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Let U(c0), O(c0) and Sp(co) be the direct limits of the finite-dimen-
sional unitary, orthogonal and symplectic groups under inclusion, and let
P,C be the complex projective plane. Then, by a result of R. Wood in
K-theory, there exist homotopy equivalences from U(oo) to the space of
based maps P,C — O(0), and to the space of based maps P,C — Sp(o0).
In this paper we give an explicit construction of such homotopy equiva-
lences, and prove Wood’s theorem by using classical results of R. Bott
and elementary homotopy theory.

Introduction. It is well-known that, in topological K-theory, there

are natural isomorphisms

KU*(X) >KO*(X AP,C) and KU*(X)—KSp*(X A P,C),
where P,C is the complex projective plane. This result is originally due to
R. M. W. Wood, and his method for giving such isomorphisms can be
found in [9] (see also [1; §2] or [6; §1]).

Now let U(o0), O(o0) and Sp(oo) be the infinite-dimensional unitary,
orthogonal and symplectic groups respectively, and let €(X;Y) denote
the space of basepoint-preserving continuous maps from X to Y (equipped
with the compact-open topology). Then the result of Wood mentioned
above implies:

Treorem (0.1) (R. Wood). There are homotopy equivalences from
U(o0) to the space €(P,C; O(0)), and to the space €(P,C; Sp(c0)).

The main purpose of this paper is to construct such homotopy
equivalences explicitly. In §4 we shall define certain maps
x2: U(2n) > €(P,C;0(8n)) and x%:U(n) > Z(P,C; Sp(2n)),

and in §5 we shall show (Theorem (5.4)) that these give rise to homotopy
equivalences

Xa: U(e0) = €(P,C;0(0)) and  x3: U(w) - €(P,C; Sp(w0))
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in direct limits. Thus we shall give another proof of (0.1) which does not
use vector bundle theory. This work may be regarded as a continuation of
[10] and [11], and indeed our proof of (0.1) is accomplished by the
techniques used there. A by-product of our work is the result that, even
for n < oo, the maps x9 and x5P induce isomorphisms of homotopy
groups in sufficiently low dimensions.

Throughout this paper we shall keep the notation of [10] and [11]. In
particular, we denote by comm( 4, B) the commutator ABA™'B~".

1. Preliminaries. We begin by fixing our notation. Let I, be the
n X n identity matrix. We put

0 -I,
J = ( o ) € SO(2n),

I,
1 0
T, = diag(1,,-1,) = | . € 0(2n),
n n O _In
0 -I, 0 0
K —diags, 1) =" 0 % % csoun
n = diaglJy, —J,) = 0 0 0 In nj,
0o 0 -1, 0
I, 0 0 0
, 0 0 I, 0
L= diag(L, LT, L) = | o, & o|€0(n).
0 0 0 I

Here diag(A4,, A,,..., A,) denotes the square matrix with blocks A4,
A,,..., A, down the main diagonal and zeroes elsewhere. Also we let
P, € O(2n) be the 2n X 2n permutation matrix defined in [10; §1]. This
matrix represents the transformation

(Xysenes Xy Vi Vo) = (X1, Y1seves X,, ¥,): R2" > R2"
(so that det(P,) = (-1)"*~1/2), and we put
Q, = P,,diag(P,, P,) € O(4n), R, = P,,diag(Q,,0Q,) € SO(8n).
Further, as in [10; §1], we put

o (X =Y o | Z W
dec(X+zY)—-(Y X)’ deq(Z + jW) (W > )
where X,Y are arbitrary n X n real matrices and Z, W are arbitrary
n X n complex matrices, and where i (€ C) and j are the standard

generators of the algebra H of quaternions.
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For brevity, we write O(2n)/U = O(2n)/U(n), UQ2n)/Sp =
U(2n)/Sp(n), U(n)/O = U(n)/O(n), and Sp(n)/U = Sp(n)/U(n).
Here the spaces O(2n)/U(n), U(2n)/Sp(n) are defined by using the
embeddings

A — P dec(A)P': U(n) - O(2n),
A~ P,deq(A)P;*: Sp(n) —» U(2n)
induced by the canonical isomorphisms
(% + Y1yeeesx, +iy,) = (X1, V155 X5 ¥,): CF = R,
(z; + Wiy ooz, +jw,) = (20,W1,...,2,,w,): H" - C?".
We denote by «V the latter embedding Sp(n) — U(2n), by ¥ the inclu-
sion map O(n) — U(n), and by £V/5% (resp. by £€Y/°) the obvious

projection map from U(2n) onto U(2n)/Sp (resp. from U(n) onto

U(n)/0).
Let G denote either O or Sp. We further put

G(2n)/(G X G) = G(2n)/P,diag(G(n) X G(n))P!
with diag(G(n) X G(n)) = {diag(4, B) |4 € G(n), B € G(n)} € G(2n),

and write £9/(9%9  for the projection map from G(2n) onto
G(2n)/(G X G)(ct. [11; §1)).

2. Bott maps for the orthogonal and symplectic groups. Here we
recall classical results of Bott, which will be used in §5. Let £(X) denote
the space of loops on X, and let Q,(X) denote the arcwise-connected
component of the trivial loop. Consider the following maps:

w2:0(2n)/U - Q(0(2n)), «%/V:U(2n)/Sp — £(0(4n)/U),

w75 Sp(2n)/(Sp X Sp) - Q,(U(4n)/Sp),

w,P/CP>): Sp(n) - Q(Sp(2n)/(Sp X Sp)),

w1 Sp(n)/U - Q(Sp(n)), > U(n)/0 - Q(Sp(n)/U),

wY7°: 0(2n) /(0 X 0) - 2,(U(2n)/0),

©O/©%9: O(n) - 2(0(2n) /(0 X 0))

where w2, w9/Y, &P and w3’V are the maps defined in [10; §2], and

where the maps wl/5P, w70, wQ/©*9 and w3P/Gp*5P) are defined as
follows:

/5 (£50/5<(P,AP;)) (1)

m m

= g;ln/SP(QnSnexp( > tiTZn)Sndeq(A)Snexp(— 3 fiTz,,)S,,Q;l)
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where 4 € Sp(2n), t € [0,1];

w0/0(£0/0XO)(p 4p-1))() = U/O(P exp| 54T, ) dexp(- —2-tiT,,)Pn'1)

where A € O(2n), t € [0,1];

G$/CD(A)(1) = £/ P,exp( 51, | ding(4, 1,) exp(-T 1, |
where A € G(n), t €[0,1], and G = O or Sp as in §1. Then the direct
limit maps

w2:0(0)/U - ©(0(c0)), ©2V: U(w0)/Sp - 2(0(e0),/U), etc.,
0= hmw O(0)/U = limO(2n)/U, etc., are

defined in the usual way,! and the Bott penod1c1ty theorems for the
orthogonal and symplectic groups are immediate consequences of the
following:

where we have put wg

THEOREM (2.1) (see [2], [3], [4], [5], and also [8; §24]). The maps 2,
wg/u’ wg/SP, wip/(SpXSp), ‘*’ff’ wip/U, wg/o and wg/(OXO) are homotopy

equivalences.

3. The maps »>/" and »P/°. For later use, we define here the
maps »Y/5: U(2n)/Sp — U(4n)/Sp and »2/°: U(n)/0 — U(2n)/0 as
follows:

v /Se(£0/%%(P,4P)) = £5/%(Q,S,diag(4, I,,)S,0;") for 4 € U(2n);
n”0(£/°(4)) = £3/°(P,diag(4, 1,)P*) for 4 € U(n).

Consider now the direct limits »,/* = lim»,/* and »/° = lim»,/°.
Then by an elementary argument used in [5; §1], we can see:

LEMMA (3.1). The map v3/5P (resp. v2/©) is homotopic to the identity
map of U(00)/Sp (resp. of U(0)/0).

For a proof, see Appendix 1. An immediate consequence of this
lemma is that »J/5? and »/° are homotopy (self-) equivalences. We shall
use this fact in §5.

IStrictly speaking, for example w?Q is defined as the composition of the dierct limit map
1£)nw,?: 1_i_r;10(2n)/U - h'_n)lﬂ(O(2n)) and the canonical bijection h'm Q(0@2n)) »

Q( lilf;l O(2n)). But here and throughout we simply write wC = hm w? etc by abuse of
notation.
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4. Definition of the maps x© and x. We continue to use the
notation of §1. For each (z,, z;, z,) € C?, let us now put

Zl‘[n

—z,il,
L, (z,,z,) = diag(z,1,,7,1,) + 2,iT,J, = ( 2 n)’

-z,  Z1,

M, (z,, 2,, 2,) = dec(S,z,1,,S,) + K,,dec(S,L,,(z,2,)S,)

xOIn 0 _xlIn _yZIn —yOIn 0 ylln _x21n
0 xOIn _yZIn _xlln 0 _yOIn __xZIn —yIIn
x I, y1, xol, 0 nl, x,1, ~Yol, 0
yZIn xlln 0 xOIn x21n .Y1In 0 —yOIn
- yOIn 0 ylln —xZIn xOIn 0 xlIn y2In
0 yOIn _‘XZIn _ylln 0 xOIn yZIn xlln
—len xZIn yOIn 0 _xlIn _yZIn xOIn 0
XZIn len 0 yOIn _yZIn _xlIn 0 xOIn
(Zo +jz1)I iz,
N = z,L,, + JL B " g
(205 215 25) = 201, + JL, (2, 2,) ijz,1, (ZO+jZI)I,,

with z, =x,+iy,, x,€R, y, € R (r=0,1,2), and consider the unit
4-sphere
S(C? X R) = {(w,,w;,w,) € S(C?) |w, € R},

where

S(C%) = {(WO’WDWZ) € C3||Wo|2 "'|W1|2 +‘W2|2 = 1}-
Then we can see by elementary calculations that

M, (wy,w;,w,) € O(8n) and N, (w,,w;,w,) € Sp(2n)
for all (w,, w;, w,) € S(C? X R). Bearing this in mind, we define the maps
x 2 and x>P mentioned in the introduction, as follows:

If (wy, wy, w,) € S(C? X R), then we put

X5 (P, AP )([wy:wy i wy)])
= R,,comm(M,(wy, w,,w,),dec(S,diag(4, I,,)S,))R;’
for A € U(2n), and
X2 (A)([wo 2wy :w,]) = P,comm(N,(wy,w;, w,), diag(4, 1,)) P,
for A € U(n). If (wy, wy, w,) € S(C?) and w, # 0, then we put
xS (P, AP )([wo 1wy 1 wy])
= XS(PnAPn—l)([Wowz/‘%':W1W2/|W2l5 Iwzl])
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for A € U(2n), and
Xip(A)([Wo:Wl wy]) = Xip(A)([WoszWzl:W1W2/|Wzl3 |W2|])
for A € U(n). Here [w,:w,:w,] denotes the point of P,C corresponding

to (wy, wy, w,) € S(C).
We leave it to the reader to check that x© and x5P are well-defined.

5. The main theorem. As before let ¢(X;Y) denote the space of
based maps X — Y. Henceforth we use the following conventions (see
also Appendix 2):

(1) Let P,C = {[z,:2,]|(29, 21) € C?, (24, 2;) # (0,0)} be the com-
plex projective line. Then each element f of #(P,C;Y) is regarded as an
element of Q%(Y) = Q(Q(Y)) by putting

f(u)(v) = f([cos(mv) + isin(mv) cos(mu): sin(7v) sin(7u)])

for u,v € [0,1]. In this way we identify ¢(P,C;Y) with the double loop
space of Y.

(2) Also we identify €(P,C/P,C;Y) with the 4th iterated loop space
of Y in the following way: Let ¢: P,C — P,C/P,C be the canonical map,
and let

wo(u,v) = cos(mv) + isin(7v) cos(mu),

)
(

w,(s,t,u,v) = sin(7v) sin(7u) sin(7¢) sin(7s).

(*) {wy(s,t,u,v) = sin(7v) sin(7u)(cos(7t) + isin(mt) cos(ms)),

Then each g € ?(P2C /P,C; Y) is regarded as an element of 2%(Y) by
g(s)(1)(w)(v) = g(q([wo(u,v): (s, 1,u,0):wy (5,2, u,0)])).

With these understood, consider now the diagrams

Sp(n) i > U(2n) —o—> U(2n) /Sp

\l wSp/GpxSp) l »0/5p

2(Sp(2n)/(Sp x Sp)) U(4n)/Sp
ya(as) l

Q*(U(4n)/Sp) w2V

(5.1), $2(a8/Y)  (51a) X (5.1b),, 2(0(8r),/U)
23(0(8n) /U) |
$2°(5,) y92(8,)
Q4(0(8n)) l 92(06871))

I
% (P,C/P,C; O(8n)) —> Z(P,C; O(8n)) > ¢(P,C;0(8n))
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and
o(n) - - U(n) " > U(n),/0
wO/©%0) A
Q(0(2n) /(0 x 0)) U(2n)/0
J, Q( “’E/o) WSp/U
22(U(2n) /0) o
(52), o) (5:29) X (52b),  9(Sp(2n)/U)
Q*(Sp(2n) /U) N
J, 93(“’33) Y ”
Q4(Sp(2n)) ; 2*(Sp(2n))
I i I

%(P,C/P,C; Sp(2n)) —Z(P,C; Sp(2n)) ——— Z(P,C; Sp(2n))

where the labelled maps are as defined before and the bottom rows are
induced by the obvious cofibration P,C/P,C < P,C « P,C. Taking the
direct limits and writing x2 = @xg, x> = li_rglef’, etc., we then get

the diagrams (5.1), and (5.2), for n = oo, in which all rows are (Hure-
wicz) fibration sequences.

PROPOSITION (5.3). The diagrams (5.1), and (5.2), for n < oo are
homotopy-commutative.

This will be proved in §6, the next section. Our main theorem is the
following, which is a refinement of Theorem (0.1):

THEOREM (5.4). The maps xS and X3P are homotopy equivalences,
and:

(i) the homomorphism (x9)s: m(U(22n)) — m( ¢ P,C; O(8n))) in-
duced by x© is isomorphic for r < 4n — 1 with (r, n) # ~(3, 1);

(i) the homomorphism (xP)y: m,(U(n)) — w,(€(P,C; Sp(2n))) in-
duced by x 5P is isomorphic forr < 2n — 1.

Proof. The part for n = oo is obtained by an easy five-lemma argu-
ment: Combining Theorem (2.1), Lemma (3.1) and Proposition (5.3), and
noting J. H. C. Whitehead’s theorem (and Theorem 3 of [7]), we see that
x2 and xP are homotopy equivalences.
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The remaining part is proved as follows.? Consider the commutative
diagram
(x::oo )x ~
T T
(Xg )«

m(U2n)) =" 7,(%(P,C;0(8n)))

where the verticals are the canonical homomorphisms. Then the left-hand
vertical is an isomorphism for r < 4n — 1, while the right-hand vertical is
an isomorphism for r < 8n — 6. (Note that (O(0), O(8n)) is (8n — 1)-
connected.) Hence (i) follows. The assertion (ii) can be verified analo-
gously.

REMARK. One can easily c~heck that for (r,n) = (3,1) the homomor-
phism (x2)s: 73(U(2)) = m3(€(P,C; O(8))) is monomorphic but not epi-
morphic.

6. Proof of Proposition (5.3). First we shall show that the subdia-
grams (5.1b), and (5.2b), are homotopy-commutative. For this, consider
the maps

05 (r): U(4n)/Sp — 2*(0(8n)) and ©5°(r): U(2n) /0 — Q*(Sp(2n))

defined in [10; §4], where r € [0,1]. If in (5.1b), and (5.2b), we replace
the map

2(wQ,)° w2/Y: U(4n)/Sp > 2(0(8n) /U) - Q*(O(8n))
by 02 (0) and the map
2(w$) e w$2/V: U(2n) /0 - Q(Sp(2n) /U) — Q*(Sp(2n))

by ©5P(0) respectively, then the resulting diagrams are strictly commuta-
tive, as seen by direct calculations. On the other hand, as mentioned in
[10; §4], we have

09,(1) = Q(w,) e w/V and O5(1) = Q(w)e w5/

Hence the homotopy-commutativity of (5.1b), and (5.2b), for n < o
follows, and considering the direct limits ©®2(r) and ©5P(r), we see that
(5.1b),, and (5.2b),, are also homotopy-commutative.

2This proof was communicated to the author by S. Oka.
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Next we shall prove the homotopy-commutativity of (5.1a), and
(5.2a),. For r,s,t,u, v € [0,1], let

F,,(r,u,v) € O(8n) and G,,(r,u,v) < Sp(2n)
be as defined in [10; §4], and put
V.(s,t,u) = exp(%uKh) dec(Snexp(%tiTz,,) cxp( er—st,,)Sn) € O(8n),
W, (s,t,u) = exp(%uj[z,,) exp(%ti]},) exp(%an) € Sp(2n).

Further, put V,(s,t) = V,(s,t,0), W, (s,t) = W,(s,t,0), and define the
maps

IIX(r): Sp(n) > Q%(0(8n)) and II3P(r): O(n) - ©*(Sp(2n))
for each r € [0, 1], as follows:

IID(r)(A4)(s)(£)(u)(v)

=RV, (rs,rt,ru)C,(A;r,s,t,u,v)(V,(rs, rt, ru))—lR;1
where A € Sp(n) and

C(A;r,s,t,u,v)

= comm((V,,(s, t))—len(r’ u, U)Vn(s7 t),dec(S,,diag(deq(A), IZn)Sn));
ILP(r)(A)(s)()(u)(v)

= P W, (rs,rt,ru)D,(A;r,s,t,u,0)(W,(rs, rt,ru)) " P*
where 4 € O(n) and

D(A;r,s,t,u,v)

= comm((W;,(s, 1)) 'G,,(r,u,v)W,(s,1),diag(4, I,,))
Then for r = 0, we have

F,,(0,u,v) = I,cos(mv) + J,, sin(7v) cos(wu) + K,, sin(7v) sin(7u),
G,,(0,u,v) = I,,cos(mv) + il,,sin(7v) cos(mu) + jI,,sin(7v) sin(7u),

and calculations show that
(V(5,0)) " B, (0, u,0)V,(s,1)
=M (wy(u,v),w (s, t,u,v),w,(s,¢t,u,v)),
(W, (5,1))7Gy, (0, u,0)W,(s,1)

= N, (wy(u,v),w,(s,t,u,v),w,(s,t,u,0v))
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where wy(u,v), wy(s,t,u,v) and w,(s,t,u,v) are given by the formulae
(*) at the beginning of §5 and where M, (z,, zl, zz) and N, (z,, z;, z,) are
as defined in §4. Hence we see that the map x9 o k¥ is just the composite
map

I12(0) ~
Sp(n) = *(O(8n)) = ¢(P,C/P,C; O(8n)) - €(P,C; O(8n))
and the map x5P o .Y is equal to the composition
T3P (0) .
O(n) = Q*(Sp(2n)) = ¢(P,C/P,C;Sp(2n)) — €(P,C; Sp(2n))

(where the unlabelled arrows are the maps induced by the canonical
surjection P,C — P,C/P,C). Also, noting the equalities

(Va(s, 0) " By (1, w, 0) ¥, (s, 1)
= (Vu(s,t,u)) " exp(mol,, )V, (s, 1, u),
(Wo(s,0)) " Gau(L, 4, 0) W, (s, 1)
= (W, (s, t,u))" exp(mvil,, ) W, (s, 1, u),
we see by calculations that
I2(1) = @3 (S, ) e Q% w2/Y) 0 @ wV/5P) 0 @3/ CPxSP)

I13r(1) = 93(0,;35’,) o QZ(wgp’;/U) o Q(w}lj/o) 0 O/ OXO)

Hence the homotopy-commutativity of (5.1a), and (5.2a), for n < oo is
clear, and considering IT2(r) and II%(r), we conclude that (5.1a),, and
(5.2a), are also homotopy-commutative.

Appendix 1. Proof of Lemma (3.1). For completeness we record a
proof of (3.1) here.? First, choose a path A : [0,1] = SO(n + 2) for each
n so that A (0) =1I,,, and A (1) is the permutation matrix associated to
the 3-cycle:1 > n+1,n + 1+ n+ 2, n+ 2 — 1. Further, define T',(¢)
€ SO(2n) inductively by

I(t) =1, and T,,,(r) = diag(T,(1), I,) diag(1,, A, (1)),

where ¢ € [0, 1]. Note that I',(1) is a 2n X 2n permutation matrix and the
corresponding permutation takes  to2r — 1 for1 < r < n.

3 The author learned the techniques of this proof from Chapter 4, §3 of the following book:
H. Toda and M. Mimura, The topology of Lie groups (Japanese), Vol. 1, Kinokuniya
Stigaku Sosho 14-A, Kinokuniya Book-Store, Tokyo, 1978.
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It is now easy to see that »J/° is homotopic to the identity map:

Consider the family of maps

A - T,(¢) diag(4, L)(T,(¢))": U(n) > U@2n) (2 € [0,1]).
By passage to the quotients, these induce maps U(r)/O — U(2n)/0, and
then, since T, (1) diag(4, I,)(T,(1))! = P,diag(4, I,)P,* and T,(0) = I,,,
we get a homotopy between »P/° and the canonical injection U(n)/0 —
U(2n)/0 for each n. Taking the direct limit, we get the required homo-
topy.

Replacing U(n)/0 by U(2n)/Sp, and I',(¢) by the Kronecker prod-
uct of T,(¢) and I,, we can see by the same type of argument that »9/P is
homotopic to the identity. We leave further details to the reader.

Appendix 2. Note on the conventions mentioned in §5. For brevity
we let I = [0,1] here. Let P,C be the n-dimensional complex projective
space, and let Y be an arbitrary based space. In §5, we have identified the
space ¢(P,C;Y) with Q%(Y) and the space Z(P,C/P,C;Y) with Q%(Y).
These identifications are based on the following observations:

(1) Let P, R be the m-dimensional real projective space, and put

u, = cos(wt;), u,, = sin(xt,)sin(at,) - - - sin(wt,,_,) sin(=z,,),

u, = sin(#t,) sin(7t,) - - - sin(7t,) cos(7t,,;) (1 <r<m-—1).
Then the map (¢, ¢,,...,¢,,) = [ug:uy: -+ :u,] from I™ to P,R de-
fines, by passage to the quotient, a homeomorphism from I”/dI™ to
P,R/P, _,R (where dI™ is the boundary of I™).

(2) Put z, = x, + iy, (0 < r < n). Then the map

[Xo:¥oixyiyit ooe 1x, 0] = [200200 -0+ 12,]
from P,,, ;R to P,C defines, by restriction and by passage to the quotient,
a homeomorphism from P, ,R/P,, R to P,C/P,_,C.

Combining (1) and (2) and taking m = 2n, we thus get a homeomor-
phism from 7?"/9I1*" to P,C/P,_,C, and hence a homeomorphism from
¢P,LC/P,_,C;Y) to Q>*(Y).

Acknowledgment. The author thanks Professors S. Oka and M.
Kamata, who read a preliminary version of this paper and suggested a
number of improvements.
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