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Let U(oo), O(oo) and Sp(oo) be the direct limits of the finite-dimen-
sional unitary, orthogonal and symplectic groups under inclusion, and let
P2C be the complex projective plane. Then, by a result of R. Wood in
X-theory, there exist homotopy equivalences from U(oo) to the space of
based maps P2C -> O(oo), and to the space of based maps P2C -> Sp(oo).
In this paper we give an explicit construction of such homotopy equiva-
lences, and prove Wood's theorem by using classical results of R. Bott
and elementary homotopy theory.

Introduction. It is well-known that, in topological X-theory, there
are natural isomorphisms

FΪJ*(X) -* KO*(X A P2C) and F u * ( X ) -> ΓSp*( X A P2C),

where P2C is the complex projective plane. This result is originally due to
R. M. W. Wood, and his method for giving such isomorphisms can be
found in [9] (see also [1; §2] or [6; §1]).

Now let U(oo), O(oo) and Sp(oo) be the infinite-dimensional unitary,
orthogonal and symplectic groups respectively, and let $(X;Y) denote
the space of basepoint-preserving continuous maps from X to Y (equipped
with the compact-open topology). Then the result of Wood mentioned
above implies:

THEOREM (0.1) (R. Wood). There are homotopy equivalences from
U(oo) to the space t(P 2C; O(oo)), and to the space #(P2C; Sp(oo)).

The main purpose of this paper is to construct such homotopy
equivalences explicitly. In §4 we shall define certain maps

χ°n: U(2/i) -> #(P2C; O(8n)) and χ*>: U(n) -> #(P2C; Sp(2«)),

and in §5 we shall show (Theorem (5.4)) that these give rise to homotopy
equivalences

χ£:U(oo)->tf(P 2C;0(oo)) and χ*>: U(oo) -> <^(P2C; Sp(oo))

379



380 MINATO YASUO

in direct limits. Thus we shall give another proof of (0.1) which does not
use vector bundle theory. This work may be regarded as a continuation of
[10] and [11], and indeed our proof of (0.1) is accomplished by the
techniques used there. A by-product of our work is the result that, even
for n < oo, the maps χ ° and χ^p induce isomorphisms of homotopy
groups in sufficiently low dimensions.

Throughout this paper we shall keep the notation of [10] and [11]. In
particular, we denote by comm{A, B) the commutator ABA~λB~ι.

1. Preliminaries. We begin by fixing our notation. Let /„ be the
n X n identity matrix. We put

o -/,
/„ o

e SO(2«),

Γn = diag(/„,-/„) =

„,-/„) =

n = diag(In,JnTn>In) =

0

-In

-In

0

0

0

0

0

0
SO(4/i),

0
0

In

0

0

0

0

0

0

L

Here dia.g(AlyA29...9Ar) denotes the square matrix with blocks Al9

A29...,Ar down the main diagonal and zeroes elsewhere. Also we let
Pn e O(2n) be the In X In permutation matrix defined in [10; §1]. This
matrix represents the transformation

(XΛ Y V i v ) »-» (XΛ VΛ x v V R 2" -> R 2"

(so that det(Pn) = (-l) n ( "- 1 ) / 2 ), and we put

ρ n = P2πdiag(Pn,Pn) e O(4n), ΛΛ = P 4 n diag(β n > βJ e SO(8/ι).

Further, as in [10; §1], we put

where X, Y are arbitrary n X n real matrices and Z, W are arbitrary
« X n complex matrices, and where i ( e C) and y are the standard
generators of the algebra H of quaternions.
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For brevity, we write 0(2«)/U = 0(2«)/U(n), U(2«)/Sp =
U(2w)/Sp(n), U(n)/O = U(«)/0(«), and Sp(«)/U = Sp(«)/U(n).
Here the spaces 0(2n)/U(w)> U(2«)/Sp(n) are defined by using the
embeddings

A -> Pndec(A)P;1: U(n) -

induced by the canonical isomorphisms

(xt + iylt...,xH + i y n ) ^ (xlt j l 5 . . . , x n , y n ) : C" -» R 2 ",

(zx + jw1,..., zn + jwn)*-> (z 1,w 1,...,z I I,w J I):H"-»C2 1 1.

We denote by K^ the latter embedding Sp(«) -» U(2n), by t̂ 1 the inclu-
sion map O(/j) -» U(n), and by £y / S p (resp. by ξ^/o) the obvious
projection map from U(2«) onto U(2«)/Sp (resp. from U(«) onto

Let G denote either O or Sp. We further put

G(2n)/(G X G) = G(2AI)/Pndiag(G(n) X G

with diag(G(n) X G(n)) = {diag(A,B)\A e G(fi),5e G(n)} c G(2«),
and write ^ / ( C X G ) for the projection map from G(2n) onto

2. Bott maps for the orthogonal and symplectic groups. Here we

recall classical results of Bott, which will be used in §5. Let Ώ(X) denote
the space of loops on X, and let Ωo(-^) denote the arcwise-connected
component of the trivial loop. Consider the following maps:

ω°: O(2n)/U -» Ω(θ(2«)), ω ° / u : U(2«)/Sp -* Ω(θ(4n)/U),

ω"/*: Sp(2«)/(Sp X Sp) - Q0(U(4π)/Sp),

ωsp/(spχsp). S p ( M ) _̂  Ω(Sp(2«)/(Sp X Sp)),

ω*: Sp(«)/U -H. Ω(Sp(»)), ω^υ: U(«)/O - Q(Sp(n)/U),

ωy°: O(2π)/(O X O) - Ω0(U(2n)/θ),

ωo/(oχθ). O ( π ) _> Ω (o(2n)/(O X O))

where ω°, ω o / u , ω^p and ω^p / u are the maps defined in [10; §2], and
where the maps ω ^ , ω^ / o, ω°/ ( O X O ) and ωsp/(SpχsP) a r e defined as
follows:
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where A e Sp(2«), t e [0,1];

where A e O(2n), ί e [0,1];

where A e G(«), / e [0,1], and G = O or Sp as in §1. Then the direct
limit maps

ω£: O(oo)/U -> Ω(θ(oo)), ω^ / u : U(oo)/Sp -> Ω(θ(oo)/U), etc.,

where we have put ω° = limco°, O(oo)/U = Iimθ(2fl)/U, etc., are
defined in the usual way,1 and the Bott periodicity theorems for the
orthogonal and symplectic groups are immediate consequences of the
following:

THEOREM (2.1) (see [2], [3], [4], [5], and also [8; §24]). The maps ω£,
"2/U> * £ / S p , ω^ sP χ SP>, <og\ ω y u , o%/° and ω£ / ( O X O ) are homotopy
equivalences.

3. The maps ^ / S p and v^/o. For later use, we define here the
maps ^ U / S p : U(2π)/Sp -+ U(4n)/Sp and v^/0: U(Λ)/O -+ U(2Λ)/O as
follows:

/ ^ ) ^ ; 1 ) for^ e U(2ιi);

Consider now the direct limits * £ / S p = lim^u / sP and * £ / o = li

Then by an elementary argument used in [5; §1], we can see:

LEMMA (3.1). The map ^ / S p (resp. v^/o) is homotopίc to the identity
map of U(oo)/Sp (resp. of U(oo)/0).

For a proof, see Appendix 1. An immediate consequence of this
lemma is that v^/Sp and v^/o are homotopy (self-) equivalences. We shall
use this fact in §5.

1 Strictly speaking, for example ω£ is defined as the composition of the dierct limit map
limω^: lim O(2n)/U -> limΩ(O(2«)) and the canonical bijection limΩ(O(2«)) -*

Ω( lim O(2n)). But here and throughout we simply write ω£ = lim ω^, etc., by abuse of

notation.
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4. Definition of the maps χ ° and χ^p. We continue to use the
notation of §1. For each (z0, z l s z2) ε C3, let us now put

-zjh ϊχln y

fH(z0, zx, z2) = dec(5nz0/4 / (5j + K2nάtc{SnL2n{zx, z2)Sn)

x I 0

0 x I

2': %:
yoln 0

0 yoln

x I 0

0 x I

Xf. ~-yt
yoln 0

0 yoln

-yoln 0

0 -Jo^/i

x I 0

0 x I

2Ί: Xιm.

Xi zi
-yoln 0

o -y^in

x I 0

0 x I

//z2/n,(20 5 z1,z2) = zol2n +jLn(zuz2) =

with zr = xr + iyr, xr G R, yr G R (r = 0,1,2), and consider the unit
4-sphere

S(C2 X R) = {(w09wl9w2) e S(C3) |w2 e R},

where

S(C3) = {(wo,Wl,w2) e C 3 |K | 2 + | W l |
2 +|w2|

2 = l}.

Then we can see by elementary calculations that

Mn(wO9wl9w2) ^ O(Sn) and Nn(w0,wl9w2) e Sp(2w)

for all (w0, W1? W2) G S(C2 X R). Bearing this in mind, we define the maps
χ^ and χ^p mentioned in the introduction, as follows:

If (w0, wv w2) e S(C2 X R), then we put

, I2n)Sn))R-χ

for A e U(2«), and

for A e U(n). If (w0, wlf w2) e S(C3) and w2 Φ 0, then we put

= X^{PnAPn-
ι)([w0w2/\W2\:w1w2/\w2\:\w2\\)
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for A e U(2H), and

for A G U(n). Here [WQIM^IH^] denotes the point of P2C corresponding
to(w0,w1 ?H;2)eS(C3).

We leave it to the reader to check that χ ° and χ^p are well-defined.

5. The main theorem. As before let &(X; Y) denote the space of
based maps X -> Y. Henceforth we use the following conventions (see
also Appendix 2):

(1) Let PXC = {[zo zJKzo,^) e C2, (zOjZl) Φ (0,0)} be the com-
plex projective hne. Then each element / of ^(PxC; Y) is regarded as an
element of Ω2( Y) = Ω(Ω(Y)) by putting

f(u)(υ) =/([cos(7rι;) + /sin(7Γί;)cos(7rw):sin(7rι;) sin(τrw)])

for u, v e [0,1]. In this way we identify (i'(P1C; Y) with the double loop
space of Y.

(2) Also we identify ^ ( P ^ / P ^ ; Y) with the 4th iterated loop space
of Y in the following way: Let q: P2C -» P2C/P1C be the canonical map,
and let

wo(u,v) = cos(ττι ) + isin(πυ)cos(πu)9

w2(s, t, u, v) = sin(τπ ) sin(ττw) sin(ττr) sin(τr5).

Then each g e ^(PjC/PiC; 7) is regarded as an element of Ω4(7) by

g(s)(t)(u)(v) = g{q([wo(u9υ):w1(s9t9u9ϋ):w2(s9t9u9ϋ)])).

With these understood, consider now the diagrams

Sp(n) -> U(2«) U(2n)/Sp

Sp/(SpXSp)

Ω(Sp(2«)/(Sp X Sp))

Ω2(U(4n)/Sp)
(^ Λ\ I θ2Λ,O/U\ /< 1 «Λ

Ω3(O(8«)/U)

Ω4(O(8«))
II

^(PiC/P^; O(8ιi))

U(4n)/Sp

ΠΛ.Π (5.1b)„ Ω(O(8«)/U)

Ω2(O(8«))
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and

(5.2) „

ωO/(OXO)

Ω(O(2n)/(O X O))

Ω2(U(2n)/O)

jaϊ(«§5/u) (5.2a)
Ω3(Sp(2«)/U)

Ω4(Sp(2«))

II
;Sp(2«)).

+ U( n)/0

nX

Sp

-#(P2C; Sp(2«))

U(2«)/O

[*»
(5.2b) „ Q(Sp(2ιι)/U)

jo(«f5)
Ω2(Sp(2«))

II
!€; Sp(2n))

where the labelled maps are as defined before and the bottom rows are
induced by the obvious cofibration P2C/P1C <- P2C <- PjC. Taking the
direct limits and writing χ£ = limχ^, χ ^ = limχ^p, etc., we then get
the diagrams (5.1)n and (5.2)n for n = oo, in which all rows are (Hure-
wicz) fibration sequences.

PROPOSITION (5.3). The diagrams (5.1)n and (5.2)n for n < oo are
homotopy-commutatiυe.

This will be proved in §6, the next section. Our main theorem is the
following, which is a refinement of Theorem (0.1):

THEOREM (5.4). The maps χ^ and χ ^ are homotopy equivalences,
and:

(i) the homomorphism (χ°)*: wr(U(2n)) -> irr($(P2C; O(8«))) in-
duced by χ^ is isomorphic for r < An — 1 with (r, n) Φ (3,1);

(ii) the homomorphism (χ^p)*: πr(U(n)) -• τrr(#(P2C; Sp(2«))) m-
ducedby χ^p w isomorphic for r < In — 1.

Proof. The part for /ι = oo is obtained by an easy five-lemma argu-
ment: Combining Theorem (2.1), Lemma (3.1) and Proposition (5.3), and
noting J. H. C. Whitehead's theorem (and Theorem 3 of [7]), we see that
χ 2 and χ ^ are homotopy equivalences.
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The remaining part is proved as follows.2 Consider the commutative
diagram

7Γr(U(θθ)) ( X 5 * '

T

where the verticals are the canonical homomorphisms. Then the left-hand
vertical is an isomorphism for r < An — 1, while the right-hand vertical is
an isomorphism for r < %n — 6. (Note that (O(oo), O(8π)) is (8π — 1)-
connected.) Hence (i) follows. The assertion (ii) can be verified analo-
gously.

REMARK. One can easily check that for (r, n) = (3,1) the homomor-
phism (χp)*: ττ3(U(2)) -> τr3(

<l7(P2C; O(8))) is monomorphic but not epi-
moφhic.

6. Proof of Proposition (5.3). First we shall show that the subdia-
grams (5.1b)n and (5.2b)n are homotopy-commutative. For this, consider
the maps

θ ° ( r ) : U(4n)/Sp - Ω2(O(8«)) and θfS(ι ): U(2«)/O - Ω2(Sp(2«))

defined in [10; §4], where r e [0,1]. If in (5.1b) „ and (5.2b)„ we replace
the map

: U(4π)/Sp -• Ω(O(8Λ)/U) -» Ω2(O(8«))

by θ£,(0) and the map

0 ( ^ ) < : U ( 2 Λ ) / O - Q(Sp(2n)/U) -> Ω2(Sp(2«))

by Θf£(O) respectively, then the resulting diagrams are strictly commuta-
tive, as seen by direct calculations. On the other hand, as mentioned in
[10; §4], we have

θ°(l) = Ω « ) o ω r and Θ|S(1) = Ω{ωψn)oωψ/v.

Hence the homotopy-commutativity of (5.1b)n and (5.2b)n for n < oo
follows, and considering the direct limits Θ°(r) and Θ^p(r), we see that
(5.1b)^ and (5.2b)^ are also homotopy-commutative.

2 This proof was communicated to the author by S. Oka.
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Next we shall prove the homotopy-commutativity of (5.1a)n and
(5.2a)n. For /% s, t,u,ve [0,1], let

F2n(r9u9ϋ)eO(Zn) and G2n(r9U9Ό) e Sp(2/i)

be as defined in [10; §4], and put

VH(s,t,u) =

Wn{s,t,u) = exp(|w/72n)exp(|ri7;)exp(|s/n) e Sp(2n).

Further, put Vn{s,t)= Vn(s,t,0), Wn{s,t)= Wn(s,t,0), and define the
maps

Π°(> ):Sp(/j)-+Ω4(O(8«)) and Π * ( r ) : O(«) -»• S24(Sp(2«))

for each r e [0,1], as follows:

= RnVn(rs, rt9 ru)Cn(A; r9 s919 u, v)(Vn(rs, rt9 ru))'1^1

where A e Sp(«) and

Cn(A;r,s,t,u,v)

= comm((Vn(s, t^F^r, u9 v)Vn(s, t)9dec(^diag(deq(^l), I2n)SH))\

= PnWn(rs9 rt9 ru)Dn{A r, s919 u9 v)(Wn(rs9 rt9 m ) ) " ^ " 1

where >1 e O(/i) and

Dn(A;r,s,t,u,υ)

= comm((^(5, ήY'G^ir, u9 υ)Wn{s91)9 diag(Λ, / j ) .

Then for r = 0, we have

F2n(0,u,v) = /8πcos(7Γί;) + J4nsin(πv) cos(πu) + K2nsm(πv)sin(πu),

G2n(0,u,v) = I2ncos(πv) + z72nsin(7Γί;)cos(7rw) +jl2nsw(πυ) sin(πu),

and calculations show that

(VH(s9t))'lF2H(09u9v)Vn(s9t)

= Mn(w0(u9υ)9wι(s9t,u9υ)9w2(s9t9u9υ))9

= Nn(wQ(u9υ)9wι(s9t9u9υ)9w2(s9t9u9υ))
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where wo(u, υ), wλ(s, /, u, v) and w2(s, t, u, v) are given by the formulae

(*) at the beginning of §5 and where Mn(z0, zv z2) and Nn(z0, z1? z2) are

as defined in §4. Hence we see that the map χ ^ κ ^ is just the composite

map

Π°(0)

Sp(n) ^ Ω4(O(8«)) = #(P2C/P1C;O(8/ι)) -> f{P2C;O(Sn))

and the map χ^p ° ^ *s eΦ*al to the composition

w)) = ^(P2C/P1C;Sp(2«)) -> ^(P 2C; Sp(2/i))

(where the unlabelled arrows are the maps induced by the canonical

surjection P2C -> P2C/P1Q. Also, noting the equalities

(Wn(s,t)YlG2n(l,u,v)Wn(s9t)

= (Wn(s, t, u))'\xip(<iτviI2n)Wn(s, t, u),

we see by calculations that

Hence the homotopy-commutativity of (5.1a)n and (5.2a)n for n < oo is

clear, and considering Π ^ ( r ) and Π^ ) (r) ? we conclude that (δ.la)^ and

(5.2a)^ are also homotopy-commutative.

Appendix 1. Proof of Lemma (3.1). For completeness we record a

proof of (3.1) here.3 First, choose a path An: [0,1] -> SO(n 4- 2) for each

n so that Λrt(0) = In+2 and Λπ(l) is the permutation matrix associated to

the 3-cycle: 1 - > / I + 1, Λ + 1 - » Λ + 2 , Λ + 2 - > 1 . Further, define Γn(/)

G SO(2«) inductively by

Γ 1 (ί) = / 2 and Γ n + 1 ( 0 = d i a g ( Γ n ( 0 , / 2 ) d i a g ( / n , Λ n ( 0 ) ,

where / e [0,1]. Note that Γn(l) is a In X 2Λ permutation matrix and the

corresponding permutation takes r t o 2 r — l f o r l < r < « .

3 The author learned the techniques of this proof from Chapter 4, §3 of the following book:
H. Toda and M. Mimura, The topology of Lie groups (Japanese), Vol. 1, Kinokuniya
Sύgaku Sosho 14-A, Kinokuniya Book-Store, Tokyo, 1978.
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It is now easy to see that v^/o is homotopic to the identity map:
Consider the family of maps

A - ΓΛOdiag^/JtΓΛOΓ1: U(/i) - U(2*) (/ e [0,1]).
By passage to the quotients, these induce maps U(w)/O -> U(2«)/O, and
then, since Γn(l) diag(Λ, In)(Tn(l)yι = Pwdiag(^, /JP," 1 and ΓΛ(0) = /2j l,
we get a homotopy between ^ / o and the canonical injection U(n)/O -»
U(2«)/O for each H. Taking the direct limit, we get the required homo-
topy.

Replacing U(n)/O by U(2/i)/Sp, and Tn(t) by the Kronecker prod-
uct of Tn(t) and /2, we can see by the same type of argument that ^ / S p is
homotopic to the identity. We leave further details to the reader.

Appendix 2. Note on the conventions mentioned in §5. For brevity
we let / = [0,1] here. Let PnC be the ^-dimensional complex projective
space, and let Y be an arbitrary based space. In §5, we have identified the
space ^(PiC; Y) with Ω2(7) and the space f ^ C / P ^ ; Y) with Ω4(7).
These identifications are based on the following observations:

(1) Let PWR be the m-dimensional real projective space, and put

u0 = cos(τr^), um = sin(τr^) sin(ττί2) ύn{irtm^ sm(πtm),

ur = s in(^ t ) sin(ττί2) sin(ττ^) cos(7r/r+1) (1 < r < m — 1).

Then the map (tv t2,... ,tm) »-> [u0: uλ: : um] from Im to PWR de-
fines, by passage to the quotient, a homeomorphism from Im/dlm to
PmR/Pm_ 1R (where dlm is the boundary of Im).

(2) Put zr = xr + iyr (0 < r < n). Then the map

[XO J Ό : ^ : ^ : •"• :*„:>>,,] ^ [zo ^i •" ^ J
from P 2 w + 1 R to PnC defines, by restriction and by passage to the quotient,
a homeomorphism from P 2 W R / P 2 M _ 1 R to VnC/Vn_1C.

Combining (1) and (2) and taking m = In, we thus get a homeomor-
phism from I2n/dl2n to P^C/P^.JLC, and hence a homeomorphism from

Acknowledgment. The author thanks Professors S. Oka and M.
Kamata, who read a preliminary version of this paper and suggested a
number of improvements.
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