A GENERALIZATION OF A THEOREM OF ATKINSON TO NON-INVARIANT MEASURES

Daniel Ullman

We prove that, if T is an ergodic, conservative, non-singular automorphism of a Lebesgue space (X, μ), then the following are equivalent for f in $L^{1}(\mu)$:
(1) If $\mu(B)>0$ and $\varepsilon>0$, then there is an integer $n \neq 0$ such that

$$
\mu\left(B \cap T^{-n} B \cap\left\{x:\left|\sum_{j=0}^{n-1} f\left(T^{j} x\right) \cdot \frac{d \mu \circ T^{j}}{d \mu}(x)\right|<\varepsilon\right\}\right)>0
$$

(2) $\liminf _{n \rightarrow \infty}\left|\sum_{j=0}^{n-1} f\left(T^{j} x\right) \cdot \frac{d \mu \circ T^{j}}{d \mu}(x)\right|=0 \quad$ for a.e. x.
(3) $\int f d \mu=0$.

Our basic objects of study are a non-atomic Lebesgue space (X, \mathscr{B}, μ) and a conservative, aperiodic, non-singular automorphism $T: X \rightarrow X$. Associated with any measurable function $f: X \rightarrow \mathbf{R}^{n}$ is a cocycle $f^{*}: \mathbf{Z} \times$ $X \rightarrow \mathbf{R}^{n}$ defined by

$$
f^{*}(n, x)= \begin{cases}\sum_{k=0}^{n-1} f\left(T^{k} x\right), & n>0 \\ 0, & n=0 \\ -f^{*}\left(-n, T^{n} x\right), & n<0\end{cases}
$$

f^{*} satisfies the so-called cocycle identity:

$$
\begin{equation*}
f^{*}(m+n, x)=f^{*}(m, x)+f^{*}\left(n, T^{m} x\right), \tag{1}
\end{equation*}
$$

for all integers m and n and for a.e. $x \in X$.
The non-singularity of T permits us to define the Radon-Nikodym derivative

$$
\omega_{k}(x)=\frac{d \mu \circ T^{k}}{d \mu}(x) \quad \text { for } k \in \mathbf{Z}, \text { a.e. } x \in X .
$$

We can use this to build what we call an H-cocycle-after Halmos [4], Hopf [5], and Hurewicz [6]-defined by

$$
f_{*}(n, x)= \begin{cases}\sum_{m=0}^{n-1} \omega_{m}(x) f\left(T^{m} x\right) & \text { if } n>0, \\ 0 & \text { if } n=0, \\ -\omega_{n}(x) f_{*}\left(-n, T^{n} x\right) & \text { if } n<0\end{cases}
$$

The quotient ergodic theorem [3] asserts that, for an integrable f, the rate of growth of $f_{*}(n, x)$ depends only on the integral $\int f d \mu$. Analogous to (1) is the H-cocycle identity:

$$
\begin{equation*}
f_{*}(m+n, x)=f_{*}(m, x)+\omega_{m}(x) f_{*}\left(n, T^{m} x\right) . \tag{2}
\end{equation*}
$$

When T is measure-preserving, the H-cocycle coincides with the usual cocycle.

Suppose $B \in \mathscr{B}$. A cocycle or an H-cocycle $f(n, x)$ is recurrent on B if, for all $\varepsilon>0$,

$$
\mu\left(\bigcup_{n \neq 0} B \cap T^{-n} B \cap\{x \in X \ni|f(n, x)|<\varepsilon\}\right)>0 .
$$

A cocycle or an H-cocycle $f(n, x)$ is recurrent if it is recurrent on all sets of positive measure. We call a function $f: X \rightarrow \mathbf{R}^{n}$ recurrent if $f^{*}(n, x)$ is, and we call it H-recurrent if $f_{*}(n, x)$ is.

These definitions coincide with the classical notion of recurrence (or sometimes "persistence") of random walks, introduced by Polya [8], who proved that the Bernoulli random walk on \mathbf{Z}^{n} is recurrent (that is, bound to return to zero) if and only if $n=1$ or 2. Later, Chung and Fuchs [2] proved that a random walk on \mathbf{R} based on an increment random variable X of finite mean is recurrent if and only if $E X=0$. In 1976, Atkinson [1] discovered the following beautiful result, extending the theorem of Chung and Fuchs to random walks with non-independent increments.

Theorem (Atkinson). If T is ergodic and preserves a finite measure μ and f is a real, integrable function on X, then f is recurrent if and only if $\int f d \mu=0$.

The following result further extends the theorem of Chung and Fuchs to the non-stationary case.

Theorem. If T is an ergodic, conservative, non-singular automorphism of a Lebesgue space (X, \mathscr{B}, μ) and if $f: X \rightarrow \mathbf{R}$ is integrable, then the following conditions are equivalent:
(1) f_{*} is H-recurrent,
(2) $\liminf \left|f_{*}(n, x)\right|=0$ for a.e. $x \in X$, and
(3) $\int f d \mu=0$.

Proof. The first thing to notice is that once we know this theorem for a measure μ, we know it for all measures ν equivalent to μ. To see this, note that the H-cocycle f_{*} built from f under (X, \mathscr{B}, ν, T) is related to the H-cocycle $f^{\prime}{ }^{\prime}$ built from $f^{\prime}=f \cdot d \nu / d \mu$ under (X, \mathscr{B}, μ, T) by the equation

$$
f^{\prime}(n, x)=\frac{d \nu}{d \mu}(x) \cdot f_{*}(n, x)
$$

This shows that $f^{\prime}{ }^{\prime}$ gets small exactly when f_{*} gets small. Since $\int f d \nu=0$ exactly when $\int f^{\prime} d \mu=0$, we inherit the result for f and ν from the result for f^{\prime} and μ.

In particular, since this theorem reduces to Atkinson's theorem if T preserves μ, we have the result for any dynamical system (X, \mathscr{B}, μ, T) with an equivalent finite invariant measure. We also see that there is no loss of generality in assuming that $\mu X=1$ and we proceed under this assumption.
(1) \Rightarrow (2) Let $D=\left\{x \in X \ni \liminf \left|f_{*}(n, x)\right|>\varepsilon\right\}$ for some $\varepsilon>0$. If $\mu D>0$, then there would be an integer N so large that

$$
C=\left\{x \in D \ni\left|f_{*}(n, x)\right|>\varepsilon \text { for all } n \text { with }|n|>N\right\}
$$

would have positive measure. One could then find a set $B \subset C$ of positive measure disjoint from its first N forward and backward translates. (Just remove from C points that return too soon under T or T^{-1} and use Kac's recurrence theorem [7].) Then

$$
\mu\left(B \cap T^{-n} B \cap\left\{x \ni\left|f_{*}(n, x)\right|<\varepsilon\right\}\right)=0
$$

for all integers $n \neq 0$, which contradicts the H-recurrence of f.
(2) \Rightarrow (3) This implication is proved via a simple application of the quotient ergodic theorem [3]. Let g be the constant function 1. Since $g_{*}(n, x)>1$ for every x and all positive n,

$$
\left|f_{*}(n, x)\right| \geq\left|\frac{f_{*}(n, x)}{g_{*}(n, x)}\right| \xrightarrow[\rightarrow]{\text { a.e. }} \frac{\left|\int f d \mu\right|}{\left|\int g d \mu\right|}=\left|\int f d \mu\right| .
$$

If $\int f d \mu \neq 0$, this last quantity is positive and so $\liminf \left|f_{*}(n, x)\right|>0$ for a.e. $x \in X$.
$(3) \Rightarrow(1)$ This argument encompasses the remainder of the paper. Three important estimates are isolated as lemmas.

Assume f_{*} is transient-i.e., not recurrent. This means that there is a set $B \in \mathscr{B}$ with $\mu B>0$ and a $\delta>0$ such that

$$
\begin{equation*}
\mu\left(B \cap T^{-n} B \cap\left\{x \ni\left|f_{*}(n, x)\right|<\delta\right\}\right)=0 \quad \forall n \neq 0 \tag{3}
\end{equation*}
$$

Let A be a subset of B with $\mu A=\mu B$ and such that

$$
\begin{equation*}
A \cap T^{-n} A \cap\left\{x \ni\left|f_{*}(n, x)\right|<\delta\right\}=\varnothing \quad \text { for all } n \neq 0 \tag{4}
\end{equation*}
$$

By χ we will mean χ_{A}, the characteristic function of the set A.
For all $\varepsilon>0$ and a.e. x, the quotient ergodic theorem tells us that

$$
\begin{equation*}
\left|\frac{\chi_{*}(n, x)}{g_{*}(n, x)}-\mu A\right|<\varepsilon \quad \text { for sufficiently large } n \tag{5}
\end{equation*}
$$

Another way to write this is to define the "weight" $w(j, x)$ of the integer j, depending on x, by:

$$
w(j, x)= \begin{cases}\omega_{j}(x) & \text { if } T^{j} x \in A \\ 0 & \text { otherwise }\end{cases}
$$

For the remainder of the proof, fix x such that (5) holds (for an ε to be specified later) and such that $f_{*}(n, x) / g_{*}(n, x) \rightarrow \int f d \mu$. Then (5) translates to

$$
\begin{equation*}
\left|\sum_{j=0}^{n-1} w(j, x)-\mu A \cdot g_{*}(n, x)\right|<\varepsilon \cdot g_{*}(n, x) \tag{6}
\end{equation*}
$$

We call an integer j good if $T^{j} x \in A$. Note that the previous summation has non-zero contribution only from good indices j. For good m, let I_{m} be the interval on the real line centered at $f_{*}(m, x)$ and of radius (i.e., half-length) equal to $w(m, x) \delta$. Let λ be Lebesgue measure on the line.

Lemma 1. If m is $\operatorname{good}, f_{*}(j, x) \in I_{m}$ only when $j=m$.
Proof of Lemma. That m is good means that $T^{m} x \in A$, which implies that

$$
\begin{equation*}
\left|f_{*}\left(j-m, T^{m} x\right)\right| \geq \delta \quad \text { for any } j \neq m \tag{7}
\end{equation*}
$$

The H-cocycle identity (2) can be written

$$
f_{*}\left(j-m, T^{m} x\right)=\frac{f_{*}(j, x)-f_{*}(m, x)}{w(m, x)}
$$

Hence equation (7) implies that $\left|f_{*}(j, x)-f_{*}(m, x)\right|>w(m, x) \delta$, which is what it means to say that $f_{*}(j, x) \notin I_{m}$.

The intervals I_{m} may be of widely varying size. Yet the following lemma assures us that no I_{m} for large m can be nearly as long as the sum of lengths of I_{j} for $0 \leq j<m$.

Lemma 2. If m is good and sufficiently large, then

$$
w(m, x)<\frac{1}{10} \sum_{j=0}^{m-1} w(j, x)
$$

Proof of Lemma. Choose n large enough so that equation (6) holds for all $m>n$. Write

$$
w(m, x)=\sum_{j=0}^{m} w(j, x)-\sum_{j=0}^{m-1} w(j, x)
$$

and

$$
\mu A \cdot w(m, x)=\mu A \cdot g_{*}(m+1, x)-\mu A \cdot g_{*}(m, x)
$$

Subtracting the last equation from the one before yields

$$
\begin{aligned}
w(m, x)[1-\mu A] & \leq \varepsilon g_{*}(m+1, x)+\varepsilon g_{*}(m, x) \\
& =2 \varepsilon g_{*}(m, x)+\varepsilon w(m, x)
\end{aligned}
$$

if $m>n$, using (6).
Rearranging:

$$
w(m, x)[1-\mu A-\varepsilon] \leq 2 \varepsilon g_{*}(m, x)
$$

If ε is sufficiently small, the quantity in square brackets is positive, and so we get

$$
\begin{align*}
w(m, x) & \leq \frac{2 \varepsilon}{(1-\mu A-\varepsilon)} g_{*}(m, x) \tag{8}\\
& \leq\left[\frac{2 \varepsilon}{(\mu A-\varepsilon)(1-\mu A-\varepsilon)}\right] \sum_{j=0}^{m-1} w(j, x)
\end{align*}
$$

where the second inequality comes from (6). Simply choose ε small enough so that the quantity in (8) in square brackets is less than $1 / 10$ and the lemma is proved.

Let J_{n} be the convex hull of $\left\{f_{*}(j, x) \ni 0 \leq j<n\right\} . J_{n}$ is the shortest interval on the real line containing the first $n f_{*}(j, x)$'s. Our goal now is to show that the intervals J_{n} have bounded weight density.

Lemma 3. For sufficiently large n

$$
\sum_{j=0}^{n-1} w(j, x)<\frac{4}{\delta} \lambda J_{n}
$$

Proof of Lemma. Let $\mathfrak{J}=\left\{I_{m} \ni m\right.$ is good and $\left.0 \leq m<n\right\}$. \mathfrak{J} is a collection of possibly overlapping intervals of varying sizes. Let \mathfrak{J}^{\prime} be a subset of \mathfrak{J} whose union equals that of \mathfrak{J} and which is minimal with respect to this property. Call m select if $I_{m} \in \mathfrak{\Im}^{\prime}$. Then

$$
\begin{aligned}
4 \lambda J_{n} & >2 \lambda\left(\bigcup_{m \text { select }} I_{m}\right)>\sum_{m \text { select }} \lambda I_{m} \\
& >\sum_{m \text { select }} \sum_{j \ni f_{*}(n, x) \in I_{m}} \delta w(j, x)>\delta \sum_{j=0}^{n-1} w(j, x) .
\end{aligned}
$$

The first inequality comes from Lemma 2. The second inequality holds because the choice of $\mathfrak{\Im}^{\prime}$ forces all real numbers to lie in at most two I_{m} with select indices m. The third inequality is just Lemma 1, and the fourth expresses the fact that every $f_{*}(j, x)$ with $0 \leq j<n$ and j good lies in some select I_{m}. The lemma is proved.

It is now a simple matter to complete the proof of the theorem. Equation (6) says that, for all $\varepsilon>0$,

$$
\sum_{j=0}^{n-1} w(j, x)>g_{*}(n, x)(\mu A-\varepsilon)
$$

if n is large enough. Hence Lemma 3 tells us that

$$
\lambda J_{n}>\frac{\delta}{4} g_{*}(n, x)(\mu A-\varepsilon)
$$

This implies that

$$
\sup _{0 \leq j<n}\left|f_{*}(j, x)\right|>\frac{\delta}{8}(\mu A-\varepsilon) g_{*}(n, x)
$$

Thus, for infinitely many n,

$$
\frac{\left|f_{*}(n, x)\right|}{g_{*}(n, x)}>\frac{\delta}{8}(\mu A-\varepsilon)>0
$$

if ε is small enough.
But the left-hand-side of this expression approaches $\left|\int f d \mu\right|$, which is seen to be, as required, greater than zero.

I would like to thank Jack Feldman for suggesting this problem and for many helpful discussions.

References

[1] G. Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc., (2) 13 (1976), 486-488.
[2] K. L. Chung, and W. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc., 6 (1951), 1-12.
[3] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math., 4 (1960), 153-160.
[4] P. R. Halmos, An ergodic theorem, Proc. Nat. Acad. Sci., 32 (1946), 156-161.
[5] E. Hopf, Ergodentheorie, Ergebnisse der Math., Berlin, 1937.
[6] W. Hurewicz, Ergodic theory without invariant measure, Annals of Math., 45 (1944), 192-206.
[7] M. Kacz, On the notion of recurrence in discrete stochastic processes, Annals of Math. Stat., 53 (1947), 1002-1010.
[8] G. Polya, Eine Ergänzung zu dem Bernoullischen Satz der Wahrscheinlichkeitsrechnung, Nach. Ges. Will. Gottingen, (1921), 223-228.

Received May 3, 1986 and in revised form July 15, 1986. This research was supported in part by NSF grant DMS84-03182 and constituted part of the authors Ph.D. dissertation.

The George Washington University

Washington, DC 20052

