BOTT MAPS AND THE COMPLEX PROJECTIVE PLANE: A CONSTRUCTION OF R. WOOD'S EQUIVALENCES

Minato Yasuo
To the memory of Dr. Shichirô Oka

Abstract

Let $\mathrm{U}(\infty), \mathrm{O}(\infty)$ and $\mathrm{Sp}(\infty)$ be the direct limits of the finite-dimensional unitary, orthogonal and symplectic groups under inclusion, and let $\mathbf{P}_{2} \mathbf{C}$ be the complex projective plane. Then, by a result of \mathbf{R}. Wood in K-theory, there exist homotopy equivalences from $U(\infty)$ to the space of based maps $\mathbf{P}_{2} \mathbf{C} \rightarrow \mathrm{O}(\infty)$, and to the space of based maps $\mathbf{P}_{2} \mathbf{C} \rightarrow \mathrm{Sp}(\infty)$. In this paper we give an explicit construction of such homotopy equivalences, and prove Wood's theorem by using classical results of R. Bott and elementary homotopy theory.

Introduction. It is well-known that, in topological K-theory, there are natural isomorphisms

$$
\widetilde{K \mathbf{U}^{*}}(X) \rightarrow \widetilde{K \mathbf{O}^{*}} *\left(X \wedge \mathbf{P}_{2} \mathbf{C}\right) \quad \text { and } \quad \widetilde{K \mathrm{U}} *(X) \rightarrow \widetilde{K \mathrm{Sp}^{*}}\left(X \wedge \mathbf{P}_{2} \mathbf{C}\right),
$$

where $\mathbf{P}_{2} \mathbf{C}$ is the complex projective plane. This result is originally due to R. M. W. Wood, and his method for giving such isomorphisms can be found in [9] (see also [1; §2] or [6; §1]).

Now let $\mathrm{U}(\infty), \mathrm{O}(\infty)$ and $\mathrm{Sp}(\infty)$ be the infinite-dimensional unitary, orthogonal and symplectic groups respectively, and let $\tilde{\mathscr{C}}(X ; Y)$ denote the space of basepoint-preserving continuous maps from X to Y (equipped with the compact-open topology). Then the result of Wood mentioned above implies:

Theorem (0.1) (R. Wood). There are homotopy equivalences from $\mathrm{U}(\infty)$ to the space $\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(\infty)\right)$, and to the space $\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{Sp}(\infty)\right)$.

The main purpose of this paper is to construct such homotopy equivalences explicitly. In $\S 4$ we shall define certain maps

$$
\chi_{n}^{\mathrm{O}}: \mathrm{U}(2 n) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(8 n)\right) \quad \text { and } \quad \chi_{n}^{\mathrm{Sp}}: \mathrm{U}(n) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{Sp}(2 n)\right),
$$

and in $\S 5$ we shall show (Theorem (5.4)) that these give rise to homotopy equivalences

$$
\chi_{\infty}^{\mathrm{o}}: \mathrm{U}(\infty) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(\infty)\right) \quad \text { and } \quad \chi_{\infty}^{\mathrm{sp}}: \mathrm{U}(\infty) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{Sp}(\infty)\right)
$$

in direct limits. Thus we shall give another proof of (0.1) which does not use vector bundle theory. This work may be regarded as a continuation of [10] and [11], and indeed our proof of (0.1) is accomplished by the techniques used there. A by-product of our work is the result that, even for $n<\infty$, the maps χ_{n}^{O} and χ_{n}^{Sp} induce isomorphisms of homotopy groups in sufficiently low dimensions.

Throughout this paper we shall keep the notation of [10] and [11]. In particular, we denote by $\operatorname{comm}(A, B)$ the commutator $A B A^{-1} B^{-1}$.

1. Preliminaries. We begin by fixing our notation. Let I_{n} be the $n \times n$ identity matrix. We put

$$
\begin{aligned}
& J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \in \operatorname{SO}(2 n), \\
& T_{n}=\operatorname{diag}\left(I_{n},-I_{n}\right)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right) \in \mathrm{O}(2 n), \\
& K_{n}=\operatorname{diag}\left(J_{n},-J_{n}\right)=\left(\begin{array}{cccc}
0 & -I_{n} & 0 & 0 \\
I_{n} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{n} \\
0 & 0 & -I_{n} & 0
\end{array}\right) \in \operatorname{SO}(4 n), \\
& S_{n}=\operatorname{diag}\left(I_{n}, J_{n} T_{n}, I_{n}\right)=\left(\begin{array}{cccc}
I_{n} & 0 & 0 & 0 \\
0 & 0 & I_{n} & 0 \\
0 & I_{n} & 0 & 0 \\
0 & 0 & 0 & I_{n}
\end{array}\right) \in \mathrm{O}(4 n) .
\end{aligned}
$$

Here $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{r}\right)$ denotes the square matrix with blocks A_{1}, A_{2}, \ldots, A_{r} down the main diagonal and zeroes elsewhere. Also we let $P_{n} \in \mathrm{O}(2 n)$ be the $2 n \times 2 n$ permutation matrix defined in $[\mathbf{1 0} ; \S 1]$. This matrix represents the transformation

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right): \mathbf{R}^{2 n} \rightarrow \mathbf{R}^{2 n}
$$

(so that $\operatorname{det}\left(P_{n}\right)=(-1)^{n(n-1) / 2}$), and we put

$$
Q_{n}=P_{2 n} \operatorname{diag}\left(P_{n}, P_{n}\right) \in \mathrm{O}(4 n), \quad R_{n}=P_{4 n} \operatorname{diag}\left(Q_{n}, Q_{n}\right) \in \mathrm{SO}(8 n) .
$$

Further, as in [10; §1], we put

$$
\operatorname{dec}(X+i Y)=\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right), \quad \operatorname{deq}(Z+j W)=\left(\begin{array}{cc}
Z & -\bar{W} \\
W & \bar{Z}
\end{array}\right)
$$

where X, Y are arbitrary $n \times n$ real matrices and Z, W are arbitrary $n \times n$ complex matrices, and where $i(\in \mathbf{C})$ and j are the standard generators of the algebra \mathbf{H} of quaternions.

For brevity, we write $\mathrm{O}(2 n) / \mathrm{U}=\mathrm{O}(2 n) / \mathrm{U}(n), \quad \mathrm{U}(2 n) / \mathrm{Sp}=$ $\mathrm{U}(2 n) / \mathrm{Sp}(n), \mathrm{U}(n) / \mathrm{O}=\mathrm{U}(n) / \mathrm{O}(n)$, and $\mathrm{Sp}(n) / \mathrm{U}=\mathrm{Sp}(n) / \mathrm{U}(n)$. Here the spaces $\mathrm{O}(2 n) / \mathrm{U}(n), \mathrm{U}(2 n) / \mathrm{Sp}(n)$ are defined by using the embeddings

$$
\begin{aligned}
& A \mapsto P_{n} \operatorname{dec}(A) P_{n}^{-1}: \mathrm{U}(n) \rightarrow \mathrm{O}(2 n), \\
& A \mapsto P_{n} \operatorname{deq}(A) P_{n}^{-1}: \operatorname{Sp}(n) \rightarrow \mathrm{U}(2 n)
\end{aligned}
$$

induced by the canonical isomorphisms

$$
\begin{aligned}
& \left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right) \mapsto\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right): \mathbf{C}^{n} \rightarrow \mathbf{R}^{2 n}, \\
& \left(z_{1}+j w_{1}, \ldots, z_{n}+j w_{n}\right) \mapsto\left(z_{1}, w_{1}, \ldots, z_{n}, w_{n}\right): \mathbf{H}^{n} \rightarrow \mathbf{C}^{2 n} .
\end{aligned}
$$

We denote by κ_{n}^{U} the latter embedding $\mathrm{Sp}(n) \rightarrow \mathrm{U}(2 n)$, by ι_{n}^{U} the inclusion map $\mathrm{O}(n) \rightarrow \mathrm{U}(n)$, and by $\xi_{n}^{\mathrm{U} / \mathrm{Sp}}$ (resp. by $\xi_{n}^{\mathrm{U} / \mathrm{O}}$) the obvious projection map from $\mathrm{U}(2 n)$ onto $\mathrm{U}(2 n) / \mathrm{Sp}$ (resp. from $\mathrm{U}(n)$ onto $\mathrm{U}(n) / \mathrm{O})$.

Let G denote either O or Sp . We further put

$$
G(2 n) /(G \times G)=G(2 n) / P_{n} \operatorname{diag}(G(n) \times G(n)) P_{n}^{-1}
$$

with $\operatorname{diag}(G(n) \times G(n))=\{\operatorname{diag}(A, B) \mid A \in G(n), B \in G(n)\} \subset G(2 n)$, and write $\xi_{n}^{G /(G \times G)}$ for the projection map from $G(2 n)$ onto $G(2 n) /(G \times G)(c f .[11 ; ~ § 1])$.
2. Bott maps for the orthogonal and symplectic groups. Here we recall classical results of Bott, which will be used in $\S 5$. Let $\Omega(X)$ denote the space of loops on X, and let $\Omega_{0}(X)$ denote the arcwise-connected component of the trivial loop. Consider the following maps:

$$
\begin{aligned}
& \omega_{n}^{\mathrm{O}}: \mathrm{O}(2 n) / \mathrm{U} \rightarrow \Omega(\mathrm{O}(2 n)), \quad \omega_{n}^{\mathrm{O} / \mathrm{U}}: \mathrm{U}(2 n) / \mathrm{Sp} \rightarrow \Omega(\mathrm{O}(4 n) / \mathrm{U}), \\
& \omega_{n}^{\mathrm{U} / \mathrm{Sp}} \mathrm{Sp}(2 n) /(\mathrm{Sp} \times \mathrm{Sp}) \rightarrow \Omega_{0}(\mathrm{U}(4 n) / \mathrm{Sp}), \\
& \omega_{n}^{\mathrm{Sp} /(\mathrm{Sp} \times \mathrm{Sp})}: \mathrm{Sp}(n) \rightarrow \Omega(\mathrm{Sp}(2 n) /(\mathrm{Sp} \times \mathrm{Sp})), \\
& \omega_{n}^{\mathrm{Sp}}: \mathrm{Sp}(n) / \mathrm{U} \rightarrow \Omega(\mathrm{Sp}(n)), \omega_{n}^{\mathrm{Sp} / \mathrm{U}}: \mathrm{U}(n) / \mathrm{O} \rightarrow \Omega(\mathrm{Sp}(n) / \mathrm{U}), \\
& \omega_{n}^{\mathrm{U} / \mathrm{O}}: \mathrm{O}(2 n) /(\mathrm{O} \times \mathrm{O}) \rightarrow \Omega_{0}(\mathrm{U}(2 n) / \mathrm{O}), \\
& \omega_{n}^{\mathrm{O} /(\mathrm{O} \times \mathrm{O})}: \mathrm{O}(n) \rightarrow \Omega(\mathrm{O}(2 n) /(\mathrm{O} \times \mathrm{O}))
\end{aligned}
$$

where $\omega_{n}^{\mathrm{O}}, \omega_{n}^{\mathrm{O} / \mathrm{U}}, \omega_{n}^{\mathrm{Sp}}$ and $\omega_{n}^{\mathrm{Sp} / \mathrm{U}}$ are the maps defined in [10; §2], and where the maps $\omega_{n}^{\mathrm{U} / \mathrm{Sp}}, \omega_{n}^{\mathrm{U} / \mathrm{O}}, \omega_{n}^{\mathrm{O} /(\mathrm{O} \times \mathrm{O})}$ and $\omega_{n}^{\mathrm{Sp} /\left(\mathrm{Sp} \times \mathrm{Sp}_{\mathrm{p}}\right)}$ are defined as follows:

$$
\begin{aligned}
& \omega_{n}^{\mathrm{U} / \mathrm{Sp}}\left(\xi_{n}^{\mathrm{Sp} /(\mathrm{Sp} \times \mathrm{Spp}}\left(P_{n} A P_{n}^{-1}\right)\right)(t) \\
& =\xi_{2 n}^{\mathrm{U} / \mathrm{Sp}}\left(Q_{n} S_{n} \exp \left(\frac{\pi}{2} t i T_{2 n}\right) S_{n} \operatorname{deq}(A) S_{n} \exp \left(-\frac{\pi}{2} t i T_{2 n}\right) S_{n} Q_{n}^{-1}\right)
\end{aligned}
$$

where $A \in \operatorname{Sp}(2 n), t \in[0,1] ;$

$$
\omega_{n}^{\mathrm{U} / \mathrm{O}}\left(\xi_{n}^{\mathrm{O} /(\mathrm{O} \times \mathrm{O})}\left(P_{n} A P_{n}^{-1}\right)\right)(t)=\xi_{2 n}^{\mathrm{U} / \mathrm{O}}\left(P_{n} \exp \left(\frac{\pi}{2} t i T_{n}\right) A \exp \left(-\frac{\pi}{2} t i T_{n}\right) P_{n}^{-1}\right)
$$

where $A \in \mathrm{O}(2 n), t \in[0,1]$;

$$
\omega_{n}^{G /(G \times G)}(A)(t)=\xi_{n}^{G /(G \times G)}\left(P_{n} \exp \left(\frac{\pi}{2} t J_{n}\right) \operatorname{diag}\left(A, I_{n}\right) \exp \left(-\frac{\pi}{2} t J_{n}\right) P_{n}^{-1}\right)
$$

where $A \in G(n), t \in[0,1]$, and $G=\mathrm{O}$ or Sp as in $\S 1$. Then the direct limit maps

$$
\omega_{\infty}^{\mathrm{o}}: \mathrm{O}(\infty) / \mathrm{U} \rightarrow \Omega(\mathrm{O}(\infty)), \omega_{\infty}^{\mathrm{O} / \mathrm{U}}: \mathrm{U}(\infty) / \mathrm{Sp} \rightarrow \Omega(\mathrm{O}(\infty) / \mathrm{U}), \text { etc. }
$$

where we have put $\omega_{\infty}^{\mathrm{O}}=\lim _{\rightarrow \rightarrow} \omega_{n}^{\mathrm{O}}, \mathrm{O}(\infty) / \mathrm{U}=\lim _{\rightarrow} \mathrm{O}(2 n) / \mathrm{U}$, etc., are defined in the usual way, ${ }^{1}$ and the Bott periodicity theorems for the orthogonal and symplectic groups are immediate consequences of the following:

Theorem (2.1) (see [2], [3], [4], [5], and also [8; §24]). The maps $\omega_{\infty}^{\mathrm{O}}$, $\omega_{\infty}^{\mathrm{O} / \mathrm{U}}, \omega_{\infty}^{\mathrm{U} / \mathrm{Sp}}, \omega_{\infty}^{\mathrm{Sp} /(\mathrm{Sp} \times \mathrm{Sp})}, \omega_{\infty}^{\mathrm{Sp}}, \omega_{\infty}^{\mathrm{Sp} / \mathrm{U}}, \omega_{\infty}^{\mathrm{U} / \mathrm{O}}$ and $\omega_{\infty}^{\mathrm{O} /(\mathrm{O} \times \mathrm{O})}$ are homotopy equivalences.
3. The maps $\nu_{n}^{\mathrm{U} / \mathrm{Sp}}$ and $\nu_{n}^{\mathrm{U} / \mathrm{O}}$. For later use, we define here the maps $\nu_{n}^{\mathrm{U} / \mathrm{Sp}}: \mathrm{U}(2 n) / \mathrm{Sp} \rightarrow \mathrm{U}(4 n) / \mathrm{Sp}$ and $\nu_{n}^{\mathrm{U} / \mathrm{O}}: \mathrm{U}(n) / \mathrm{O} \rightarrow \mathrm{U}(2 n) / \mathrm{O}$ as follows:

$$
\begin{gathered}
\nu_{n}^{\mathrm{U} / \mathrm{Sp}}\left(\xi_{n}^{\mathrm{U} / \mathrm{Sp}}\left(P_{n} A P_{n}^{-1}\right)\right)=\xi_{2 n}^{\mathrm{U} / \mathrm{Sp}}\left(Q_{n} S_{n} \operatorname{diag}\left(A, I_{2 n}\right) S_{n} Q_{n}^{-1}\right) \quad \text { for } A \in \mathrm{U}(2 n) \\
\nu_{n}^{\mathrm{U} / \mathrm{O}}\left(\xi_{n}^{\mathrm{U} / \mathrm{O}}(A)\right)=\xi_{2 n}^{\mathrm{U} / \mathrm{O}}\left(P_{n} \operatorname{diag}\left(A, I_{n}\right) P_{n}^{-1}\right) \quad \text { for } A \in \mathrm{U}(n)
\end{gathered}
$$

Consider now the direct limits $\nu_{\infty}^{\mathrm{U} / \mathrm{Sp}}=\lim _{\rightarrow} \nu_{n}^{\mathrm{U} / \mathrm{Sp}}$ and $\nu_{\infty}^{\mathrm{U} / \mathrm{O}}=\lim _{\rightarrow} \nu_{n}^{\mathrm{U} / \mathrm{O}}$. Then by an elementary argument used in [5; §1], we can see:

Lemma (3.1). The map $\nu_{\infty}^{\mathrm{U} / \mathrm{Sp}}$ (resp. $\nu_{\infty}^{\mathrm{U} / \mathrm{O}}$) is homotopic to the identity map of $\mathrm{U}(\infty) / \mathrm{Sp}($ resp. of $\mathrm{U}(\infty) / \mathrm{O})$.

For a proof, see Appendix 1. An immediate consequence of this lemma is that $\nu_{\infty}^{\mathrm{U} / \mathrm{Sp}}$ and $\nu_{\infty}^{\mathrm{U} / \mathrm{O}}$ are homotopy (self-) equivalences. We shall use this fact in $\S 5$.

[^0]4. Definition of the maps χ_{n}^{O} and χ_{n}^{Sp}. We continue to use the notation of $\S 1$. For each $\left(z_{0}, z_{1}, z_{2}\right) \in \mathbf{C}^{3}$, let us now put
\[

$$
\begin{gathered}
L_{n}\left(z_{1}, z_{2}\right)=\operatorname{diag}\left(z_{1} I_{n}, \bar{z}_{1} I_{n}\right)+z_{2} i T_{n} J_{n}=\left(\begin{array}{cc|cc|cc}
z_{1} I_{n} & -z_{2} i I_{n} \\
-z_{2} i I_{n} & \bar{z}_{1} I_{n}
\end{array}\right), \\
M_{n}\left(z_{0}, z_{1}, z_{2}\right)=\operatorname{dec}\left(S_{n} z_{0} I_{4 n} S_{n}\right)+K_{2 n} \operatorname{dec}\left(S_{n} L_{2 n}\left(z_{1}, z_{2}\right) S_{n}\right) \\
=\left(\begin{array}{cc|cc|ccc}
x_{0} I_{n} & 0 \\
0 & x_{0} I_{n} & -x_{1} I_{n} & -y_{2} I_{n} & -y_{0} I_{n} I_{n} & -x_{1} I_{n} & 0 \\
\hline x_{1} I_{n} & y_{2} I_{n} & x_{0} I_{n} & 0 & -y_{0} I_{n} & y_{1} I_{n} & -x_{2} I_{n} \\
y_{2} I_{n} I_{n} & -y_{1} I_{n} \\
\hline y_{1} I_{n} & 0 & x_{0} I_{n} & -y_{1} I_{n} & x_{2} I_{n} & -y_{0} I_{n} & 0 \\
0 & 0 & x_{2} I_{n} & y_{1} I_{n} & 0 & -y_{0} I_{n} \\
\hline 0 & y_{0} I_{n} & -x_{2} I_{n} & x_{0} I_{n} & 0 & x_{1} I_{n} & y_{2} I_{n} \\
\hline-y_{1} I_{n} & x_{2} I_{n} & -y_{1} I_{n} & 0 & x_{0} I_{n} & y_{2} I_{n} & x_{1} I_{n} \\
x_{2} I_{n} & y_{1} I_{n} & 0 & y_{0} I_{n} & -x_{1} I_{n} & -y_{2} I_{n} & x_{0} I_{n} \\
0 \\
y_{2} I_{n} & -x_{1} I_{n} & 0 & x_{0} I_{n}
\end{array}\right), \\
N_{n}\left(z_{0}, z_{1}, z_{2}\right)=z_{0} I_{2 n}+j L_{n}\left(z_{1}, z_{2}\right)=\left(\begin{array}{ccc}
\left(z_{0}+j z_{1}\right) I_{n} & i j z_{2} I_{n} \\
i j z_{2} I_{n} & \left(z_{0}+j \bar{z}_{1}\right) I_{n}
\end{array}\right)
\end{gathered}
$$
\]

with $z_{r}=x_{r}+i y_{r}, x_{r} \in \mathbf{R}, y_{r} \in \mathbf{R}(r=0,1,2)$, and consider the unit 4 -sphere

$$
\mathbf{S}\left(\mathbf{C}^{2} \times \mathbf{R}\right)=\left\{\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{S}\left(\mathbf{C}^{3}\right) \mid w_{2} \in \mathbf{R}\right\},
$$

where

$$
\mathbf{S}\left(\mathbf{C}^{3}\right)=\left\{\left.\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{C}^{3}| | w_{0}\right|^{2}+\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}=1\right\} .
$$

Then we can see by elementary calculations that

$$
M_{n}\left(w_{0}, w_{1}, w_{2}\right) \in \mathrm{O}(8 n) \text { and } N_{n}\left(w_{0}, w_{1}, w_{2}\right) \in \mathrm{Sp}(2 n)
$$

for all $\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{S}\left(\mathbf{C}^{2} \times \mathbf{R}\right)$. Bearing this in mind, we define the maps χ_{n}^{O} and χ_{n}^{Sp} mentioned in the introduction, as follows:

If $\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{S}\left(\mathbf{C}^{2} \times \mathbf{R}\right)$, then we put

$$
\begin{aligned}
& \chi_{n}^{O}\left(P_{n} A P_{n}^{-1}\right)\left(\left[w_{0}: w_{1}: w_{2}\right]\right) \\
& \quad=R_{n} \operatorname{comm}\left(M_{n}\left(w_{0}, w_{1}, w_{2}\right), \operatorname{dec}\left(S_{n} \operatorname{diag}\left(A, I_{2 n}\right) S_{n}\right)\right) R_{n}^{-1}
\end{aligned}
$$

for $A \in \mathrm{U}(2 n)$, and

$$
\chi_{n}^{\mathrm{Sp}}(A)\left(\left[w_{0}: w_{1}: w_{2}\right]\right)=P_{n} \operatorname{comm}\left(N_{n}\left(w_{0}, w_{1}, w_{2}\right), \operatorname{diag}\left(A, I_{n}\right)\right) P_{n}^{-1}
$$

for $A \in \mathrm{U}(n)$. If $\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{S}\left(\mathbf{C}^{3}\right)$ and $w_{2} \neq 0$, then we put

$$
\begin{aligned}
& \chi_{n}^{\mathrm{O}}\left(P_{n} A P_{n}^{-1}\right)\left(\left[w_{0}: w_{1}: w_{2}\right]\right) \\
& \quad=\chi_{n}^{\mathrm{O}}\left(P_{n} A P_{n}^{-1}\right)\left(\left[w_{0} \bar{w}_{2} /\left|w_{2}\right|: w_{1} \bar{w}_{2} /\left|w_{2}\right|:\left|w_{2}\right|\right]\right)
\end{aligned}
$$

for $A \in \mathrm{U}(2 n)$, and

$$
\chi_{n}^{\mathrm{Sp}}(A)\left(\left[w_{0}: w_{1}: w_{2}\right]\right)=\chi_{n}^{\mathrm{Sp}}(A)\left(\left[w_{0} \bar{w}_{2} /\left|w_{2}\right|: w_{1} \bar{w}_{2} /\left|w_{2}\right|:\left|w_{2}\right|\right]\right)
$$

for $A \in \mathrm{U}(n)$. Here $\left[w_{0}: w_{1}: w_{2}\right]$ denotes the point of $\mathbf{P}_{2} \mathbf{C}$ corresponding to $\left(w_{0}, w_{1}, w_{2}\right) \in \mathbf{S}\left(\mathbf{C}^{3}\right)$.

We leave it to the reader to check that χ_{n}^{O} and χ_{n}^{Sp} are well-defined.
5. The main theorem. As before let $\tilde{\mathscr{C}}(X ; Y)$ denote the space of based maps $X \rightarrow Y$. Henceforth we use the following conventions (see also Appendix 2):
(1) Let $\mathbf{P}_{1} \mathbf{C}=\left\{\left[z_{0}: z_{1}\right] \mid\left(z_{0}, z_{1}\right) \in \mathbf{C}^{2},\left(z_{0}, z_{1}\right) \neq(0,0)\right\}$ be the complex projective line. Then each element f of $\tilde{\mathscr{C}}\left(\mathbf{P}_{1} \mathbf{C} ; Y\right)$ is regarded as an element of $\Omega^{2}(Y)=\Omega(\Omega(Y))$ by putting

$$
f(u)(v)=f([\cos (\pi v)+i \sin (\pi v) \cos (\pi u): \sin (\pi v) \sin (\pi u)])
$$

for $u, v \in[0,1]$. In this way we identify $\tilde{\mathscr{C}}\left(\mathbf{P}_{1} \mathbf{C} ; Y\right)$ with the double loop space of Y.
(2) Also we identify $\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} ; Y\right)$ with the 4 th iterated loop space of Y in the following way: Let $q: \mathbf{P}_{2} \mathbf{C} \rightarrow \mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C}$ be the canonical map, and let
$(*)\left\{\begin{array}{l}w_{0}(u, v)=\cos (\pi v)+i \sin (\pi v) \cos (\pi u), \\ w_{1}(s, t, u, v)=\sin (\pi v) \sin (\pi u)(\cos (\pi t)+i \sin (\pi t) \cos (\pi s)), \\ w_{2}(s, t, u, v)=\sin (\pi v) \sin (\pi u) \sin (\pi t) \sin (\pi s) .\end{array}\right.$
Then each $g \in \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} ; Y\right)$ is regarded as an element of $\Omega^{4}(Y)$ by

$$
g(s)(t)(u)(v)=g\left(q\left(\left[w_{0}(u, v): w_{1}(s, t, u, v): w_{2}(s, t, u, v)\right]\right)\right)
$$

With these understood, consider now the diagrams
(5.1) ${ }_{n}$

and

where the labelled maps are as defined before and the bottom rows are induced by the obvious cofibration $\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} \leftarrow \mathbf{P}_{2} \mathbf{C} \leftarrow \mathbf{P}_{1} \mathbf{C}$. Taking the direct limits and writing $\chi_{\infty}^{\mathrm{O}}=\lim _{\rightarrow} \chi_{n}^{\mathrm{O}}, \chi_{\infty}^{\mathrm{Sp}}=\lim _{\rightarrow} \chi_{n}^{\mathrm{Sp}}$, etc., we then get the diagrams (5.1) ${ }_{n}$ and (5.2) ${ }_{n}$ for $n=\infty$, in which all rows are (Hurewicz) fibration sequences.

Proposition (5.3). The diagrams (5.1) ${ }_{n}$ and (5.2) ${ }_{n}$ for $n \leq \infty$ are homotopy-commutative.

This will be proved in $\S 6$, the next section. Our main theorem is the following, which is a refinement of Theorem (0.1):

ThEOREM (5.4). The maps $\chi_{\infty}^{\mathrm{O}}$ and $\chi_{\infty}^{\mathrm{Sp}}$ are homotopy equivalences, and:
(i) the homomorphism $\left(\chi_{n}^{\mathrm{O}}\right)_{*}: \pi_{r}(\mathrm{U}(2 n)) \rightarrow \pi_{r}\left(\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(8 n)\right)\right)$ induced by χ_{n}^{O} is isomorphic for $r \leq 4 n-1$ with $(r, n) \neq(3,1)$;
(ii) the homomorphism $\left(\chi_{n}^{\mathrm{Sp}}\right)_{*}: \pi_{r}(U(n)) \rightarrow \pi_{r}\left(\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \operatorname{Sp}(2 n)\right)\right)$ induced by χ_{n}^{Sp} is isomorphic for $r \leq 2 n-1$.

Proof. The part for $n=\infty$ is obtained by an easy five-lemma argument: Combining Theorem (2.1), Lemma (3.1) and Proposition (5.3), and noting J. H. C. Whitehead's theorem (and Theorem 3 of [7]), we see that $\chi_{\infty}^{\mathrm{O}}$ and $\chi_{\infty}^{\mathrm{Sp}}$ are homotopy equivalences.

The remaining part is proved as follows. ${ }^{2}$ Consider the commutative diagram

$$
\begin{array}{ccc}
\pi_{r}(\mathrm{U}(\infty)) & \xrightarrow{\left(\chi_{\infty}^{0}\right)_{*}} & \pi_{r}\left(\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(\infty)\right)\right) \\
\uparrow & \uparrow \\
\pi_{r}(\mathrm{U}(2 n)) & \stackrel{\left(\chi_{n}^{o}\right)_{*}}{\rightarrow} & \pi_{r}\left(\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(8 n)\right)\right)
\end{array}
$$

where the verticals are the canonical homomorphisms. Then the left-hand vertical is an isomorphism for $r \leq 4 n-1$, while the right-hand vertical is an isomorphism for $r \leq 8 n-6$. (Note that $(\mathrm{O}(\infty), \mathrm{O}(8 n))$ is $(8 n-1)$ connected.) Hence (i) follows. The assertion (ii) can be verified analogously.

Remark. One can easily check that for $(r, n)=(3,1)$ the homomor$\operatorname{phism}\left(\chi_{1}^{\mathrm{O}}\right)_{*}: \pi_{3}(\mathrm{U}(2)) \rightarrow \pi_{3}\left(\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(8)\right)\right)$ is monomorphic but not epimorphic.
6. Proof of Proposition (5.3). First we shall show that the subdiagrams (5.1b) n_{n} and (5.2b) ${ }_{n}$ are homotopy-commutative. For this, consider the maps

$$
\Theta_{2 n}^{\mathrm{O}}(r): \mathrm{U}(4 n) / \mathrm{Sp} \rightarrow \Omega^{2}(\mathrm{O}(8 n)) \text { and } \Theta_{2 n}^{\mathrm{Sp}}(r): \mathrm{U}(2 n) / \mathrm{O} \rightarrow \Omega^{2}(\mathrm{Sp}(2 n))
$$

defined in $[10 ; \S 4]$, where $r \in[0,1]$. If in $(5.1 b)_{n}$ and $(5.2 b)_{n}$ we replace the map

$$
\Omega\left(\omega_{4 n}^{\mathrm{O}}\right) \circ \omega_{2 n}^{\mathrm{O} / \mathrm{U}}: \mathrm{U}(4 n) / \mathrm{Sp} \rightarrow \Omega(\mathrm{O}(8 n) / \mathrm{U}) \rightarrow \Omega^{2}(\mathrm{O}(8 n))
$$

by $\Theta_{2 n}^{O}(0)$ and the map

$$
\Omega\left(\omega_{2 n}^{\mathrm{Sp}}\right) \circ \omega_{2 n}^{\mathrm{Sp} / \mathrm{U}}: \mathrm{U}(2 n) / \mathrm{O} \rightarrow \Omega(\mathrm{Sp}(2 n) / \mathrm{U}) \rightarrow \Omega^{2}(\mathrm{Sp}(2 n))
$$

by $\Theta_{2 n}^{\mathrm{Sp}}(0)$ respectively, then the resulting diagrams are strictly commutative, as seen by direct calculations. On the other hand, as mentioned in [10; §4], we have

$$
\Theta_{2 n}^{\mathrm{O}}(1)=\Omega\left(\omega_{4 n}^{\mathrm{O}}\right) \circ \omega_{2 n}^{\mathrm{O} / \mathrm{U}} \quad \text { and } \quad \Theta_{2 n}^{\mathrm{Sp}}(1)=\Omega\left(\omega_{2 n}^{\mathrm{Sp}}\right) \circ \omega_{2 n}^{\mathrm{Sp} / \mathrm{U}}
$$

Hence the homotopy-commutativity of $(5.1 b)_{n}$ and (5.2b) ${ }_{n}$ for $n<\infty$ follows, and considering the direct limits $\Theta_{\infty}^{\mathrm{O}}(r)$ and $\Theta_{\infty}^{\mathrm{Sp}}(r)$, we see that $(5.1 b)_{\infty}$ and (5.2b) $)_{\infty}$ are also homotopy-commutative.

[^1]Next we shall prove the homotopy-commutativity of (5.1a) ${ }_{n}$ and (5.2a) ${ }_{n}$. For $r, s, t, u, v \in[0,1]$, let

$$
F_{2 n}(r, u, v) \in \mathrm{O}(8 n) \quad \text { and } \quad G_{2 n}(r, u, v) \in \mathrm{Sp}(2 n)
$$

be as defined in $[\mathbf{1 0} ; \S 4]$, and put

$$
\begin{aligned}
& V_{n}(s, t, u)=\exp \left(\frac{\pi}{2} u K_{2 n}\right) \operatorname{dec}\left(S_{n} \exp \left(\frac{\pi}{2} t i T_{2 n}\right) \exp \left(\frac{\pi}{2} s J_{2 n}\right) S_{n}\right) \in \mathrm{O}(8 n), \\
& W_{n}(s, t, u)=\exp \left(\frac{\pi}{2} u j I_{2 n}\right) \exp \left(\frac{\pi}{2} t i T_{n}\right) \exp \left(\frac{\pi}{2} s J_{n}\right) \in \operatorname{Sp}(2 n) .
\end{aligned}
$$

Further, put $V_{n}(s, t)=V_{n}(s, t, 0), W_{n}(s, t)=W_{n}(s, t, 0)$, and define the maps

$$
\Pi_{n}^{\mathrm{O}}(r): \mathrm{Sp}(n) \rightarrow \Omega^{4}(\mathrm{O}(8 n)) \quad \text { and } \quad \Pi_{n}^{\mathrm{Sp}}(r): \mathrm{O}(n) \rightarrow \Omega^{4}(\mathrm{Sp}(2 n))
$$

for each $r \in[0,1]$, as follows:

$$
\begin{aligned}
& \Pi_{n}^{\mathrm{O}}(r)(A)(s)(t)(u)(v) \\
& \quad=R_{n} V_{n}(r s, r t, r u) C_{n}(A ; r, s, t, u, v)\left(V_{n}(r s, r t, r u)\right)^{-1} R_{n}^{-1}
\end{aligned}
$$

where $A \in \operatorname{Sp}(n)$ and

$$
\begin{aligned}
& C_{n}(A ; r, s, t, u, v) \\
& =\operatorname{comm}\left(\left(V_{n}(s, t)\right)^{-1} F_{2 n}(r, u, v) V_{n}(s, t), \operatorname{dec}\left(S_{n} \operatorname{diag}\left(\operatorname{deq}(A), I_{2 n}\right) S_{n}\right)\right) ; \\
& \quad \Pi_{n}^{\mathrm{Sp}}(r)(A)(s)(t)(u)(v) \\
& \quad=P_{n} W_{n}(r s, r t, r u) D_{n}(A ; r, s, t, u, v)\left(W_{n}(r s, r t, r u)\right)^{-1} P_{n}^{-1}
\end{aligned}
$$

where $A \in \mathrm{O}(n)$ and

$$
\begin{aligned}
& D_{n}(A ; r, s, t, u, v) \\
& \quad=\operatorname{comm}\left(\left(W_{n}(s, t)\right)^{-1} G_{2 n}(r, u, v) W_{n}(s, t), \operatorname{diag}\left(A, I_{n}\right)\right) .
\end{aligned}
$$

Then for $r=0$, we have

$$
\begin{aligned}
& F_{2 n}(0, u, v)=I_{8 n} \cos (\pi v)+J_{4 n} \sin (\pi v) \cos (\pi u)+K_{2 n} \sin (\pi v) \sin (\pi u), \\
& G_{2 n}(0, u, v)=I_{2 n} \cos (\pi v)+i I_{2 n} \sin (\pi v) \cos (\pi u)+j I_{2 n} \sin (\pi v) \sin (\pi u),
\end{aligned}
$$

and calculations show that

$$
\begin{aligned}
& \left(V_{n}(s, t)\right)^{-1} F_{2 n}(0, u, v) V_{n}(s, t) \\
& \quad=M_{n}\left(w_{0}(u, v), w_{1}(s, t, u, v), w_{2}(s, t, u, v)\right) \\
& \left(W_{n}(s, t)\right)^{-1} G_{2 n}(0, u, v) W_{n}(s, t) \\
& \quad=N_{n}\left(w_{0}(u, v), w_{1}(s, t, u, v), w_{2}(s, t, u, v)\right)
\end{aligned}
$$

where $w_{0}(u, v), w_{1}(s, t, u, v)$ and $w_{2}(s, t, u, v)$ are given by the formulae $(*)$ at the beginning of $\S 5$ and where $M_{n}\left(z_{0}, z_{1}, z_{2}\right)$ and $N_{n}\left(z_{0}, z_{1}, z_{2}\right)$ are as defined in $\S 4$. Hence we see that the map $\chi_{n}^{\mathrm{O}} \circ \kappa_{n}^{\mathrm{U}}$ is just the composite map

$$
\operatorname{Sp}(n) \xrightarrow{\Pi_{n}^{\mathrm{O}}(0)} \Omega^{4}(\mathrm{O}(8 n))=\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} ; \mathrm{O}(8 n)\right) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \mathrm{O}(8 n)\right)
$$

and the map $\chi_{n}^{\mathrm{Sp}} \circ \iota_{n}^{\mathrm{U}}$ is equal to the composition

$$
\mathrm{O}(n) \xrightarrow{\Pi_{n}^{\mathrm{Sp}_{\mathrm{p}}}(0)} \Omega^{4}(\operatorname{Sp}(2 n))=\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} ; \operatorname{Sp}(2 n)\right) \rightarrow \tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} ; \operatorname{Sp}(2 n)\right)
$$

(where the unlabelled arrows are the maps induced by the canonical surjection $\mathbf{P}_{2} \mathbf{C} \rightarrow \mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C}$). Also, noting the equalities

$$
\begin{aligned}
& \left(V_{n}(s, t)\right)^{-1} F_{2 n}(1, u, v) V_{n}(s, t) \\
& =\left(V_{n}(s, t, u)\right)^{-1} \exp \left(\pi v J_{4 n}\right) V_{n}(s, t, u), \\
& \left(W_{n}(s, t)\right)^{-1} G_{2 n}(1, u, v) W_{n}(s, t) \\
& =\left(W_{n}(s, t, u)\right)^{-1} \exp \left(\pi v i I_{2 n}\right) W_{n}(s, t, u),
\end{aligned}
$$

we see by calculations that

$$
\begin{aligned}
& \Pi_{n}^{\mathrm{O}}(1)=\Omega^{3}\left(\omega_{4 n}^{\mathrm{O}}\right) \circ \Omega^{2}\left(\omega_{2 n}^{\mathrm{O} / \mathrm{U}}\right) \circ \Omega\left(\omega_{n}^{\mathrm{U} / \mathrm{Sp}}\right) \circ \omega_{n}^{\mathrm{Sp} /(\mathrm{Sp} \times \mathrm{Sp})} \\
& \Pi_{n}^{\mathrm{Sp}}(1)=\Omega^{3}\left(\omega_{2 n}^{\mathrm{Sp}}\right) \circ \Omega^{2}\left(\omega_{2 n}^{\mathrm{Sp} / \mathrm{U}}\right) \circ \Omega\left(\omega_{n}^{\mathrm{U} / \mathrm{O}}\right) \circ \omega_{n}^{\mathrm{O} /(\mathrm{O} \times \mathrm{O})} .
\end{aligned}
$$

Hence the homotopy-commutativity of $(5.1 \mathrm{a})_{n}$ and (5.2a) ${ }_{n}$ for $n<\infty$ is clear, and considering $\Pi_{\infty}^{\mathrm{O}}(r)$ and $\Pi_{\infty}^{\mathrm{Sp}}(r)$, we conclude that $(5.1 \mathrm{a})_{\infty}$ and $(5.2 \mathrm{a})_{\infty}$ are also homotopy-commutative.

Appendix 1. Proof of Lemma (3.1). For completeness we record a proof of (3.1) here. ${ }^{3}$ First, choose a path $\Lambda_{n}:[0,1] \rightarrow \mathrm{SO}(n+2)$ for each n so that $\Lambda_{n}(0)=I_{n+2}$ and $\Lambda_{n}(1)$ is the permutation matrix associated to the 3-cycle: $1 \mapsto n+1, n+1 \mapsto n+2, n+2 \mapsto 1$. Further, define $\Gamma_{n}(t)$ $\in S O(2 n)$ inductively by

$$
\Gamma_{1}(t)=I_{2} \quad \text { and } \quad \Gamma_{n+1}(t)=\operatorname{diag}\left(\Gamma_{n}(t), I_{2}\right) \operatorname{diag}\left(I_{n}, \Lambda_{n}(t)\right)
$$

where $t \in[0,1]$. Note that $\Gamma_{n}(1)$ is a $2 n \times 2 n$ permutation matrix and the corresponding permutation takes r to $2 r-1$ for $1 \leq r \leq n$.

[^2]It is now easy to see that $\nu_{\infty}^{\mathrm{U} / \mathrm{O}}$ is homotopic to the identity map: Consider the family of maps

$$
A \mapsto \Gamma_{n}(t) \operatorname{diag}\left(A, I_{n}\right)\left(\Gamma_{n}(t)\right)^{-1}: \mathrm{U}(n) \rightarrow \mathrm{U}(2 n) \quad(t \in[0,1])
$$

By passage to the quotients, these induce maps $\mathrm{U}(n) / \mathrm{O} \rightarrow \mathrm{U}(2 n) / \mathrm{O}$, and then, since $\Gamma_{n}(1) \operatorname{diag}\left(A, I_{n}\right)\left(\Gamma_{n}(1)\right)^{-1}=P_{n} \operatorname{diag}\left(A, I_{n}\right) P_{n}^{-1}$ and $\Gamma_{n}(0)=I_{2 n}$, we get a homotopy between $\nu_{n}^{\mathrm{U} / \mathrm{O}}$ and the canonical injection $\mathrm{U}(n) / \mathrm{O} \rightarrow$ $\mathrm{U}(2 n) / \mathrm{O}$ for each n. Taking the direct limit, we get the required homotopy.

Replacing $\mathrm{U}(n) / \mathrm{O}$ by $\mathrm{U}(2 n) / \mathrm{Sp}$, and $\Gamma_{n}(t)$ by the Kronecker product of $\Gamma_{n}(t)$ and I_{2}, we can see by the same type of argument that $\nu_{\infty}^{\mathrm{U} / \mathrm{Sp}}$ is homotopic to the identity. We leave further details to the reader.

Appendix 2. Note on the conventions mentioned in §5. For brevity we let $I=[0,1]$ here. Let $\mathbf{P}_{n} \mathbf{C}$ be the n-dimensional complex projective space, and let Y be an arbitrary based space. In $\S 5$, we have identified the space $\tilde{\mathscr{C}}\left(\mathbf{P}_{1} \mathbf{C} ; Y\right)$ with $\Omega^{2}(Y)$ and the space $\tilde{\mathscr{C}}\left(\mathbf{P}_{2} \mathbf{C} / \mathbf{P}_{1} \mathbf{C} ; Y\right)$ with $\Omega^{4}(Y)$. These identifications are based on the following observations:
(1) Let $\mathbf{P}_{m} \mathbf{R}$ be the m-dimensional real projective space, and put

$$
\begin{aligned}
& u_{0}=\cos \left(\pi t_{1}\right), \quad u_{m}=\sin \left(\pi t_{1}\right) \sin \left(\pi t_{2}\right) \cdots \sin \left(\pi t_{m-1}\right) \sin \left(\pi t_{m}\right) \\
& u_{r}=\sin \left(\pi t_{1}\right) \sin \left(\pi t_{2}\right) \cdots \sin \left(\pi t_{r}\right) \cos \left(\pi t_{r+1}\right) \quad(1 \leq r \leq m-1)
\end{aligned}
$$

Then the map $\left(t_{1}, t_{2}, \ldots, t_{m}\right) \mapsto\left[u_{0}: u_{1}: \cdots: u_{m}\right]$ from I^{m} to $\mathbf{P}_{m} \mathbf{R}$ defines, by passage to the quotient, a homeomorphism from $I^{m} / \partial I^{m}$ to $\mathbf{P}_{m} \mathbf{R} / \mathbf{P}_{m-1} \mathbf{R}$ (where ∂I^{m} is the boundary of I^{m}).
(2) Put $z_{r}=x_{r}+i y_{r}(0 \leq r \leq n)$. Then the map

$$
\left[x_{0}: y_{0}: x_{1}: y_{1}: \cdots: x_{n}: y_{n}\right] \mapsto\left[z_{0}: z_{1}: \cdots: z_{n}\right]
$$

from $\mathbf{P}_{2 n+1} \mathbf{R}$ to $\mathbf{P}_{n} \mathbf{C}$ defines, by restriction and by passage to the quotient, a homeomorphism from $\mathbf{P}_{2 n} \mathbf{R} / \mathbf{P}_{2 n-1} \mathbf{R}$ to $\mathbf{P}_{n} \mathbf{C} / \mathbf{P}_{n-1} \mathbf{C}$.

Combining (1) and (2) and taking $m=2 n$, we thus get a homeomorphism from $I^{2 n} / \partial I^{2 n}$ to $\mathbf{P}_{n} \mathbf{C} / \mathbf{P}_{n-1} \mathbf{C}$, and hence a homeomorphism from $\tilde{\mathscr{C}}\left(\mathbf{P}_{n} \mathbf{C} / \mathbf{P}_{n-1} \mathbf{C} ; Y\right)$ to $\Omega^{2 n}(Y)$.

Acknowledgment. The author thanks Professors S. Oka and M. Kamata, who read a preliminary version of this paper and suggested a number of improvements.

References

[1] D. W. Anderson, A new cohomology theory, Ph. D. Thesis, Univ. of California, Berkeley, 1964.
[2] R. Bott, The stable homotopy of the classical groups, Ann. of Math., (2) 70 (1959), 313-337.
[3] , Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France, 87 (1959), 293-310.
[4] H. Cartan, Démonstration homologique des théorèmes de périodicité de Bott, Séminaire H. Cartan, 12e année: 1959/60, École Normale Suprérieure, Secrétariat Math., Paris, 1961.
[5] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pura Appl., (4) 54 (1961), 231-254.
[6] W. Meier, Complex and real K-theory and localization, J. Pure Appl. Algebra, 14 no. 1, (1979), 59-71.
[7] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280.
[8] ___ Morse Theory, Ann. of Math. Studies, No. 51, Princeton Univ. Press, Princeton, N. J., 1963.
[9] R. M. W. Wood, K-theory and the complex projective plane, mimeographed notes. ${ }^{4}$
[10] M. Yasuo, On the spaces $\mathrm{O}(4 n) / \mathrm{Sp}$ and $\mathrm{Sp}(n) / \mathrm{O}$, and the Bott maps, Publ. Res. Inst. Math. Sci., 19 no. 1, (1983), 317-326.
[11] , On the spaces $\mathrm{U}(2 n) / \Delta \mathrm{U}$ and the Bott maps, Math. J. Okayama Univ., 27 (1985), (to appear).

Received March 17, 1986.

Yamanashi University
Kofu 400, Japan

[^3]
[^0]: ${ }^{1}$ Strictly speaking, for example $\omega_{\infty}^{\mathrm{O}}$ is defined as the composition of the dierct limit map $\underset{\rightarrow}{\lim } \omega_{n}^{0}: \underset{\rightarrow}{\lim } \mathrm{O}(2 n) / \mathrm{U} \rightarrow \underset{\rightarrow}{\lim \Omega(\mathrm{O}(2 n)) \text { and the canonical bijection } \lim _{\rightarrow} \Omega(\mathrm{O}(2 n)) \rightarrow}$ $\overrightarrow{\Omega(\lim } \mathrm{O}(2 n))$. But here and throughout we simply write $\omega_{\infty}^{\mathrm{O}}=\underset{\rightarrow}{\lim } \omega_{n}^{\mathrm{O}}$, etc., by abuse of notation.

[^1]: ${ }^{2}$ This proof was communicated to the author by S. Oka.

[^2]: ${ }^{3}$ The author learned the techniques of this proof from Chapter $4, \S 3$ of the following book: H. Toda and M. Mimura, The topology of Lie groups (Japanese), Vol. 1, Kinokuniya Sûgaku Sôsho 14-A, Kinokuniya Book-Store, Tokyo, 1978.

[^3]: ${ }^{4}$ This is an unpublished paper of Wood, cited in: G. Walker, Quart. J. Math. Oxford (2), 32 (1981), 467-489.

