EIGENVALUE ESTIMATES WITH APPLICATIONS TO MINIMAL SURFACES

Johan Tysk

Abstract

We study eigenvalue estimates of branched Riemannian coverings of compact manifolds. We prove that if

$$
\varphi: M^{n} \rightarrow N^{n}
$$

is a branched Riemannian covering, and $\left\{\mu_{i}\right\}_{i=0}^{\infty}$ and $\left\{\lambda_{t}\right\}_{i=0}^{\infty}$ are the eigenvalues of the Laplace-Beltrami operator on M and N, respectively, then

$$
\sum_{i=0}^{\infty} e^{-\mu_{i} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{t} t},
$$

for all positive t, where k is the number of sheets of the covering. As one application of this estimate we show that the index of a minimal oriented surface in \mathbf{R}^{3} is bounded by a constant multiple of the total curvature. Another consequence of our estimate is that the index of a closed oriented minimal surface in a flat three-dimensional torus is bounded by a constant multiple of the degree of the Gauss map.

1. Introduction. Motivated by problems in the theory of minimal surfaces, we study the following question. Let

$$
\varphi: M^{n} \rightarrow N^{n}
$$

be a branched Riemannian covering of compact manifolds, which has a singular set of codimension at least two. By this we mean that we endow M^{n} with the pullback metric

$$
\varphi^{*}\left(d s_{N}\right),
$$

where φ^{*} is singular on a set of codimension at least two. We then want to estimate the eigenvalues of the Laplace-Beltrami operator on M in terms of the corresponding eigenvalues of N. Note that we can speak of the eigenvalues of $\left(M, \varphi^{*}\left(d s_{N}\right)\right.$) although the metric is possibly singular, since a singular set of codimension at least two will not affect the integrals of the variational characterization of the eigenvalues.

Our main theorem gives the estimate

$$
\sum_{i=0}^{\infty} e^{-\mu_{i} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{i} t}
$$

for all $t>0$, where k is the number of sheets of the covering φ, and $\left\{\mu_{i}\right\}$ and $\left\{\lambda_{i}\right\}$ are the eigenvalues of the Laplace-Beltrami operator on M and N, respectively. We then use this estimate to show that if $M^{2} \subseteq \mathbf{R}^{3}$ is an oriented complete minimal surface of finite total curvature, then the index of M is bounded by a constant multiple of the total curvature. Here, the index of M is defined to be the limit of the indices of an increasing sequence of exhausting compact domains in M. The index of a domain D is the number of negative eigenvalues of the eigenvalue problem

$$
\left(\Delta+|A|^{2}\right) \varphi+\lambda \varphi=0 \quad \text { on } D,\left.\quad \varphi\right|_{\partial D}=0,
$$

where A is the second fundamental form of M as a submanifold of \mathbf{R}^{3}. Geometrically, the index of M can be described as the maximum dimension of a linear space of compactly supported deformations that decrease the area up to second order. Finally we also show that the index of a closed oriented minimal surface in a flat three-dimensional torus is bounded by a constant multiple of the degree of the Gauss map.
2. The eigenvalue estimate. Our main result is the following theorem.

Theorem. Let

$$
\varphi: M^{n} \rightarrow N^{n}
$$

be a k-sheeted branched Riemannian covering of compact manifolds, which has a singular set of codimensioin at least two. Let $\left\{\mu_{i}\right\}_{i=0}^{\infty}$ and $\left\{\lambda_{1}\right\}_{i=0}^{\infty}$ be the eigenvalues of the Laplace-Beltrami operator on M^{n} and N^{n}, respectively. Then for all $t>0$,

$$
\sum_{i=0}^{\infty} e^{-\mu_{t} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{t} t}
$$

Remark. Before proving the theorem we note that the main difficulty is that the fundamental comparison theorems of Cheng [1] do not carry through if the metric has singularities. We instead utilize the heat kernel on M and N to circumvent this difficulty.

Proof. We restrict φ of the theorem to φ_{-}:

$$
\varphi_{-}: M_{-} \rightarrow N_{-},
$$

where

$$
M_{-}=M-E(\varepsilon),
$$

and $E(\varepsilon)$ is an open set of volume less than ε with smooth boundary, containing the singular set. We then simply define N_{-}to be the image under φ restricted to M_{-}.

Now fixing $x \in M_{-}$, we consider

$$
H: y \mapsto H_{N_{-}}(\varphi(x), \varphi(y), t), \quad y \in M_{-}, t>0
$$

where $H_{N_{-}}$is the heat kernel on N_{-}, with Dirichlet boundary conditions. Since φ_{-}is the local isometry, the function H solves the heat equation on M_{-}. As t tends to zero we obtain

$$
H_{N_{-}}(\varphi(x), \varphi(y), t) \rightarrow \sum_{\varphi\left(x_{t}\right)=\varphi(x)} \delta_{x_{t}}
$$

On the other hand, for the heat kernel $H_{M_{-}}$on M_{-}with Dirichlet boundary conditions, we have as t tends to zero

$$
H_{M_{-}}(x, y, t) \rightarrow \delta_{x}
$$

Hence, at $t=0$ we have in the sense of distributions

$$
H_{M_{-}}(x, y, 0) \leq H_{N_{-}}(\varphi(x), \varphi(y), 0) .
$$

By the maximum principle for the heat equation, we then have

$$
\begin{equation*}
H_{M_{-}}(x, y, t) \leq H_{N_{-}}(\varphi(x), \varphi(y), t), \tag{1}
\end{equation*}
$$

for all $t>0$. Inequality (1) holds for all x and y in M_{-}so we can let $x=y$ and integrate over M_{-}:

$$
\int_{M_{-}} H_{M_{-}}(x, x, t) d V(x) \leq \int_{M_{-}} H_{N_{-}}(\varphi(x), \varphi(x), t) d V(x)
$$

Since φ_{-}is a k-sheeted covering, we have

$$
\int_{M_{-}} H_{N_{-}}(\varphi(x), \varphi(x), t) d V(x)=k \int_{N_{-}} H_{N_{-}}(z, z, t) d V(z)
$$

Again using the maximum principle for the heat equation, we obtain

$$
\int_{N_{-}} H_{N_{-}}(z, z, t) d V(z) \leq \int_{N} H_{N}(z, z, t) d V(z)
$$

where H_{N} denotes the heat kernel of N. We have therefore shown that

$$
\int_{M_{-}} H_{M_{-}}(x, x, t) d V(x) \leq k \int_{N} H_{N}(z, z, t) d V(z)
$$

Finally, letting the volume ε of $E(\varepsilon)$ tend to zero, we obtain

$$
\begin{equation*}
\int_{M} H_{M}(x, x, t) d V(x) \leq k \int_{N} H_{N}(z, z, t) d V(z) \tag{2}
\end{equation*}
$$

where H_{M} is the heat kernel of M. Using separation of variables, one shows that the heat kernels H_{M} and H_{N} have the representations

$$
\begin{aligned}
& H_{M}(x, y, t)=\sum_{i=0}^{\infty} e^{-\mu_{t} t} \psi_{i}(x) \psi_{i}(y) \\
& H_{N}(x, y, t)=\sum_{i=0}^{\infty} e^{-\lambda_{t} t} \varphi_{i}(x) \varphi_{i}(y)
\end{aligned}
$$

where

$$
\Delta \psi_{i}+\mu_{i} \psi_{i}=0, \quad i=0,1,2, \ldots
$$

and

$$
\Delta \varphi_{i}+\lambda_{i} \varphi_{i}=0, \quad i=0,1,2, \ldots
$$

are the eigenvalues and eigenfunctions of M and N, respectively, normalized so that $\left\{\psi_{i}\right\}_{i=0}^{\infty}$ and $\left\{\varphi_{i}\right\}_{i=0}^{\infty}$ form orthonormal systems. Using these representations in inequality (2), we obtain

$$
\sum_{i=0}^{\infty} e^{-\mu_{i} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{t} t}
$$

finishing the proof of the theorem.
3. Applications to minimal surfaces. In [2], D. Fisher-Colbrie shows that a complete minimal oriented surface M in \mathbf{R}^{3} has finite index if and only if it has finite total curvature (see the introduction for the definition of index). A natural question to ask then is how the index varies with the total curvature. Using our eigenvalue estimate, we can show that the index is bounded by a constant multiple of the total curvature.

ThEOREM. Let M^{2} be a complete oriented minimal surface in \mathbf{R}^{3}. Set

$$
k=\frac{1}{4 \pi} \int_{M}(-K) d V
$$

where K is the Gaussian curvature of M. Then

$$
\text { index of } M \leq(7.68183) \cdot k
$$

Proof. Without loss of generality, we can assume that k is finite. By Osserman's classical theorem, we then know that M is conformally a compact Riemann surface \bar{M}, punctured at a finite set of points. Also, the Gauss map extends to a conformal map

$$
G: \bar{M} \rightarrow S^{2}
$$

For a minimal surface in $\mathbf{R}^{3},|A|^{2}=-2 K$. Now, the number of negative eigenvalues for

$$
\Delta+|A|^{2}=\Delta-2 K
$$

on any domain D in M, is the same as the number of negative eigenvalues of the corresponding domain in \bar{M} for the operator

$$
\Delta_{\bar{M}}+2
$$

where we use the pullback metric from S^{2} on \bar{M}. This follows from the fact that

$$
G^{*}\left(d s_{S^{2}}^{2}\right)=(-K) \cdot d s_{M}^{2}
$$

and $\Delta_{M}=(-K) \Delta_{\bar{M}}$. Since the index of M is the limit of the indices of an exhausting sequence of domains D in M, we can conclude, by the domain monotonicity of eigenvalues, that the index of M is bounded by the number of negative eigenvalues of $\Delta_{\bar{M}}+2$ on \bar{M}, or equivalently, by the number of eigenvalues of $\Delta_{\bar{M}}$ that are strictly less than two.

Now, G is a holomorphic mapping so it establishes \bar{M} as a k-sheeted branched cover of S^{2}. The singular set of this covering is the set of isolated points where $K=0$. We can therefore apply our eigenvalue estimate and conclude that

$$
\sum_{i=0}^{\infty} e^{-\mu_{i} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{t} t}, \quad \text { all } t>0
$$

where $\left\{\mu_{i}\right\}_{i=0}^{\infty}$ and $\left\{\lambda_{i}\right\}_{i=0}^{\infty}$ are the eigenvalues of \bar{M} and S^{2}, respectively. Since the index of M is bounded by the number of μ_{i} 's that are strictly less than two, we conclude that

$$
\text { (index of } M) \cdot e^{-2 t} \leq \sum_{\mu_{i}<2} e^{-\mu_{i} t} \leq \sum_{i=0}^{\infty} e^{-\mu_{t} t} \leq k \sum_{i=0}^{\infty} e^{-\lambda_{i} t}
$$

Hence

$$
\text { index of } M \leq\left(e^{2 t} \sum_{i=0}^{\infty} e^{-\lambda_{t} t}\right) \cdot k
$$

The i th distinct eigenvalue of S^{2} is known to be $i(i+1)$, with multiplicity $2 i+1$. Using this, we find that $t=0.4506 \ldots$ gives the smallest possible value of $7.68182 \ldots$ for the coefficient of k, proving the theorem.

As another application of our eigenvalue estimate, we consider the case of minimal surfaces in a flat three-dimensional torus. Let N be such a torus, which we know we can write isometrically as

$$
N=\mathbf{R}^{3} / \Lambda
$$

where Λ is a cocompact lattice, and let M be a closed minimal oriented surface immersed in N. We can define the Gauss map

$$
G: M \rightarrow S^{2}
$$

by viewing M as a minimal surface in \mathbf{R}^{3}, periodic with respect to the lattice Λ.

The index of M is the number of negative eigenvalues of

$$
\Delta+|A|^{2}=\Delta-2 K
$$

on M, where A denotes the second fundamental form of M in N, and K denotes the Gaussian curvature of M. We endow M with the pullback metric from S^{2} via G and conclude, using the same argument as in the preceding example, that

$$
\text { index of } M \leq(7.68183) \cdot k,
$$

where k is the degree of the Gauss map.

References

[1] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), 289-297.
[2] D. Fischer-Colbrie, On complete minimal surfaces with finite index in three manifolds, preprint.

Received July 14, 1986.

University of California, Los Angeles
Los Angeles, CA 90024

