.

Since P is defined by (2.1), this implies that there exists a null set No in

(W0,%(W0),mw) such that

(3.2) ( β ^ X β ? ) { K , i v 2 ) e ^ 1 x ϊ F 2 ; i v 1 = H;2} = l for w0 e ΛJ.

Since Wx and fF2 are copies of W which is a complete separable metric
space (3.2) implies according to Lemma 3 that for every w0 G NQ there
exists a unique w e W such that

(3.3) βΓ({w}) = β?({w}) = l .

Let Z7 be a function defined by

(3.4) F(wo) = w forw0eJV0

e

where w on the right side is the unique element in W satisfying (3.3) for
our w0 e NQ. Thus

Let us verify that F satisfies the condition 1° in our Theorem. Thus,
for z e R2

+, let A e » z (ίF). Then

F-χ(A) = {w oe ί̂ 0; ^^({w}) = 1 for some w e A)

According to Lemma 1, >4 G 93z(ίF) implies that 33z(l^0)*-measurability
of Qι°(A) as a function of w0 G WO. Thus i 7 "^^) G 5,(Wo)*, i ev i 7 is
δ r ί ^ o ) * / * ^ ) measurable.

To verify the condition 3° in the Theorem, note that from (3.4), (3.1)
and (2.3)

F[B0( ,ω)] = Yi{ ,ω) for Λo( ,co) G ΛJ for / = I a n d 2 .

Then since Bo and Yi are the images of Bt and JSff in Ω = Wλ X PF2 X Wo

the last equality implies

F[^(. ,ω z . )] = ^(sω,.) for a.e. ωt in (Q., g,,^.) for i = 1 and 2

proving 3°. Note also that since F is common to / = 1 and 2 and is
defined up to a null set in (J^, SB(W )̂, # v ) , w e h a v e the uniqueness of F
up to a null set in (fF, ®{W\ mw).

Finally if (Ω3, g 3 ,P 3 ; g3>z) is an equipped probability space on
which there exists an {g3z}-Brownian motion B3 with 9J?3 = 0, then
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(X3,B3) with X3 defined by X3 = F[B3] has the same probability distri-
bution on (W X W, 93 (W X W)) as (Yv Bo) so that (X3, £3) is a solution
of (1.1) and (1.2) on (Ω3, g 3, P3; g 3 z). Thus condition 2° of the Theorem
is satisfied. This completes the proof. D
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