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ON McCONNELL'S INEQUALITY FOR

FUNCTIONALS OF SUBHARMONIC FUNCTIONS

AKIHITO UCHIYAMA

Recently, McConnell obtained an Lp inequality relating the non-
tangential maximal function of a nonnegative subharmonic function u
and an integral expression involving the Laplacian of u. His result is
imposing a restriction on the range of p. In this paper, we show that his
inequality holds for all p e (0, + oo).

1. Introduction. Let u(x, t) be a nonnegative subharmonic function
defined on Rn

+

+1= {(x,t):x e Rn

9 t > 0}. (For the definition of sub-
harmonic functions, see Hayman and Kennedy [5] p. 40.) Let Δw be the
Laplacian of u in the sense of distributions. Then, this is a positive
measure on Rn

+

+\ Let

N(x) = sap{u{y,t):(y,t) e I\(x)},

(y> 0

where

Γ β (χ) = {(y,t) e JR^+ 1:|JC ~ .y| < α ί } ,

|χ| = | ( χ i , . . . , χ j | = Σ χf\

If y(jc, /) is a real harmonic function defined on Rn

+

+1 and if

(1) u(x A = υ(x A1

then u is nonnegative and subharmonic. In this case, Nι/1 and Sι/1 turn
out to be the usual nontangential maximal function and the usual area
integral of v, respectively. So, the results of Burkholder and Gundy [1]
and C. Fefferman and Stein [3] imply that in case of (1) we have

(2) \\S\\L,<c(p,n)\\N\\LP

for all p ^ (0, +oo). (Under the additional assumption \imt^ + oov(x, t)
= 0, they showed also the converse inequality of (2) with other constants
c{p,n).)
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Recently, McConnell [7] extended the inequality (2) to general non-

negative subharmonic functions.

THEOREM A. Let u be a nonnegatiυe subharmonic function defined on

lϊ++ 1. There are constants c(p,n) < + oo, depending only on p and n, and

a positive constant po(n), depending only on n> such that the inequalities

(3) \\S\\L,<c(p,n)\\N\\LP

hold for allp satisfying

(4) 0 < p < po(n) or l < / ? < + o o ;

moreover po(l) = 1.

This theorem in the case n > 2 is imposing an unnatural restriction

(4) on the range of p. In this paper, we remove (4).

THEOREM 1. Let u be as in Theorem A. Let 0 < p < + oo. Then, there

exist constants c(p,n) < + oo, depending only on p and n, such that (3)

holds.

The argument in this paper is an extension of that in our paper [8].

2. Preliminaries. First we prepare notation. The Laplacian Δ and

the gradient V in this paper are taken in the sense of distributions. For a

measurable subset E of the Euclidean space, let χE and \E\ be the

characteristic function of E and the Lebesgue measure of E, respectively.

For x G Rn and E c i?", let δ(x, E) be the distance of the point x from

E. Let δ(x, 0 ) = +oo.

For x G Rn, R > 1, a > 0, and for w(x, t) in Theorem A let

φ(x) = max(0,l - |x|),

TR=

N(x a) =

S(x;a)=

s(x;a,R)=jj φ ί ^ W Δ ^ j , t)χTR(y, t).
J J(y,t)<=R\+1 \ at J R

Note that if a' > a > 0, then

(5) S(x a) < c(a,a\n) lim s(x;a\ R).
R-+ +oo
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Cubes considered in this paper have sides parallel to the coordinate
axes. For a cube /, let /(/) and al be the side length of / and a cube
concentric with / satisfying l(al) = α/(/), respectively. For a cube / in
R\ let

Q(I) = {(*,/) €= Rn
+

+1:x e / , / G (0,/( /))}.

For a nonnegative measure μ on Rn

+

+1 let

where the supremumis taken over all cubes I in Rn. If ||μ||c < + 00, then
μ is called a Carleson measure.

For the proof of Theorem 1 we need the following.

LEMMA 1. Let u be as in Theorem A. Let λ > 0, a > β > 0,

(6) Ω = {JC (ΞRn:N(x;a) < λ } ,

(7) W={(x9t)eRl+ι:δ(x,Q)<βt}.

Then

(8) \\tΔuχw\\c<Cλ,

where C is a constant depending only on α, β andn.

LEMMA 2. Let u be as in Theorem A. Let λ > 0 , i ? > l , γ > l and
a > β > 0. Then

(9) \{x e Rn:s(x;β,R) > γ λ , JV(x α) < λ } |

< C e - c γ | { χ G i ? " : ^ ( x ; i β , i ? ) > λ } |

where C and c are positive constants depending only on a,β and n.

3. Proof of Lemma 1.

LEMMA 3. Let m > 2 be an integer. Let r > 0,

5 = {XtΞRm:\X\<r},

0.55= {Xei?w:|X| <0.5r}.

Lei U( X) be a subharmonic function defined on B such that

0 < U(X)< 1 forallX^B.
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Then
(i) ΔU in the sense of distributions satisfies

ί ΔU(X) < Crm~2,
JXe05B

(ii) v ί / in the sense of distributions is locally integrable on B and
satisfies

j \VU{X)\<Crm-\

where C is a constant depending only on m.

Proof. We may assume r = 1. Let G(X, Y) be the Green function of
B = {X(= Rm:\X\ < 1}. Namely, for (X,Y) E ( β χ B)\{(X, X) :X <Ξ
B), let

if m > 3 and let

\\Y\X-Y/\Y\\

| J r " r |

if m = 2. For 7 <= 5 let

F(r) = — f (?(
σ m •'A'eO.όB

where

= 2τ7 m / 2 m a x ( l , w - 2 )

Since [/ 4- V is nonnegative on 5, harmonic on 0.65, subharmonic on B
and

lim sup{F(7) :7Gi? w

? |y | = 1 - ε] = 0,
ε^+0

we have

(10) 0 < £/(7) + F(7) < 1 on B,
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(11) |V(£/+ V)(Y)\ < C onθ.55.

Therefore,

(12) cί ΔU(X)<( G(X,0)AU{X)

= σmV(0) < am(U(0) + V(0)) < σm

by (10) and

(13) / \VV(Y)\<±[ &U{X)( \VrG(X,Y)\
JYeB σm JX<Ξ0.6B JYeB

<cί ΔU(X)<C
JXe06B

by (12), where c > 0 and C < 4- oo depend only on m. So, (i) follows
from (12) and (ϋ) follows from (11) and (13). D

Now, we begin the proof of Lemma 1. We may assume

(14) λ = 1

and Ω Φ 0. Let a cube / be given. It is enough to show

(15) Jf tAu(x,t)<C\I\.

Let ε > 0 be a constant such that

(16) ε <

(1 + ε

min β
M l/2

- ε ) H

1
' « 1 / 2

h 2«ε(17) ( )(β ) <

1 - n1/2ε

For η > 0, x e R" and t > 0, let

(18) ψη(*) = max(δ(x,Ω),δ(x,/),τ,),

(19) ΨJx,t) =

1 if iψ η (x) < t,

β{(β + ε)t - ^(x)) i

0
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0 if(l + ε)/(/)</,

(1 + eW) ~ t .

1 if / < / ( / ) ,

(20) A(f) -

(21)

Let R"+

+1 = U~=1 Qk be the Whitney decomposition of R"+

+1 such that

(22) {Qk }£°=1 are dyadic cubes in u + + 1 with disjoint interiors,

(23) -l(Qk) < (distance between Qk and dR"+

+1) < -l(Qk),

(This collection {Qk} can be obtained by taking all the maximal cubes
among the closed dyadic cubes in Rn

+

+1 that satisfy (23).) Let {Qku)}f=1

be the subcoUection of {Qk} such that

In the following part of this section, the letter C denotes various
positive constants depending only on α, β, ε and n.

First we accept the following (25)-(30) temporarily;

(25) \Vη(x,t)\<j,

N

(26) suppvF η c U Q
kov

(27) [ί \dxdt<C\Il

(28)

(29) Σ

the left-hand side of (15)

( 3 0 )
< Urn

Then, (28) and Lemma 3 (ϋ) imply

(31) / / \Vu(x,t)\<C(l{QkU)))".
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Thus,

(32)

and

where

du

i OXi

suppv Vv

by (25)

N

y - l
/ / |Vtt| by (26)

ϊCΣ(l(Qk(j)))" by (31)

<C\I\ by (29)

dt
u JJ % dt dt

= |(33)-

|(33)| <// ^u{x,t)dxdt by (25)

<C\I\

— dxdt by (28) and (26)

by (27)

and where

|(34)| < C\I\

follows from the same argument as (32). Thus we get

ff tVr,(x,t)Au(x,t)<C\I\,

which combined with (30) implies (15).

Next, we prove (25)-(30). (25)-(26) are clear. (30) follows from

Π Wn{(x,t) &Rn

+

+1:t>'η}.

D
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Proof of (28). Since

i suppK.

for each Oh( ;Λ there exists an x e Ω such that

which combined with (17) and (23) implies

Therefore,

j) c U Ta(x)

c [(χ,t)eRn

+

+1:u(x,t) < 1} by (14). D

Proo/o/ (27). Let

/ = (1 + 2(β + e)(l + ε))7.

Then

(35) suppvF,csuppF,

Let

S2 =

Then, by (19)-(21) and (35) we have

sxφpvVnc (St\J S2) Π Q(ϊ),

which combined with (25) implies (27). D
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Proof of {2% Let

375

(1 + ε)(β + ε) + n'

1 + ε

β - nί/zε

S2 =

It follows from (23) that

(36) if QknSiΦ 0, then Qk c ,§.,

for / = 1,2, respectively. (The case i = 2 is clear. The proof for the case
/ = 1 needs the Lipschitz continuity of ψ .) Thus, (36) and (24) imply

(37) U ^ ^

On the other hand, (23)-(24) and (35) imply

(38) U

For (JC, /) e iϊ^+ 1 let P(JC, /) = JC. Then, by (22)-(23), (37) and by the
geometrical properties of Sx and S29 we have

N

which combined with (38) implies

<c α

4. Proof of Lemma 2. In the rest of this paper, the letter C denotes
various positive constants depending only on α, β and n.

We continue to assume (14).
Let
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Note that

(39) Sr(x) = s(x;β,R) on Ω,

(40) S?(x) <s(x;β,R) onRn.

Since S?(x) < +oo and since S?(x) is the balayage of the Carleson

measure tAuχ w n T with respect to the kernel φ(x), which has a compact

support and which belongs to the Lipschitz class, a well-known estimate

of the BMO-norm in terms of the norm of Carleson measure gives us

I I ^ Ί I B M O ^ C\\tΔuχwnTR\\c,

which combined with Lemma 1 and (14) implies

(41) H^IIBMO ^ C

Thus, the left-hand side of (9) with (14)

) > γ , N(x;a)<l}\ by (39)

<Ce-c^\{s(x;β,R)>l}\ by (40)

= the right-hand side of (9) with (14),

where the inequality (*) follows from (41) and from an easy modification

of the result of John-Nirenberg [6]. (See Lemma 2.1 of [8] for details.) D

5. Proof of Theorem 1. Let β' = (a + β)/2. Applying Lemma 2

with β replaced by β' gives us

\{s(χ 9β',R)>yλ}\

< \{s(x;β'9R) > γ λ , N(x; a) < λ } | + \{N(x; a) > λ } |

< Ce'^\{s(x;β\R) > λ}\ + \{N(x;a) > λ } | .

Thus,

Ύ-η\s(-;β',R)\\iP=p λr-1\{s(x;β',R)>yλ}\dλ

<pf + °° λ"

Since \\s(-; β\ R)\\LP < 4- oo, the above inequality with sufficiently large

γ implies

2-ιy-'\\s{ ;β',R)\\l,Z\\N( ;a)\\l,.
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Letting R -* + oo and recalling (5), we get

(42) \\S(-;β)\\LP<C(a,β,p,n)\\N( ;a)\\LP.

On the other hand, the argument of [3], p. 166, Lemma 1 shows

(43) c(a,p9 n)\\N\\LP < pr(- a)\\LP < C(a,py n)\\N\\LP.

The argument of [2], p. 19, Theorem 3.4 and that of [7], p. 296, Lemma 3.3
show

(44) c(β,p,n)\\S\\LP < \\S(- β)\\LP < C(β,p,n)\\S\\L,,

where

0 <c(a,p9n)9 c(β,p,n) and

C(a,p,n)9 C{β,p,n) < + oo.

Therefore, Theorem 1 follows from (42)-(44).
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