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EIGENVALUE ESTIMATES WITH APPLICATIONS

TO MINIMAL SURFACES

JOHAN TYSK

We study eigenvalue estimates of branched Riemannian coverings
of compact manifolds. We prove that if

φ : Mn -> Nn

is a branched Riemannian covering, and {/i/}Jio and {λ, }°L0 are the
eigenvalues of the Laplace-Beltrami operator on M and N, respectively,
then

for all positive /, where k is the number of sheets of the covering. As one
application of this estimate we show that the index of a minimal oriented
surface in R3 is bounded by a constant multiple of the total curvature.
Another consequence of our estimate is that the index of a closed
oriented minimal surface in a flat three-dimensional torus is bounded by
a constant multiple of the degree of the Gauss map.

1. Introduction. Motivated by problems in the theory of minimal
surfaces, we study the following question. Let

φ:Mn -> Nn

be a branched Riemannian covering of compact manifolds, which has a
singular set of codimension at least two. By this we mean that we endow
Mn with the pullback metric

where φ* is singular on a set of codimension at least two. We then want
to estimate the eigenvalues of the Laplace-Beltrami operator on M in
terms of the corresponding eigenvalues of N. Note that we can speak of
the eigenvalues of (M9φ*(dsN)) although the metric is possibly singular,
since a singular set of codimension at least two will not affect the integrals
of the variational characterization of the eigenvalues.

Our main theorem gives the estimate
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for all t > 0, where k is the number of sheets of the covering φ, and {juj
and {λ } are the eigenvalues of the Laplace-Beltrami operator on M and
N9 respectively. We then use this estimate to show that if M2 c R3 is an
oriented complete minimal surface of finite total curvature, then the index
of M is bounded by a constant multiple of the total curvature. Here, the
index of M is defined to be the limit of the indices of an increasing
sequence of exhausting compact domains in M. The index of a domain D
is the number of negative eigenvalues of the eigenvalue problem

(Δ + μ4|2)φ + λφ = 0 on 2), φ\dD = 0,

where A is the second fundamental form of M as a submanifold of R3.
Geometrically, the index of M can be described as the maximum dimen-
sion of a linear space of compactly supported deformations that decrease
the area up to second order. Finally we also show that the index of a
closed oriented minimal surface in a flat three-dimensional torus is
bounded by a constant multiple of the degree of the Gauss map.

2. The eigenvalue estimate. Our main result is the following theorem.

THEOREM. Let

φ:Mn -> Nn

be a k-sheeted branched Riemannian covering of compact manifolds, which
has a singular set of codimensioin at least two. Let {μ, }Jlo anc^ {^l}T=o ^e

the eigenvalues of the Laplace-Beltrami operator on Mn and Nn, respec-
tively. Then for all t > 0,
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REMARK. Before proving the theorem we note that the main difficulty
is that the fundamental comparison theorems of Cheng [1] do not carry
through if the metric has singularities. We instead utilize the heat kernel
on M and iV to circumvent this difficulty.

Proof. We restrict φ of the theorem to φ_:

where

M_=M-E(ε),
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and E(ε) is an open set of volume less than ε with smooth boundary,
containing the singular set. We then simply define N_ to be the image
under φ restricted to M_.

Now fixing x e M_, we consider

H:y H* H

where HN is the heat kernel on N_, with Dirichlet boundary conditions.
Since φ_ is the local isometry, the function H solves the heat equation on
M_. As t tends to zero we obtain

On the other hand, for the heat kernel HM on M_ with Dirichlet
boundary conditions, we have as t tends to zero

HM_(x9y9t)-+δx.

Hence, at t = 0 we have in the sense of distributions

HM(x,y,θ)<HN_(φ(x),φ(y),θ).

By the maximum principle for the heat equation, we then have

(1) HM_(x,y,t) £ HN__(φ(x)My),t),

for all / > 0. Inequality (1) holds for all x and y in M_ so we can let
x = y and integrate over M _:

/ HM(x9x9t)dV(x)<ϊf HN(φ(x)9φ(x),t)dV(x).

Since φ_ is a A> sheeted covering, we have

HN(φ(x),φ(x),t)dV(x) = k( HN (z,z9t)dV(z).
JN_

Again using the maximum principle for the heat equation, we obtain

/ HN (z, z, t) dV(z) < f HN{z, z, t) dV(z),

where HN denotes the heat kernel of N. We have therefore shown that

( HM (χ9x, t) dV(x) <k[ HN{z, z, t) dV(z).
JM_ JN

Finally, letting the volume ε of E(ε) tend to zero, we obtain

(2) ί HM(x, x , t) dV(x) <kί HN(z9 z, t) dV(z)9
JM JN
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where HM is the heat kernel of M. Using separation of variables, one
shows that the heat kernels HM and HN have the representations

HM(x,y,t)= £ e-^t(
z = 0

HN(x,y,t)= Σ e'x'%(
i-O

where

Δψ.-f μ,ψ. = 0, / = 0,1,2,...,

and

ΔΦ|. + X/Vl. = 0, ί = 0,1,2,...,

are the eigenvalues and eigenfunctions of M and N, respectively, normal-
ized so that {ψ;}*L0

 a n c* {φ*}S=o f ° r m orthonormal systems. Using these
representations in inequality (2), we obtain

finishing the proof of the theorem.

3. Applications to minimal surfaces. In [2], D. Fisher-Colbrie shows
that a complete minimal oriented surface M in R3 has finite index if and
only if it has finite total curvature (see the introduction for the definition
of index). A natural question to ask then is how the index varies with the
total curvature. Using our eigenvalue estimate, we can show that the index
is bounded by a constant multiple of the total curvature.

THEOREM. Let M2 be a complete oriented minimal surface in R3. Set

where K is the Gaussian curvature of M. Then

index of M < (7.68183) k.

Proof. Without loss of generality, we can assume that k is finite. By
Osserman's classical theorem, we then know that M is conformally a
compact Riemann surface M, punctured at a finite set of points. Also, the
Gauss map extends to a conformal map

G:M -> S2.
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For a minimal surface in R3, \A\2 = -2K. Now, the number of
negative eigenvalues for

Δ + \A\2 = Δ - 2K,

on any domain D in M, is the same as the number of negative eigenvalues
of the corresponding domain in M for the operator

ΔM + 2,

where we use the pullback metric from S2 on M. This follows from the
fact that

and Δ M = (-JSΓ)Δ^. Since the index of M is the limit of the indices of an
exhausting sequence of domains D in M, we can conclude, by the domain
monotonicity of eigenvalues, that the index of M is bounded by the
number of negative eigenvalues of Δ^ 4- 2 on M, or equivalently, by the
number of eigenvalues of Δ^ that are strictly less than two.

Now, G is a holomorphic mapping so it establishes M as a ^-sheeted
branched cover of S2. The singular set of this covering is the set of
isolated points where K = 0. We can therefore apply our eigenvalue
estimate and conclude that

00 00

Σ e~μit ^ k Σ e~K\ all t > 0,
z = 0 z = 0

where { μ,}°l0

 a n ( ^ {̂ i)T=o a r e the eigenvalues of M and S2, respectively.
Since the index of M is bounded by the number of μ/s that are strictly
less than two, we conclude that

(index of M) e~2t < Σ e~μit ^ Σ e~μιt ^ k Σ ^" λ ' '

Hence

index of M < \e2tΣ e~λ'
00

The zth distinct eigenvalue of S2 is known to be i(i + 1), with multiplic-
ity 2/ + 1. Using this, we find that / = 0.4506... gives the smallest
possible value of 7.68182... for the coefficient of k, proving the theorem.

As another application of our eigenvalue estimate, we consider the
case of minimal surfaces in a flat three-dimensional torus. Let N be such
a torus, which we know we can write isometrically as
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where Λ is a cocompact lattice, and let M be a closed minimal oriented
surface immersed in N. We can define the Gauss map

G\M -> S2

by viewing M as a minimal surface in R3, periodic with respect to the
lattice Λ.

The index of M is the number of negative eigenvalues of

Δ + \A\2 = Δ - 2K

on M, where A denotes the second fundamental form of M in N, and K
denotes the Gaussian curvature of M. We endow M with the pullback
metric from S2 via G and conclude, using the same argument as in the
preceding example, that

index of M < (7.68183) k,

where k is the degree of the Gauss map.
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