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OSCILLATORY PROPERTIES OF SYSTEMS

OF FIRST ORDER LINEAR

DELAY DIFFERENTIAL INEQUALITIES

K. GOPALSAMY*

Sufficient conditions are obtained for the nonexistence of eventu-
ally positive bounded solutions of the system of delay differential in-
equalities

and for the nonexistence of eventually negative bounded solutions of

As a corollary to the above we obtain sufficient conditions for all
bounded solutions of

^ + Σ « ^ ( ' - r , , ) - 0 ; i-1,2,. . . , i i
7 - 1

to be oscillatory.

1. Introduction. The oscillatory and asymptotic behaviour of scalar
delay differential equations and inequalities has been the subject of
numerous investigations. For a recent survey of results we refer to Zhang
[20]. First order differential inequalities with delayed arguments have been
discussed by Ladas and Stavroulakis [9] and Stavroulakis [18]. The pur-
pose of this brief article is to derive a set of sufficient conditions for all
bounded solutions of a linear system of the type

(1.1) ^ U tαuxj(t-ru) = 0 / = l , 2 , . . . , * ; * > / 0

to be "oscillatory" by considering the twin systems of inequalities

(1.2) ^l+tαyXjit-rJίO i = 1,2,. ..,n;t> t0
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and

(1.3) -ϊψ- + Σ auxj{t - ru) > 0 i = l,2,...,n; t > t0.
7 = 1

The literature concerned with the oscillation and nonoscillation of

scalar systems of differential equations with and without deviating argu-

ments is quite extensive. It appears that vector systems such as (1.1) where

n is any positive integer have not received much attention with respect to

their oscillation and nonoscillation characteristics especially when n > 3.

Oscillation and nonoscillation of mostly two dimensional systems with

deviating arguments have been considered by some authors (Kitamura

and Kusano [5-8], Bulgakov and Sergeev [1], Bykov [2], Foltynska and

Werbowski [3], Izyumova and Mirzov [4], Mirzov [11-16], Varekh and

Shevelo [19], Marusiak [10], Shevelo [17]).

We recall that it is customary to define a real valued continuous

function x defined on a half-line [t0, oo) to be oscillatory if there exists a

sequence { ί w } - > o o a s m - > o o such that x(tm) = 0 for each tm. Such a

definition has been adequate for analysing the oscillatory and nonoscilla-

tory characteristics of scalar systems of delay differential equations and

inequalities. In vector systems such as (1.1)—(1.3), it is advantageous to use

the following:

DEFINITION 1. A real valued differentiable function u defined on a

half-line [/0, oo) is said to be oscillatory if there exists a sequence {tm) ->

oo as m-> oo such that tme. (t0,oo) and u(tm)ύ(tm) = 0 for each

tm e (t09 oo) where u(tm) = du/dt at tm; u is said to be nonoscillatory on

[t09 oo) if there exists a t* > t0 such that u{t)U(t) Φ 0 for / > /*.

Using the above definition we now define oscillation and nonoscilla-

tion of R"-valued functions as follows:

DEFINITION 2. An Revalued function x(t) = {x^t), x2(t),...,

defined on a half-line [t0, oo) with differentiable components is said to be

oscillatory if at least one component of x is oscillatory in the sense of

Definition 1; a vector JC: (/0, oo) -> R" with differentiable components is

said to be nonoscillatory if every component of x is nonoscillatory as in

Definition 1.

DEFINITION 3. The system (1.1) is said to be oscillatory if every

solution of (1.1) defined on a half-line (/0, oo) is oscillatory in the sense of

Definition 2; the system (1.1) is said to be nonoscillatory if (1.1) has at

least one solution defined on a half-line which is nonoscillatory.
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We remark that definitions of oscillatory and nonoscillatory Reval-

ued functions are varied in the literature. Our Definitions 2 and 3 above

provide one of several possible ways of generalising the corresponding

notions of oscillation and nonoscillation of real valued functions to the

case of Rn-valued functions.

DEFINITION 4. An R"-valued function x(t) = {xλ(t\. ..,xn(t)}

defined on a half-line ( ί 0 , αo) with differentiable components is said to be

eventually positive if x is nonoscillatory on (ί 0 , oo) and there exists a

/* > t0 such that Xj{t) > 0 for t > t* and j = 1,2,3,...,«. An Reval-

ued eventually negative function is defined analogously.

2. Delay induced oscillations. We consider the systems (1.1)—(1.3)

together with the following assumptions.

(Ax) aiJ9 rtJ (/, j = 1,2,..., n) are real constants such that

(2.1)

(2.2)

(2.3)

(i) au> 0; τ κ > 0; ί = 1,2,3,.. ., n;

( i i ) τυ> 0; i,j = 1,2,3,..., n ;

τ/(. > τβ; i,j = l,2,...,n.

(A2) e\ min
L l<i<n

min o-a- Σ !«// > 1.

THEOREM. // the assumptions (Ax) and (A 2) hold, then the system

(1.2) cannot have a nonoscillatory eventually positive bounded solution on

Proof. Our strategy of proof is to show that the existence of an

eventually positive and bounded nonoscillatory solution of (1.2) con-

tradicts the condition (2.3). Let us then suppose that (1.2) has a nonoscil-

latory bounded eventually positive solution u(t) = {uλ(t), u2(t),...,

un(t)} on [0, oo). There exists a tλ > 0 such that

(2.4) ui(t)>0 for t>t*; ι = l , 2 , . . . , w

a n d

du,(t)
(2.5)

dt
-aiiUi{ΐ - τit) - Σ a,jUj{t - r,j).
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It follows from the boundedness, nonoscillation and eventual positivity of

ul9 u29...9un that Ui(t) converges as t -* oo. We let

(2.6) lim uM = cf. > 0, / = 1,2,..., Λ.

We claim that cι• = 0, i = 1,2,..., w; suppose not. Then the nonoscilla-

tion of M15 M2, . . . , «rt and the eventual positivity of uλ,u2,...,un shows

that the convergence in (2.6) is monotonic in / eventually and hence there

exists a t2 > tx + τ (T = max(τ 7; /, y = 1,2,..., w)) such that

w, ( 0 < cι + ε for / > /2,

w, ( 0 > ς - ε Ϊ = 1 , 2 , . . . , / I ,

where ε is any arbitrary positive number. We have from (2.5) that

(2.8) 4(Σ",

(2.9)

Σ Σ k > , ( ί - τ o ) , t > t 2

(2.10) a..- Σ \a- ΣU.+ Σ
7 = 1 \ 7 = 1

ci + Mε; t > t2 = T,

/ = i

where

(2.11) m = min
1 < i < n

Σ ι , M=Σβ|,+ Σk.|.

The assumption (A2) implies that m > 0. Now if Σ" = 1 c 7 > 0 then choos-

ing ε small enough one can show that there exists a positive number μ

such that

(2.12)
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which leads to

(2.13) t ii/( Σ «/ t2 + T

implying that Σ* = 1 wz(0 can become negative for large enough t\ but this

is impossible. Thus we have Σ " = 1 ct = 0 and hence ct = 0, / = 1,2,..., n\

thus

(2.14) Urn 11,(0 = 0, i = 1,2,...,«,

and the convergence in(2.14) is monotonic in / eventually due to the

nonoscillatory nature of u(t) = {uι(t)9...9un(t)}. It follows from (2.8)

that

(2.15) j λ Σ Ul(t)\ <-Σ aiiUi{t - T,) - t \"M' ~ ^ )

which on using

(2.16) *.. > τβ =^ t - τH < t - τβ
- τj7) > ut{t - τjΊ),

leads to

(2-17) i a a- Σ

1,7 = 1,2,...,

(2.18)

(2.19)

where

(2.10) m = min ky, l/» σ = min{τn,τ2 2 9

Note that σ > 0 due to (2.3) and we have used the eventual monotonic

convergence of ut(t — τ ) to zero as / -> oo ( / = 1,2,..., w) in the

derivation of (2.19) from (2.18).



304 K. GOPALSAMY

Now if we let

(2.21) y(t)= Σui(t); t>t2 + τ,

then we have from (2.19) that

(2.22) dy{t)/dt < -my(t - σ); t > t2 + r

and y is an eventually positive solution of the scalar delay differential

inequality (2.22) in which the constants m and σ satisfy

(2.23) eσm > 1

as a consequence of (A2) and (2.20).

It is well known that the scalar delay differential inequality (2.22)

cannot have an eventually positive solution (Ladas and Stavroulakis [9])

when (2.23) holds; this contradiction shows that (1.2) cannot have a

bounded nonoscillatory eventually positive solution and this completes

the proof.

COROLLARY 1. Assume that (Ax) and (A 2) hold. Then the system of

inequalities (1.3) cannot have an eventually negative bounded nonoscillatory

solution.

Proof. The conclusion follows from the result of the above Theorem

since an eventually negative bounded solution of (1.3) is an eventually

positive nonoscillatory bounded solution of (1.2).

COROLLARY 2. Assume that (Aλ) and (A 2) hold. Then all bounded

solutions of (1.1) are oscillatory.

Proof. The assertion is a consequence of the fact that (1.1) cannot

have nonoscillatory bounded solutions which are eventually positive or

which are eventually negative.

We conclude with the remark that further generalisation of our result

to nonautonomous systems (with variable coefficients and variable delays)

and to nonlinear systems is of some interest for applications.
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