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ON McCONNELL’S INEQUALITY FOR
FUNCTIONALS OF SUBHARMONIC FUNCTIONS

AKIHITO UCHIYAMA

Recently, McConnell obtained an L? inequality relating the non-
tangential maximal function of a nonnegative subharmonic function u
and an integral expression involving the Laplacian of u. His result is
imposing a restriction on the range of p. In this paper, we show that his
inequality holds for all p € (0, + ).

1. Introduction. Let u(x,t) be a nonnegative subharmonic function
defined on R"*!= {(x,t):x € R", t > 0}. (For the definition of sub-
harmonic functions, see Hayman and Kennedy [5] p. 40.) Let Au be the
Laplacian of u in the sense of distributions. Then, this is a positive
measure on R”*1 Let

N(x) = sup{u(y,1):(y,t) € Iy(x)},
S(x) = [ £ Bu(y, 1),
(y,t)eT(x)
where

L(x)={(y,t) € R%":|x — y| < at},

n 12
ol =I5 = [ £ 57)
i=1
If v(x, t) is a real harmonic function defined on R”*! and if

(1) u(x,1) = v(x,1)%,

then u is nonnegative and subharmonic. In this case, N'/? and S/ turn
out to be the usual nontangential maximal function and the usual area
integral of v, respectively. So, the results of Burkholder and Gundy [1]
and C. Fefferman and Stein [3] imply that in case of (1) we have

(2) ISIlLr < (P, n)IIN| s

for all p € (0, + 00). (Under the additional assumption lim,_, ,  v(x,?)
= (, they showed also the converse inequality of (2) with other constants

c(p,n).)
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Recently, McConnell [7] extended the inequality (2) to general non-
negative subharmonic functions.

THEOREM A. Let u be a nonnegative subharmonic function defined on
R"*L There are constants c(p,n) < + oo, depending only on p and n, and
a positive constant p,(n), depending only on n, such that the inequalities

(3) ISz < (P, m)IN|I Lo
hold for all p satisfying
(4) 0<p<py(n) or 1<p< +o0;

moreover p,(1) = 1.

This theorem in the case n > 2 is imposing an unnatural restriction
(4) on the range of p. In this paper, we remove (4).

THEOREM 1. Let u be as in Theorem A. Let 0 < p < + co. Then, there
exist constants c¢(p,n) < + oo, depending only on p and n, such that (3)
holds.

The argument in this paper is an extension of that in our paper [8].

2. Preliminaries. First we prepare notation. The Laplacian A and
the gradient ¥ in this paper are taken in the sense of distributions. For a
measurable subset E of the Euclidean space, let x and |E| be the
characteristic function of E and the Lebesgue measure of E, respectively.
For x € R” and E C R", let 8(x, E) be the distance of the point x from
E.Let §(x, D)= + 0.

For x € R", R > 1, a > 0, and for u(x, t) in Theorem A let

¢(x) = max(0,1 — |x|),
Tp = {(x,1) € R":|x| < R,1/R <t < R},

N(x;a)=sup{u(y,1):(y,t) € T,(x)},

S(x; a)= 7"Au(y, 1),
(x;e) ff(y,t)er..(x) (1)

X~ Y\.i1-n
s(x;a,R) = ( )t Au( y,t ,1).
ar)=[f o (% 0)x5,(»,1)
Note that if &’ > a > 0, then
(5) S(x;a) < c(a,a’,n)Rlim s(x; o, R).
- + 00
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Cubes considered in this paper have sides parallel to the coordinate
axes. For a cube I, let /(1) and al be the side length of I and a cube
concentric with I satisfying /(al) = al(I), respectively. For a cube I in
R", let

o(I)={(x,t)e R :x e I, 1€ (0,1(1))}.
For a nonnegative measure . on R"*!let

lulle = sup p(Q(1)) /11,

where the supremum is taken over all cubes I in R”. If ||u||. < + oo, then
p is called a Carleson measure.
For the proof of Theorem 1 we need the following.

LEMMA 1. Let u be as in Theorem A. Let A > 0, a > 8> 0,

(6) Q= {xe€R":N(x;a) <A},
(7) W= {(x,t) € R:*':8(x,Q) < Bt}.
Then

(®) ltAux yll. < CA,

where C is a constant depending only on a, 8 and n.

LEMMA 2. Let u be as in Theorem A. Let A\>0, R>1, y>1 and
a> B> 0. Then

9) {x € R":s(x; B,R) > yA, N(x;a) < A}|
< Ce "|{x € R":s(x; B, R) > A}|

where C and c are positive constants depending only on «,f8 and n.
3. Proof of Lemma 1.

LEMMA 3. Let m > 2 be an integer. Let r > 0,
B={XeR":|X|<r},
0.5B={X€R":|X|<05r}.
Let U(X) be a subharmonic function defined on B such that

0<U(X)<1 forall X €B.
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Then
(1) AU in the sense of distributions satisfies

f AU(X) < Crm=2,
Xe0.5B

(il) VU in the sense of distributions is locally integrable on B and
satisfies

f IVU(X)| < Crm=2,
X€0.5B
where C is a constant depending only on m.

Proof. We may assume r = 1. Let G( X, Y) be the Green function of
B ={Xe€ R":|X| <1}. Namely, for (X,Y) € (B X B)\{(X,X): X €
B}, let

X = Y —|[Y|X = YY", Y=#0,

G(X,Y)=
| X)2~m -1, Y =0,
if m > 3 and let
gl FIX =YV
| X = Y]

G(X,Y)= 1
log—, Y =0,

BiX]

if m=2.ForY € B let

wn=%L

m

G(X,Y)AU(X),
€0.6B

where

27"/ *max(1, m — 2)
o =
" I'(m/2)

Since U + V is nonnegative on B, harmonic on 0.6 B, subharmonic on B
and

lim0 sup{V(Y):YER™ |Y|=1—-¢} =0,
e+

we have
(10) 0<U(Y)+V(Y)<1 onB,
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(11) Iv(U+ V)(Y)|<C on0.5B.

Therefore,

(12) ¢ fX L, M) < fX L., G(X.08U(X)

=0,V(0) <0, (U0) + V(0)) <o,

by (10) and
(13) fye |vV(Y)|<——fXEO6 AU(X)[ Iv,G(X,Y)]
<C AU(X) < C
X<€0.6B

by (12), where ¢ > 0 and C < + 0o depend only on m. So, (i) follows
from (12) and (ii) follows from (11) and (13). O

Now, we begin the proof of Lemma 1. We may assume

(14) A=1
and ) # <. Let a cube I be given. It is enough to show
15 tAu(x,t) < C|I|.
( ) fj;x,t)&Q([)ﬁW ( ) l ]
Let ¢ > 0 be a constant such that
1
(16) e <min £, 2],
(14 e)(B+e)+2ne
(17) Yy <a
Forn>0,x€ R"and ¢t > 0, let
(18) ¥, (x) = max(8(x,2),8(x, I),n),
|
1 if -B—yl/"(x) <t,
BlB+e)i—y,(x) 1 1
(19) @,(x,1) = 0, (%) if m%(x) <t< ’—éll/n(x),
0 ift < —— .3 Rl (x),
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0 if (1+)I(1) <1,

20) n(n)=|" +;)(’g) —! i) <1< (1 +0)I(D),
1 if 1 < I(1),

(21) Vo(x,t) =@, (x,1)h(t).

Let R"*!1 = U%_, Q, be the Whitney decomposition of R”*! such that

(22)  {Q.)r-, are dyadic cubes in R"*! with disjoint interiors,

(23) %I(Qk) < (distance between Q, and dR"*!) < %I(Qk),

(This collection {Q,} can be obtained by taking all the maximal cubes
among the closed dyadic cubes in R%*! that satisfy (23).) Let {Q,;,} ),
be the subcollection of { O, } such that

(24) Qu(jy N suppVV, + 2.

In the following part of this section, the letter C denotes various
positive constants depending only on «, 8, € and n.
First we accept the following (25)—(30) temporarily;

C
(25) v, (x,1)| < ’E
N
(26) suppVv ¥, C ‘U1 Quiy»
=
1
27 —dxdt < C|I|,
( ) /"/s'uppVV,, ! | |
N
(28) U 2120, € {(x,1) € R%  1u(x,1) < 1},
j=1
N n
(29) L ((Quy))" = i
=

the left-hand side of (15)

< lim /'/(.x,t)eR’j,“ tV,(x,t)Au(x,1).

_11—>+0

(30)

Then, (28) and Lemma 3 (ii) imply
(31) /f( Ivu(x, 1) < C(1(Qu,))"-

X, t)er(j)
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Thus,
0%u W, du
(32 ;‘/'/(.x,t)eRl“ tVn(x’t)-fgii(x’t) —I-ff ax ax
du
<C ~—| by(25
‘/'/s'upva,, a'xi Y( )
N
<C [Vu| by (26)
Jj=1 fok(n
< CY(H(Quy))” by (31)
< C|Ij by (29)
and
9%u V,\ du
}'/‘f(x,t)eR"+1 "W ——‘//( Vo W)W
av aV ou
— s 9y du
_‘ff ar ¥ f ETREY
=|(33) —(34)],
where
(33) |<ff —u(x t)dxdt by (25)
suppv ¥,
< — dxdt by (28) and (26
/fupva t y (28) (26)
< || by (27)
and where
I(34)] < C|1|

follows from the same argument as (32). Thus we get

ff tV,(x,t)Au(x,t) < C|I|,
which combined with (30) implies (15). O
Next, we prove (25)—(30). (25)—(26) are clear. (30) follows from
{(x,t) € RV (x,1) = 1}
) {(x,t) € R": %xpn(x) <t< l(I)}
> 0(I)NnWwWn{(x,1) € Rt > ).
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Proof of (28). Since
suppV ¥V, C suppV,

c {(x,t) € R*M: ﬁxpn(x) < t}

c {(x,t) € R"*1: ﬁlTES(X’Q) < t}
= U L.(x),
x€

for each Q, ;) there exists an x € Q such that
Qk(j) N Fﬁ+e(x) * J,
which combined with (17) and (23) implies
2n2Q, ;€ To(x).
Therefore,

N
2n1/2Qk(j)C U T.(x)
=1

x€EQ

c {(x,1) € R u(x,1) < 1} by (14).

Proof of (27). Let
IT=(01+2(B+¢e)1+e)l
Then
(35) suppvV, C suppV¥,

1

n+1
C{(x,t)ER+ .

M&DStSﬂ+QKU}

c o(I).
Let

S = {(1) & REN g (x) < 1. g0 (),

S, ={(x,1) e R I(I) <t < (1 +¢)l(1)}.
Then, by (19)—(21) and (35) we have
suppvV, C (S;U8;)N Q(j),
which combined with (25) implies (27).
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Proof of (29). Let
S, = {(x,t) € R+

1
(1+€)(B+e)+n%

1+e¢
B — n'/%

4,(x))

Yo(x) <<

S, = {(x,t) eRT——I(I)<t<(1+ 8)21(1)}.

T+e
It follows from (23) that

(36) ifQ, NS, # @, thenQ, C S,

for i = 1,2, respectively. (The case i = 2 is clear. The proof for the case

i = 1 needs the Lipschitz continuity of ¢,.) Thus, (36) and (24) imply

N
(37) U Qv € $1 Y S,

j=1
On the other hand, (23)—(24) and (35) imply

(38) 91 Oy € 0((1 + 2¢)1).

For (x,t) € R"*!let P(x,t) = x. Then, by (22)-(23), (37) and by the
geometrical properties of S; and S,, we have

<C,

L®(R™)

N
Z XP(Qk(j,)(x)
j=1

which combined with (38) implies
N

Z (I(Qk(j)))n = ZIP(Qk(j))I

Jj=1

<C < C|I|. O

UP(0.)

J

4. Proof of Lemma 2. In the rest of this paper, the letter C denotes
various positive constants depending only on «, 8 and n.

We continue to assume (14).

Let

- XY\ a-n
g =[] TR xan (0
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Note that
(39) F(x)=s(x;B8,R) onQ,
(40) F(x) <s(x;B,R) on R".

Since ¥(x) < + o0 and since F(x) is the balayage of the Carleson
measure tAux y, r, With respect to the kernel ¢(x), which has a compact
support and which belongs to the Lipschitz class, a well-known estimate
of the BMO-norm in terms of the norm of Carleson measure gives us

1 llsmo < ClltAuxy a7l

which combined with Lemma 1 and (14) implies

(41) 1 lmo <C-

Thus, the left-hand side of (9) with (14)
=[{£(x) >y, N(x;a) <1} by (39)
< F(x) > 1}l < OCe N F(x) > 1))
< Ce “"|{s(x; B, R) > 1} by (40)

= the right-hand side of (9) with (14),

where the inequality (*) follows from (41) and from an easy modification
of the result of John-Nirenberg [6]. (See Lemma 2.1 of [8] for details.) O

5. Proof of Theorem 1. Let 8’ = (a + B)/2. Applying Lemma 2
with B replaced by B8’ gives us

{s(x;B8",R) >y}
<|{s(x;8,R) >y, N(x;a) <A} + [{ N(x;a) > A}
< Ce|{s(x; B, R) > A} + |{ N(x;a) > A }|.
Thus,
v lls(-; 8 —pf AP=1|{s(x; B/, R) > yA ) | dA

<p/ A-1{Ce-e

{s(x;8,R) > N} [+[{N(x; @) > A} [} dA

= Ce™||s(-; B, R)|I5» + IN(-; @) ||4,.

Since ||s(-; B’, R)||» < + oo, the above inequality with sufficiently large
y implies

277 2)s(-3 B R)IE, < IIN(-5 @) 145



INEQUALITIES FOR SUBHARMONIC FUNCTIONS 377

Letting R — + oo and recalling (5), we get
(42) ISC5 B)lIr < Cle, B, p, ) IINC-5 @)l 2o

On the other hand, the argument of [3], p. 166, Lemma 1 shows
(43) c(a, p,n)|IN||» < [IN(+; @)l » < C(a, p, n)||N|| s

The argument of [2], p. 19, Theorem 3.4 and that of [7], p. 296, Lemma 3.3
show

(44) (B, psm)lISIr < ISC-5 B)lize < C(B, P, 1)IS 2o,

where

0<c(a,p,n), c(B,p,n) and
C(a,p,n), C(B,p,n) < +oo0.

Therefore, Theorem 1 follows from (42)—(44).
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