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CHARACTERIZING REDUCED WITT RINGS
OF HIGHER LEVEL

VICTORIA POWERS

Mulcahy's Spaces of Signatures (SOS) is an abstract setting for the
reduced Witt rings of higher level of Becker and Rosenberg just as
Marshall's Spaces of Orderings is an abstract setting for the ordinary
reduced Witt ring. Finitely constructive SOS's are those built up in a
finite number of steps from the smallest SOS using 2 operations. We
show that finitely constructive SOS's are precisely those that arise from
preordered fields (subject to a certain finiteness condition). This allows
us to give an inductive construction for the reduced Witt rings of higher
level for certain preordered fields, which generalizes a result of Craven
for the ordinary reduced Witt ring. We also obtain a generalization of
Brόcker's results on die possible number of orderings of a field.

1. Preliminaries. For a field K we set K = K\ {0}. The symbol U
stands for disjoint union. We begin by recalling some of the theory of
preorders of higher level from [4]:

A subset T of K is a preorder if t = T\ {0} is a subgroup of K and
t + t QT. We assume throughout that all preorders are of finite expo-
nent, i.e., Km c T for some m G N. Since -1 £ f, the exponent of the
group k/f is even, say In. We call n the level of T.

Let μ = {z G C: zr = 1 for some r e N ) . For an abelian group G let
G* denote Hom((j, μ), with the usual compact-open topology, χ G (K)*
is called a signature if kerχ + kerχ c kerχ. We write Sgn(.SΓ) for the set
of signatures of K. For a preorder T let Xτ = {χ e Sgn(Jf): χ(f) = 1}.
T h e n Γ = Π χ G ^ k e r χ [ 4 , 1 . 4 ] .

We make extensive use of Krull valuations: If v\ K -> Γ is a
valuation, we denote the valuation ring by A, the group of units by [/, the
maximal ideal by / and the residue class field by 4. If 4 is formally real,
we say v is a real valuation.

An element χ e (K)* is "compatible" with a valuation «Λ, written
v ~ χ, if 1 + / c kerχ. In this case, the equation χ(u + /) = χ(u)
defines an element χ G (/)*, called the pushdown of χ along v9 and
χ G Sgn(iO iff χ G Sgn(/) [3, 1.12, 2.5]. A preorder Γ of K is "fully
compatible", written v ~ y Γ, if each x G I Γ is compatible with v9 i.e., if
1 + / c T. In that case the image of A Π T in /, denoted Γ, is a preorder
of/.
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For x G Sgn(K), let A(χ) = {a ^ K: there is an w G N with n + a
and w — a e kerχ | . Then >4(χ) is the smallest valuation ring such that

~ x and the pushdown of x along A(χ) is archimedean [3, 2.7].

DEFINITION 1.1 (cf. [13], [17]). Let G be an abelian group of exponent
2s, for some S G N . Let X c G* be nonempty. An n-dimensional form f
over (X, G) is an w-tuple {aγ,...,an) with ai e G. We write dim/= n
and, for σ e X, o(f) = Σ"=1σ(tf,). Two forms / and g are said to be
equivalent if σ(/) = σ(g) for all σ e X We write / = g. / and g are
isometric, written / = g, if / = g and dim/= dimg. We say a form /
represents x e G if / = (x,JC2> >*H) f°Γ some jcf. e G. £>(/) denotes
the set of all elements of G represented by /. The sum, / Θ g, and the
product, / Θ g, are defined in the usual way (see [13]) and the form
(a) <8>/, a G G, is denoted #/. We use the convention that there is an
empty form ( >, i.e., a form with no entries. Dim(( )) = 0 and σ(( )) = 0.

The pair (X, G) is called a Space of Signatures, or SOS, when the
following axioms hold:

So: For any σ ^ X and any odd integer k, σk ^ X.
Sλ: X is closed in G*.
52: There is an e e G such that σ(e) = -1 for all σ e X.
S3: I ^ ί f l G G: σ(α) = l f o r a l l σ e X } = 1.
S4: If / and g are forms over (X, G) and z e D(/ θ g), then there is

an JC e /)(/) and a y e Z>(g) such that z G Z)((JC, y)).m

S5: If σ G G* \ {1} is such that D((l, JC» c kerσ, for all x G kerσ,
then σ G X

REMARKS 1.2.

(i) By S3, the e of 5 2 is unique and we denote it by - 1 .
(ϋ) If G2 = 1, then a Space of Signatures is precisely what Marshall

called a Space of Orderings [13,14,15,16].
(in) If T is a preorder of K, then (Xτ, K/t) is an SOS [17, l.lθ(iϋ)].
(iv) If (XvGλ) and (X2,G2) are two SOS's and there is an isomor-

phism a: Gλ -> G2 such that α*(X2) = ^ , where α* denotes the dual
map, we will write (Xv Gλ) = (X2, G2).

DEFINITION 1.3. An SOS (X,G) is realizable if there exists a field K
and a preorder Γ such that (XΓ, K/t) = (X, G).

EXAMPLES 1.4. (i) Let G = {± 1} be the 2-element group. Let X c G*
consist of the character that sends -1 to - 1 . We denote the pair (X, G) by
# 2 . Obviously # 2 is realizable, for example by K = R and T = R2.
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(ii) (cf. [17, l.lθ(iϋ)]). Let G be any group of finite even exponent,
and fix an element -1 of order 2. Set X = {χ e G*: χ(-l) = -1}. By
analogy with [4, p. 448] we call (X, G) a fan. We will see later that all fans
are realizable SOS's.

2. Group extensions and direct sums. In this section we examine two
ways in which a SOS can be built up out of "smaller" SOS's. Our main
goal is to show that if we start with realizable SOS's our new SOS is also
realizable.

DEFINITION 2.1 (cf. [15, 3.6]). Suppose (X0,G0) is a SOS and G is an
abelian group of finite exponent with Go c G. Set X— {χ e G*: χ | Go e
Xo). The pair (X,G) is called a group extension of (XQ,G0). We shall say
that (X, G) is a growp extension if there exists (Xo, Go) such that (X, G) is
a group extension of (Z o, Go). If (X, G) is a group extension, then it is a
SOS with -lG = -lG o [17, 2.6].

REMARKS 2.2. (i) Group extensions of a given SOS (X0,G0) corre-
spond to abelian group extensions of Go: If (X, G) is a group extension of
(X0,G0) then we have an exact sequence of abelian groups 1 -> Go -» G
-» G/Go -» 1. Conversely, given an exact sequence l-»G 0 ->G-»AΓ->
1 where H is abelian of finite exponent, then setting X = (χ e G*:
XI (? G ^o) a n ί * identifying Go with its image in G, we see that the pair
(X, G) is a group extension of (Xo, Go).

(ii) Suppose (X,G) is a group extension of (X0,G0). Since μ is
divisible, it is Z-injective [7, Prop. 5.1, p. 134] and thus there is a dual
exact sequence

res
1 -> (G/Go)* -* G* -> G* - 1,

where res is the restriction map. Then χ G X iff res(χ) G XO, and thus
there is a non-canonical bijection X <-» Xo X {G/Go)*.

(in) Clearly (X, G) is a fan iff (X, G) is a group extension of ^ 2

 o r ^2
itself.

(iv) Equivalent abelian group extensions, in the sense of [10, p. 211],
give rise to the "same" SOS, in the sense of [1.2, (v)].

PROPOSITION 2.3. Let K be afield, T c Kapreorder and v a valuation
such that »~fT. If T/t>(t) = l, then (Xτ, K/T) = (Xp k/T). //

Φ 1, then {Xτ, K/t) is a group extension of (Xτ, Jt/f).
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Proof. By [3, 2.6] the sequence

l -> d/f^k/f -£r/

is exact, where a{uf) = wf and β{at) = v{a)v{T). By [4, 2.7] α*(χ) e
X f iff χ e JfΓ.

COROLLARY 2.4. Given α //e/d K, a preorder T and a valuation v such
that v ~ jr T. Then T is a fan iff T is a fan.

Proof. This follows easily from [2.3] if we note the following: If
(X, G) is a group extension of (Xθ9 Go), then for any χ e G*, χ(-l) = -1
iff XI ̂ (-1) = - 1 .

Now we fix a field F9 a preorder Γ c F a n d a SOS (X, G) which is a
group extension of (Xτ, F/t). Thus we have an exact sequence

(1) l-*F/T^G-»H^l.

We want to show that (X9 G) is realizable. To do this we will construct a
field K, a preorder Q c K, and a valuation v ~~ fQ such that the exact
sequence of [2.3] is equivalent to (1).

PROPOSITION 2.5. {With the above notation), (X,G) is realizable.

Proof. Fix λ': H X H -> JP/Γ, a factor set corresponding to the exact
sequence (1). Since H is abelian of finite exponent, H s Γ/Δ where Γ is
a direct sum of copies of Z [10, 15.2]. Order Γ lexicographically. By [10,
51.3], there is a factor set λ: Γ X Γ -> F such that λ ί γ ^ γ ^ f ^
λ / (γ 1 Δ,Ϊ2Δ)foral lγ 1 ,γ 2 eΓ.

Let K be the formal power series of Γ over F: This is the set of
functions Ω: Γ -> F with *S(Ω), the support of Ω, well-ordered. Addition
is defined in the obvious way and multiplication is given by

(Ω1Ω2)(γ)= Σ

for all Ω, e AT and γ e Γ. Then JSΓ is a field and the map v: K -* Γ,
defined by ^(Ω) = least element of £(Ω), is a valuation with value group
Γ and residue class field F [20, 5.3 and 5.4].

Let Q = {Ω e ϋΓ: t (Ω) e Δ and Ω(^(Ω)) G T). It is straightfor-
ward to check that Q is a preorder, ^ - ̂  Q, Q = Γ, and v{Q) = Δ.

We want to show that AΓ/β = G. Since λ' is a factor set correspond-
ing to (1), we can identify G with pairs {at, Λ), a e F and h & H, where

( f l l t , AiXβ^, Λ2) = (λ'(Λ1; h2)aia2t, hxh2).
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Define θ: K -* G via 0(Ω) = (Ω(t>(Ω))Γ, z>(Ω)Δ). Since the "twisting"
in K is via λ and that of G is via λ', a straightforward check shows that θ
is a homomorphism. It is clear that θ is surjective and ker0 = Q. Hence

By [2.3], (XQ, K/Q) is the group extension of (Xτ, F/t) arising from
the exact sequence

(2) 1 -* F/t -> K/Q Λ H -> 1

where £(Ω + <2) = t>(Ω) + Δ. An easy check shows that (1) and (2) are
equivalent exact sequences and thus (X, G) = (XQ, K/Q).

REMARK 2.6. For G2 = 1 and T = ΣF2 [2.5] is easy (see [8, 2.4]). In
this case the field K is an iterated power series field F((tι))((t2))...,
where the number of variables is equal to dim F2(H).

DEFINITION 2.7. Let (XVG1) and (X2,G2) be two SOS's and set
G = Gx X G2. Then G* = Gf X G2* and thus ^ X {1} and {1} X X2

embed in G*. Set X= (XVX {1}) U ({1}) X X2). This union is clearly
disjoint and thus we write X = Xx U X,. The pair (J^G) is a SOS [17,
2.3], called the direct sum of (Xv Gx) and (X2, G2) and we write (X, G) =

THEOREM 2.8. Suppose Kλ and K2 are fields with preorders Tt c Kt.
Then (XTχ9 KJT^ Θ (X^ K2/t2) is realizable.

The case of 7) = Σi^,2 is proven (in a different form) by Craven [8,
2.4]. The proof uses a construction of Brocker [6] (see also [19, §1]). To
prove [2.8] we need to construct a field F and a preorder T such that
F/t = Ĵ x/Γx X £ 2 / Γ 2 and Xτ = XΓj U XTi. The construction of F and
T will follow along the lines of Brocker's construction. However, we will
need new methods to show that Xτ = Xτ U Xτ: We make use of an
equivalence relation on Xτ defined in [4]. Before proving [2.8], we need
several lemmas.

LEMMA 2.9 (cf. [19, 1.1]). Let K be a field and vl9...,t>r pairwise
independent {non-trivial) valuations on K. Suppose for each /, 1 < / < r,
we have (Ki91> ) an immediate extension of (K, vέ) [9, p. 24] together with
a preorder Tt of Kt such that »\~ f Tt. Then the diagonal map K -> Kx/tx

X ••• XKr/trisonto.
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Proof. Let y in kx/txK ••• XKr/tr be (rn1fv...,mrfr). Since
(Ki9 vt) is an immediate extension of (K, *,.), for each i there is an at G K
such that fj ίέi,-) = v\{m^ thus m,/*!,- = w for some unit u\ in Kt. Then
there is a unit w, in (AT, ̂ ) such that u\ 4- // = w, 4- 7Z. Hence mi =
(α^-Xl 4- X;) for some xέ e //.

Let n = max{level7^}. By the Approximation Theorem for Indepen-
dent Valuations [5, Chap. 6, §7, No. 2, Thm. 1], there is an a G K such
that *,(* - (aiUi)

2n-1) > vi((aiui)
2n-1),hencca = (aiUi)

2n-\l + y() for
some ^ e 7/# Thus we have ami = {aiui)

2n{\ + ̂ ^(l + yt) and hence
ami e 7].. Thus I/a maps to j> and we are done.

LEMMA 2.10. Given a field K and preorder T of level < n. Suppose v is
a valuation on K such that the value group Γ is In-divisible and v ~ fT.
Then(Xτ,K/T) = Jf

Proof. An easy generalization of [12, 3.7] shows that v(ΣK2n) = 2nT.
Thus 2nT c v(f) and hence Γ/V(Γ) = 1. The lemma now follows from
[2.3].

LEMMA 2.11. Let v be a henselian valuation on K with residue class field
i. Then any preorder of K is fully compatible with v and given any preorder
Qof4 there is a preorder T of K such that T = Q.

Proof. An easy generalization of [12, 4.16] shows that a henselian
valuation is fully compatible with ΣK2n for any n, and hence with any
preorder. Let S = ΣK2n, where n = level Q, then clearly S c g . W e let
T be the "wedge product" S A Q = S {u e U: ΰ e Q}. By the first
statement, v - f T and by [4, 2.5], T = Q.

The following is from [4, §5]:

DEFINITION 2.12. (i) We define the equivalence relation of "depend-
ency" on Xτ as follows: If χ is archimedean, then χ - χ' when χ = χ\
Otherwise χ ~ χ' when A(χ)A(χ') Φ K.

(ii) We set A[χ] = Π χ ^ χ i4(χ / ) , clearly a real valuation ring, and we
set T[χ] = (ΠX ^ χ kerχ r ) U {0}, clearly a preorder of finite exponent. If
Xτ has only 1 dependency class, we write Aτ for A[χ] (χ any element of

Becker and Rosenberg prove results on A[χ] and T[χ] when T is of
finite index. However, their proofs do not use the full strength of this
assumption and thus more general statements hold.
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LEMMA 2.13 (e/. [4, 5.6 and 5.7]). Let K be a field and T a preorder
such that Xτ has only finitely many dependency classes [ χ j , . . . , [ χ j . We
write Tt = ΓfχJ. Further suppose that for all non-archimedean χ,, A[χt] Φ
K. Then

(ii) The natural map K/f -> Y\[ K/fi is an isomorphism, and hence

(xτ,k/t)= Φ ^X^K/T,).

Proof. If χ, is archimedean, (i) is clear. For non-archimedean χ, , the
proof of (i) is exactly that of [4, 5.6(i)]. The proof of (ii) is exactly that of
[4, 5.7].

Proof of Theorem 2.8. Let at be the transcendence degree of Kt over
Q. We first show that w.l.o.g we can assume aλ = a2. Suppose aλ < a2.

Let v be the x-adic valuation on Kλ(x), then 4V = Kλ and Tv = Z.
Let n = level 7\ and let Γ' = {k/(2n)m: k9 m e Z}

By [9, 28.1], there is an extension of valued fields (L, u>) 2 (Kλ(x), v)
such that L is algebraic over Kx(x), Γ^ = Γ' and &„ = Kv In particular,
Γ^ is 2«-divisible.

Let (K, v') be a henselization of (L, ^ ) . By [2.11], there is a preorder
T of K such that T = Tv Then, by [2.10], (Xτ, K/f) = (XTχ, Kx/t^) and
clearly the transcendence degree of K over Q is aλ 4- 1.

Using Zorn's lemma and the above construction, we see that we can
replace Kλ with a field of transcendence degree a2 over Q without
changing the SOS. Thus w.l.o.g. we can assume aλ = a2.

Let L be a purely transcendental extension of Q of degree α1? then
Kλ and ίΓ2 are algebraic over L. Let ^ be the x-adic valuation on L(x)
and let u> be the degree valuation on L(x). As above, by [9, 28.1] there is
an algebraic extension of L(JC), L\ and valuations v' and */ extending v
and u> such that ^ = Kv A^. = JRΓ2, Γv, is 2«Γdivisible and T^, is
2«2-divisible, where nt = level 7].

Let (M l 9^") be a henselization of {L\v) and let (A/2, «>") be a
henselization of (Z/, ̂ )> both in the same algebraic closure of ZΛ By
[2.11], there are preorders Qt of Mt such that Qi = 7̂ , Hence, by [2.10],

Now we let F= MλΠ M2 and 7 = 0 ^ β 2 . Set v0 = v"\ F and
^ 0 = ^ / r I F . Since U c jp, M X and M2 are algebraic over F and thus,
since ^ and κ> are independent, ^0 and ^ 0 are independent. Also note
that (Mv v") is a henselization of (i7, ̂ 0) and (M2, ̂ " ) is a henselization
of (F, ̂ 0 ) . In particular, (Mvv") D (i7, t>0) and (M2, ̂ ") D (i7, ^ 0 ) are
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immediate extensions and thus, by [2.9], the diagonal map F/t -> Mx/Qx

X M2/Q2 *s a n isomorphism.
It remains to show that Xτ = XQι U XQi. First we note that F9 Mx

and Λf2 have no archimedean orders: If P were an archimedean order on
Aίl9 then since v" ~ P [2.11], we would have Mx = A(P) c ^ , , [3, 2.7], a
contradiction. Similarly, M2 has no archimedean orders. By [19, 1.3] and
[1, Chap. 1, Lemma 6], any archimedean order on F would lift to one on
Mx or Λf2, thus F has no archimedean orders.

Now given χ e XT9 we claim that t>0 ~ χ or ^ 0 — χ. Let 4̂X be the
valuation ring of ^0 and let A2 be the valuation ring of ^ 0 . First suppose
that A(χ)y Ax and A2 are pairwise independent. Let (M3,vx) be a
henselization of (F,A(χ)), then by [2.11] there is a preorder Γ3 of M3

such that Γ3 = kerχ. By [2.9] the diagonal map F -> Mx/Qx X M2/Q2 X
M3/T3 is onto, which is a contradiction since F -> Mx/Qx X M2/Q2 is
onto. Thus, since v4x and ^42 are independent, either A(χ)A1 Φ F or
^(λ)^2 ^ ^ saY ^(x)^i ^ F- % O U Γ construction of Γ v ^0 is a rank 1
valuation. Then, since Ax c A(χ)Ax we must have ^ = ^ ( χ ) ^ ! and so
v4(χ) c ^4^ Thus ^0 - χ. Hence any χ e l r has z>0 - χ or ^ 0 - χ.

Fix X ; <Ξ XQι and let χf. = χ\ \ F. Then clearly ^ - χx and ^ 0 - χ2.
Suppose χx and χ 2 are in the same dependency class in Xτ, then
A(χx)A(χ2) = A Φ F. Since valuation rings containing a given one are
linearly ordered [5, Chap. 6, 4.1], either A Q Axoτ Ax Q A.

As above, we must have A c Al9 and similarly A Q A2. But this
implies that Ax and ^42 are linearly ordered which is impossible since they
are independent. Thus [ χ j Φ [χ2].

Since every χ^Xτ has ^0 - χ or ^ 0 - χ, every χ is in [χx] or [χ 2].
Furthermore, ^4[χJ c ^ and A[χ2] c ^42. Let S, = Γ[χJ, then, by
[2.13], the diagonal map F/T -> /T/Sf

1 X ^F/^ is an isomorphism and
Xτ = XSι U XSi.

We claim that S = β, Π î . If χ ί β i n f ) = l, then v0 - χ and so
χ G ΛΓ5i. Hence XQιΠF Q XSι and thus Sx Q Qx Π F [4, 1.4]. Similarly,
S2 ^ 62 n ^ G i v e ^ x G δ i n ^ β y t h e above, there is a J Γ G F/f
which maps to (xSv S2) under the diagonal map. Now, y e S2 c Q2 and
yx"1 G ^ C Qv thus , y e β 1 n β 2 = Γ , since x G β 1 ? and thus x e 5 .̂
Hence ρ x Π JF C Sx and similarly we see that Q2Π F Q S2. Thus St =

Given χ e JfΓ, χ ( ρ x n F ) = l or χ(Q2 Π f ) = l, Suppose
X(gx Π F) = 1, then since the diagonal map F/t -* M 1 / β 1 X M 2 / ρ 2 is
an isomorphism, χ lifts to a character θ e (M 1 /g 1 )*. An easy check
shows that χ = θ in the residue class field of v0 and v" and hence



CHARACTERIZING REDUCED WITT RINGS 341

θ e XQi [3, 2.7]. Similarly, if χ(Q2 Π F ) = 1, χ lifts to XQi. Thus
X Γ = XQι U Xβ 2 and we are done.

3. Finitely constructible spaces of signatures and the reduced Witt
ring.

DEFINITION 3.1. We define m-constructible SOS's inductively as
follows: (X,G) is 1-constructible iff (X,G) = <β2. For m> 1, (X,G) is
m-constructible iff one of the following holds:

(a) There exist SOS's (Xv Gλ) and (X,, G2) and k < m such that each
(Xi9 Gt) is A:-constructible and (X,G) = (Xv Gλ) θ (X2,G2).

(b) There exists a SOS (JΓ0,G0) and k < m such that (Xθ9Go) is
fc-constructible and (X, G) is a group extension of (Xo, Go).

(c) (X, G) is fc-constructible for some k < m.
We say (X, G) is finitely constructible if it is m-constructible for some
m e N.

DEFINITION AND REMARK 3.2 [4, Sec. 5]. The pushdown of a signature
χ along ^4(χ) is archimedean and thus induces a unique order embedding
of /(χ) into R. Thus χ leads to a real-valued place λ(χ) with valuation
ring A{χ). Set M Γ = {λ(χ): χ e XΓ}.

If λ(χ) = λ(χ'), then A(χ) = A(χ') and thus if χ is non-archi-
medean, χ - χ r [2.12]. If χ is archimedean, then λ(χ) = λ(χ') iff x = χ'
[5, Prop. 5, Sec. 3, No. 2]. Hence the number of dependency classes of Xτ

is < \MT\.

LEMMA 3.3. // \MT\ = 1, then Tis a fan.

Proof. Let A = A(χ) for some χ e XΓ. By assumption, Λί(χ') = 4̂
for all χ' e XΓ. Thus A ~ fT and Γ, the pushdown along A, is a fan.
Hence, by [2.4], Γ is a fan.

LEMMA 3.4. Given a valuation ring v such that v ~ fT. Then \Mγ\ =
\MT\.

Proof. Given λ e ΛfΓ, define ^(λ) e M Γ via 0(λ)(w + /) = λ(w).
Given λ' e M f , define ^'(λ') e M r via β'(λ')(Λ;) =00 if x <£ A and
θ'(λ')(x) = λ'(jc + /) for x e y4. Then clearly θ(θ') = identity on M f

and θ'(θ) = identity on Mτ. Thus θ is a bijection and so \MT\ = \MT\.
We are now ready to prove our main theorem.
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THEOREM 3.5. (X, G) is finitely constructible iff (X, G) is realizable by

a field K and a preorder T such that \MT\ < oo.

Proof. If (X, G) is m-constructible we use induction on m and [2.5]
and [2.8] to show that (X,G) is realizable. Note that if Xτ = XTγ U X^,
then clearly \MT\ < \MT\ 4- |M rJ and thus direct sum preserves finiteness
of Mτ. By [3.4], our group extension construction does also and hence the
preorder Tconstructed has \MT\ < oo.

Now suppose that T is a preorder with \MT\ < oo. We induct on
\MT\. If \MT\ = 1 we are done by [3.3], since every fan is ^ 2 or a group
extension of ίf2.

Suppose \MT\ > 1. By [3.2], Xτ has only finitely many dependency
classes.

Case 1. The dependency classes of Xτ are Xτ,..., Xτ where s > 1.
By [3.2] we have Mτ = Mτ U UMT and thus by induction each
{X^K/ti) is finitely constructible. Hence, by [2.13, ii] (XT9K/t) is
finitely constructible.

Case 2. Suppose Xτ has 1 dependency class. Since |AΓΓ| > 1, T is
non-archimedean. Since \MT\ < oo, there are only finitely many ^4(χ)'s,
χ e Xτ, and thus, as in [4, 5.6(i)], we see that ATΦ K. Let T be the
pushdown of T along Aτ, then by [2.3] it suffices to show that {Xψ, £/T)
is finitely constructible.

If Xτ has more than one dependency class then, since \MΨ\ = \MT\
[3.4], the proof of Case 1 shows that (Xτ, i/T) is finitely constructible. If
Xτ has 1 dependency class, then AΨ = / [2, p. 1961-1963]. As above, this
implies that T is archimedean. In particular, T is a fan and we are done.

DEFINITION 3.6. (i) Let (X,G) be a SOS. For a form / over (X,G)
denote by [/] its Z-equivalence class [1.1]. The set W{X) of equivalence
classes of forms over (X, G) carries a natural ring structure as follows: We
define [/] + [g] to be [/ Θ g] and we define [/] [g] to be [/ ® g]. Then
if we define -[/] to be [-/], clearly (W(X)9 +, •) is a commutative ring
with 1 = [<1>] and 0 = [(1,-1)], the class of all hyperbolic forms. The
ring W{ X) is called the Witt Ring of (X, G).

(ii) Let I(X) in W(X) be the set of classes of even-dimensional
forms. That this is well defined follows from the fact that if / and g are
X-equivalent forms, then dim/== dimg (mod 2), which can be shown as
in the proof of [4, 4.8]. It is clear that I(X) is an ideal.
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REMARK 3.7. Given a field K and preorder T then Wτ, the higher
level reduced Witt ring of [4, 4.2], is easily seen to be isomorphic to
W(XT).

DEFINITION 3.8 [18, p. 13]. (i) Given a commutative ring i?, denote by
U(R) the abelian group of units of R.

(ϋ) Given a commutative ring R and an abelian group H. Suppose λ:
H X H -> U(R) is a factor set. We define the twisted group ring of R over
H by λ, JR'[//], as the set of formal sums Σh€ΞH(rh, A) where rh & R and
only finitely many rΛ's are non-zero. If ΣhGH(sh, A) is another element of
R*[H] then addition is defined by Σ(rh,h) + Σ(sh,h) = Σ(rh + sΛ, A),
and multiplication is defined by (Σ(rΛ, A)) (Σ(sΛ, A)) = Σ(zΛ, A), where
zh = ΣΛ Λ ==hλ(hv h2)rh sh . Then i?'[/f] is a commutative ring with 0 =

DEFINITION 3.9 (cf. [4, 2.10] and [17, 3.11]). Given a SOS (X9G)
which is a group extension of (XQyG0). Then we have an exact sequence
1 -> Go -» (? -> G/Go -> 1 which gives a rise to a factor set λ: G/Go X
G/GQ -» Go such that under this bijection the multiplication in G is given
by: (e1,h1) (e2fh2) = (\(hl9h2)eιe2,hιh2) for all ef e Go and Λf e
G/G0.

Given f=(al9...,an), & form over (X0,G0), and A e G/Gθ9 let
{/,A} = ((flx, A), . . . , (α n , A)), a form over (JSΓ,G). Let / be any form
over (X, G), then for each A e G/Go there is obviously a (possibly empty)
form fh over (X0,G0), called the A/A residue form off, such that / =

LEMMA 3.10 (cf. [4, 4.7]). Let f and g be forms over (X,G). Then
[/] = [g] in W(X) iff [fh] = [gh] in W(X0) for all h <Ξ G/GO.

Proof. This follows easily from [17, 2.7].

PROPOSITION 3.11. Given (X,G) a group extension of (X0,G0). Let λ
be a factor set arising from the exact sequence 1 -» Go -» G -* G/Go -> 1.
Then W(X) = W(X0)'[G/G0], the twisted group ring of W(X0) by G/Go

arising from λ.

Proof. Define φ: W(X) -* W(X0)'[G/G0] by
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where fh is defined as in [3.9] using λ. By [3.10], φ is well-defined and

injective.

A straightforward calculation shows that for al9 a2 G G, φ([(αi)] +

[<«2>]) =
 Φ ( K * I > ] ) + φ(K*2>]) τ h e n > s i n c e a n y [ / ] i s a s u m o f Ka)Ys> ^

follows easily that φ is a homomorphism.

Given a form / = (ev...,ek) over (Xθ9 Go) and h G G / G O . Let / be

the form <(^,Λ),...,(βΛ,Λ)> over (X,G), then clearly φ([/]) = {[/], h).

Thus φ is surjective and therefore φ is an isomorphism.

The following is implicit in [4, §2]:

COROLLARY 3.12. Given a field K, apreorder T, and v a valuation such

that v~ fT. Then W(XT) = W(XΨy[T/v(T)]9 where the twisting arises

from a factor set of the canonical exact sequence 1 -> &/T -> K/t ->

l.

PROPOSITION 3.13. Given SOS's (X,G), {Xl9Gλ) and (X2,G2) such

that (X9G) = (Xι,Gι)Φ(X29G2). Then W(X) = Z + (I(Xλ) X I(X2))

c W(X-d X W{X2), where Z has the diagonal embedding in W{Xγ) X

W{X2).

Proof. Given /, a form over (X,G), then / = ((al9 bx),... 9{am9 bm))9

where each at is in Gλ and each bx is in G2. Thus we write / = fx U f2

where /x = (al9..., αm>, a form over (Xl9 Gλ) and / 2 = (bl9..., δm>, a

form over (X2, G2). Then it follows from the definition of direct sum that

[/i U f2] = [gl U g2] iff σ(Λ U / 2) = σ ( g l U g 2) for all σ in X iff σ i ( Λ )

= σ^gj) for all σx in X1 and σ2(/2) = σ2(g2) for all σ2 in f̂2 iff

[/J = [ft] in W(XX) and [/2] = [g2] in W(X2). Now, define j8: W(X) ->

By the above, ^ is well-defined and injective.

Now we want to show that the image of β is Z + I(Xλ) X I(X2)

Given /, a form over (X, G), when we write / as fx U/ 2 we have

dimension^) = dimension(/2). If dim(/;) is even, then β{[fx U /2]) =

([/iM/2]) £ / ( ^ ) X /(X2). If dim(/;) is odd, then

β([fι U/2]) = ([Λl.ίΛ]) = ([<1,-1> ©Λ], [<1,-1> ΦΛl)

= 1 +([(-1) ΘΛ], [(-1) Φ/2]) c Z + /(XJ X

Thus Image (̂ 8) c Z + / ( ^ ) x
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Given n + ([gj, [g2]) in Z + I(Xλ) X I(X2). Suppose g l =

( β 1 ? . . . , α 2 m ) and g2 = (bl9..., Z>2*)> Λen w.Lo.g. we can assume m < k.

Let

Θ <(α1? Z>x),..., (a2m9 b2m), (1, Z>2m+1),

a form over (X,G). Then jβ(/) = n + ([gx Θ (m - fc)<l,-l>], [g2]) =

n + ( [ g i M ^ D Hence Z + /(Λ^) X I(X2) c Image(/3) and we are done.

DEFINITION 3.14. A ring R is finitely realizable if there is a field K

and a preorder Γ with \MT\ < oo such that W(XT) = i?.

Using our previous result on finitely constructible SOS's [3.5], we can

now give an inductive construction for finitely realizable rings. In the case

where G2 = 1 this is due to Craven.

THEOREM 3.15 (c/. [8, 2.1]). Finitely realizable rings are precisely those

given by the following inductive construction:

(a) Z is finitely realizable.

(b) If Rλ and R2 are finitely realizable, then R = Z 4- Iλ X I2 is also,

where Iλ and I2 are the ideals of even dimensional forms.

(c) If Ro is finitely realizable, H is abelian of finite exponent and λ:

H X H -> U(R) is a factor set with image(λ) c { r e U(R0): r has finite

exponent), then RQ[H] is finitely realizable, where the twisting arises from

λ.

Proof. This follows easily from [3.5], using [3.11], [3.13] and the fact

that for a preordered field (K,T), K/t = {r e U(R): r has finite

exponent} [Becker, Rosenberg, unpublished].

We now wish to make use of [3.5] to study the number of signatures

in Xτ for a preorder T of finite index. In the case where G2 = 1, this was

done by Brδcker [6].

DEFINITION 3.16. (i) Let A be the semigroup Φ ^ χ Z + with addition

defined in the usual way. For a = (ev...,em,0,...) in A, (all entries

beyond the mth one are 0) and p a prime number, let Gap = exCp X e2Cpi

X XemCpm, where Cn = Z/wZ and kCn = Cn X Cn X XCn, k

times. Set 5 = ®°°=ιA.

(ϋ) For α = (av...,ak,0,...) in 5 (each at is in 4̂ and all entries

beyond the fcth one are 0), set G5 = GaχtPι X GaiP2 X x G β λ Λ , where

{ Z7! < />2 < Λ < *''} is the set of prime numbers.
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(iϋ) Given 5, β and γ in B, (5, β) ~ γ if there is an exact sequence

(iv) For α = (*>1? e 2 , . . ., ew, 0,0,...) in A, define \a\ = ΣJ=ιj ey

Each part of the following lemma is clear or a direct consequence of the
Fundamental Theorem for abelian groups.

LEMMA 3.17. (i) // a = (al9...9ak90909...) is in B, then |Gδ| =

(ϋ) G is a finite abelian group iff G = Gs for some a in B.
(ϋi) γ = ά+βiffG7iXGβ=Gr Thus ify = ά+β, then (5, β) - γ.

DEFINITION 3.18. For 5 in B, we define 5(5), a subset of N,
recursively as follows:

For all other ά,flE S(ά) iff there are αx and a2 in 5 such that:
1. a = αx + OL2 and β = ax + α2 f°

Γ some at e 5(5,.) or
2. (a, a2) - a and a = |GLJ βχ for some ax G 5(ax).
Note that pairs (αx α2) with (5X α2) ~ a correspond to abelian

group extensions of G^2 by Gδi. Since Έxt(Hl9H2) is finite for finite
abelian groups ^ and H2 [10, p. 222], for a fixed α i n ί there are only
finitely many pairs (5 l 95 2) with (al9<x2) — a. Thus any 5(α) can be
"constructed" in a finite number of steps.

THEOREM 3.19 (cf. [6, 3.21]). Suppose a e B and K is a field with a
preorder T such that K/t = G5, then \XT\ e 5(5). Conversely, given any
a e JB, ίΛe« /or β«y α G S(α) there is a field K and a preorder T such that
K/t= G^and \Xτ\ = a.

Proof. For the first statement, we induct on |Gδ|. If |Gδ| = 2, then
5 = ((1,0,0,...), 0,0,...) and \XT\ = 1 which is in S(a).

Suppose |Gδ| > 2. Then, by [3.5], (XT9K/t) is a direct sum or a
group extension. If it is a direct sum, we are done by induction and (1) of
the definition of S(a).

Suppose (XT9K/T) is a group extension of {XT,KX/T^. Let H =
{k/tyikjtj and say kjtx = G5i and # = Gδ2 [3.17]. Then, by
definition, (5X a2) ~ a and by induction |XΓJ G 5 ( 5 X ) . By [2.2, ϋ],
I JKrl = IZΓJ |GδJ which is in 5(5) by (2) of the definition.

For the second statement we again induct on |Gδ|. For (1) we use [2.8]
and for (2) we use [2.5].
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