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SCALE-INVARIANT MEASURABILITY

IN ABSTRACT WIENER SPACES

DONG MYUNG CHUNG

In this paper, we first prove a limit theorem for a sequence of
quadratic functional on an abstract Wiener space which generalizes a
Cameron-Martin limit theorem in the Wiener space; and next we prove a
version of a converse measurability theorem for the Wiener space in the
setting of abstract Wiener spaces. Using these results, we discuss scale-
invariant measurability and translations in an abstract Wiener space.

1. Introduction and preliminaries. Let H be a real separable in-

finite dimensional Hubert space with inner product ( , ) and norm | |.
Let μ be the cylinder set measure on H defined by

where A = P~ι(F), F is a Borel set in the image of an ^-dimensional
projection P in H and dx is Lebesgue measure in PH. A norm || || on H
is called measurable if for every ε > 0 there exists a finite dimensional
projection PQ such that μ({x & H: ||P;t|| > ε}) < ε whenever P is a finite
dimensional projection orthogonal to Po. It is known (see [8]) that H is
not complete with respect to || ||. Let B denote the completion of H with
respect to || ||. Let i denote the natural injection from H into B. The
adjoint operator i* is one-to-one and maps B* continuously onto a dense
subset of H*. By identifying H* with H and B* with i*B*, we have a
triple B* c H c B and (JC, y) = (*, y) for all x in H and y in £*,
where ( , •) denote the natural dual pairing between B and B*. By a
well-known result of Gross, μ o f 1 has a unique countably additive
extension v to the Borel σ-algebra 3S{B) of B. The triple (H,B,v) is
called an abstract Wiener space. For more details, see Kuo [8].

Let Cx[a9b] denote the Banach space {x(-): x is a continuous
function with x(a) = 0} with the uniform norm. Let (CJα, b]9

&(Cx[a,b]), mw) denote the Wiener space, where mw is the Wiener
measure on the Borel σ-algebra dS{Cλ[a, b]) of Cx[a, b] (see [12]), and let
C[[a,b] = {x e Cλ[ayb\: x(t) = fM{u)du9 f^L2[a,b]}; then it is a
real separable infinite dimensional Hubert space with the inner product
(xl9 x2) = SaDxx{t) Dx2(t) dt, where Dx = dx/dt.

27
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Let Q = (s, t): a < s <b and c < t < d and let C2[Q] denote the
Banach space {JC( , •): JC is a continuous function on Q with x(a,t) =
x(s,c) = 0} with the uniform norm. Let (C2[Q], $t(C2[Q]), my) denote
the Yeh-Wiener space [13], i.e. my is the probability measure on the Borel
σ-algebra @(C2[Q]) of C2[Q] such that

m n

/ : exϊ>

X d u n ••• d u m n .

where PF = { x e C2[β]: pjk < x{sp tk) < qM, for j = 1,..., m and k
= 1,..., n} and u0>k = «y 0 = u00 = 0 for all j and /r. Let C2'[β] = {x e
C2[Q]: x(s, t) = fiflfiu, v) dudυ, f e L2[β]}; then it is a real separa-
ble infinite dimensional Hubert space with the inner product

<*i>*2>= Γ I* D2x1(s,t)-D2x2(s,t)dsdt
J a J c

where D2x = 32x/3/3^. It is known [9] that the uniform norms on
C[[a, b] and C2[Q] are measurable and that {C[[a, b], Cx[a, b\ mw) and
{C2[Q\ C2[Q\ my) are both examples of abstract Wiener spaces.

Let {ej9 j > 1} be a complete orthonormal system in H such that the

βj's are in i?*. For each h in H and x in B, let

lim Σ (λ> e, ) (* , e,), if ^ e limit exists

0, otherwise.

Then {h, -)~ is a Borel measurable functional on B and if both h and x
are in H, ParsevaΓs identity gives (h,x)~ = (h9x). (See [7].)

Let {φji j > 1} be a sequence of functions of bounded variation on
Q which forms a complete orthonormal system of L2[Q]. Let ϋ be in
L2[Q] and

*>Λ(M) = Σ Φ/(M) ί ί v(s9t) φj(s,t)dsώ.

The Paley-Wiener-Zygmund integral of ι;, (Φ)Jf J?υ(s9t)dx(s9t)9 is de-
fined as

υ(s,t)dx(s>*)
Ja Jc

ί I ( ) d ( ) if t h e l imit exists{ lim ί I vn(s,t)dx(s,t), if

\0, ootherwise.
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Motivated by the well-known fact that change of scale is a pathologi-
cal transformation in Wiener space, Johnson and Skoug [6] introduced the
concept of scale-invariant measurability in Wiener space and examined
the exact nature of this concept, and then they applied their results to
clarify conceptual subtleties in the theory of the Feynman integral and in
the theory of the Fourier-Feynman transform. Later, scale-invariant mea-
surability in Yeh-Wiener space was studied by Chang [3]. In the works of
[6] and [3], one notes that the keys to their discussion are a limit theorem
in Wiener space due to Cameron-Martin [2] and in Yeh-Wiener space due
to Skoug [11], and a converse measurability theorem for Wiener space due
to Koehler [10] and for Yeh-Wiener space due to Skoug [10]. In view of
this, for the extension to the abstract Wiener space setting of the results
obtained in [6, 3], the question is to look for suitable versions of those two
results in the setting of abstract Wiener spaces.

In §2, we prove a limit theorem for a sequence of quadratic function-
als on an abstract Wiener space (if, B, v) which is a generalization of a
limit theorem in Wiener space [2] and in Yeh-Wiener space [11]. In §3, we
prove a version of converse measurability theorem for Wiener space [10]
and Yeh-Wiener space [11] in the setting of abstract Wiener spaces. In §4,
we extend the results on scale-invariant measurability and translations
obtained in [3, 6] to an abstract Wiener space.

2. A limit theorem in abstract Wiener space. In this section, we

prove a limit theorem for a sequence of quadratic functionals defined on
an abstract Wiener space (H, B,v) and then we exhibit a subset of B with
p-measure one which for all real a Φ ± 1 is transformed into a set of
^-measure zero by the change of scale transformations x -» ax. These are
generalizations to the abstract Wiener space setting of the results first
obtained by Levy [Amer. J. Math. 62 (1940), 487-550] and independently,
but later, by Cameron and Martin [2] in Wiener space and extended by
Skoug [11] to Yeh-Wiener space. We now begin with the following facts
taken from [7].

LEMMA 2.1. Let (if, 2?, v) be an abstract Wiener space.

(i) For each h (Φ 0) in H, the random variable x -> (Λ,;c)~ is

Gaussian with mean zero and variance \h\2.

(ii) (Λ, ax) ~ = α(Λ, x) ~ for any real number α, h e H and x ^ B.

(iii) // { hl9 h2,..., hn) is an orthonormal set in H, then the random

variables (h;,x)~'s are independent.

(iv) IfB = C2[Ql H = C2'[β], we have

D2h{s,t)dx(sj).
Q
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THEOREM 2.2. Let (H, B, v) be an abstract Wiener space. For each n,

let { e", el,..., en

d(<n)} be an orthonormal set in H and let

JCEfi.

(i) If d(n) > np (p > 0) for every n, then Fn converges to 1 in
L2(B, v) and hence in measure v.

(ii) If d(n) > np (p > I) for every n, then Fn converges to 1 v-almost
surely.

Proof (i) Since the random variables (e"9 •) ~ 's are independent and
Guassian with mean zero and variance one, it is easy to show that the
mean of Fn is one and the variance of Fn, Var(Fw), is 2/d(n). Hence we
have

This implies that Fn converges to 1 in L2(B, v) and hence in measure v.
(ii) For each n = 2,3,..., let

inp

Then, by Chebyshev's inequality [12], we have

tτ^\ np~l 2 2

log2w d(n) n log2w

Since
0 0 0 0 /•)

Σ HEn) < Σ -

it follows from Borel-Cantelli's Lemma [12] that v(F) = 0, where F =
limsupl^. Since \imn_O0(\ogn)/ Ίnp~ι = 0 , Fn{x) converges to 1 ^-al-
most surely.

REMARK. It is worth pointing out that in Theorem 2.2, it is not
important that (ej2, •) ~ be Gaussian; in fact one can replace (e", •) ~ 's by
any triangular sequence X", Xξ,..., XSM °̂  independent, identically
distributed random variables on a probability space with mean zero and
variance 1.
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As an application of Theorem 2.2, we give the following example
which shows how to obtain the corresponding result of Skoug's for
Yeh-Wiener space [11].

EXAMPLE 2.3. Let B = C2[Ql H = C2'[g] and v = my. For each n,
let a = s% < s? < < s^n) = b and c = tζ < tf < •• < ί̂ (Λ) = d be
partitions of [β, b] and [c, J] respectively, and let

hsn s?]χitn

 tn}(u,v) dudv

for y = l ,2, . . . , g(n) and /: = 1,2,..., Λ(w). Then it is easily shown that
for each n, {φf k} is an orthonormal set in C2'[β], and for each x e C2[β],
we have

>b rd

ί D2φlk(s,t)dx(s,t)
J c

Let /? > 1, g(w) > w^/2 and Λ(w) > np/1 for every «, and let d{n)
g(n) - h(n). Then d(«) > wp for every Λ, and hence by Theorem 2.2,

converges to 1 ^-almost surely. In particular, if we take partitions of [a, b]
and[c, d] such that

j j~l ~ g(n) k k~l " h(n) '

respectively, for all j = 1,2,...,g(«) and /: = 1,2,..., h{n), then we
have
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and hence

lim £ f Πsϊ>tnk)-φjU,tn

k)-x(sJJU)+ΦjU,tn

k

= (b-a)(d-c)

which implies a result of Skoug in [11].

The following notation will be fixed throughout this paper: For each
a > 0, let

eB: lim Fn(x) = α 2),

ΰ = ( χ e B: lim Fn(x) does not exist),

where {Fn) is the same as in Theorem 2.2 with d(n) > np (p > 1) for all
n. Then it follows from Lemma 2.1 that βCa = Caβ for all β > 0 and
α > 0. Clearly Ca (a > 0) and D are all Borel sets in B, and 5 is the
disjoint union of this family of sets.

The following results are generalizations of the results in [2] for
Wiener space and in [11] for Yeh-Wiener space. The proof is an easy
consequence of Theorem 2.2.

THEOREM 2.4. Let (H, B, v) be an abstract Wiener space. Then

(i) K Q ) = 0 if and only if a Φ 1.
(ii) v(a~1Ca) = 1 for every a > 0.

(iii) p(β~ιCa) = 0 for all α, β with a Φ β, a > 0, β > 0.
(iv) v(D) = 0.

3. Converse measurability theorem for abstract Wiener spaces. Let
a = s0 < sx < < sm = b and c = t0 < tx < tn = d be partitions
of [<z, Z>] and [c, d] respectively. Let F be any subset of Euclidean space
Rmn and let

In [10], Skoug showed that if W is ^(C2[β])w*-measurable, then F is
Lebesgue measurable in Rmn, here and in the rest of the paper, J^ λ

denotes the completion of J*" with respect to a measure λ on a measurable
space (X, &}. In this section, we prove a version of this converse
measurability theorem in the setting of abstract Wiener spaces.
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LEMMA 3.1. Let Xi (i = 1,2) be separable complete metric spaces and
the σ-algebra of Borel sets in Xt. Let f: Xγ -> X2 be a Borel

measurable (i.e. ^(Xλ) — 3#(X2) measurable) function and let μλ be a
finite Borel measure on Xλ and μ2 = βι° f~ι If A is a subset of X2 such
thatf~\A) is in ̂ {jQμ\ then A is in WJ^f

Proof Since / \A) is in SS(Xλ)
μ\ there exists a Borel subset Bλ of

f~\A) such that μx{BJ = μ^f'^A)). Let ε > 0 be given. Since / is
Borel measurable, it follows from a generalization of Lusin's Theorem [4,
p. 227] that there exists a compact subset Kε of Bλ such that μι(Bx) -
ε/2 < μι(Ke) and / restricted to Kε is continuous. Now let f(Kε) = Eε.
Then Eε is a compact set in X2 and Eε c A, and we have

- ε/2.

Similarly, since / 1(AC) is in £%{X^f\ we can find a Borel subset B2 of
f~\Ac) and a compact subset Lε of Ac such that μχ{B2) — μ1(/"1(^4c))
and μ2(Lε) > μ1(B2) - ε/2. Let L\ = Ge. Then £ ε and Gt are in
and Ee <z A a Ge, and we have

μ2(Gε - Et) = μ2(Gε) - μ2(Ee) = μ2(X2) - μ2(Le) - μ2{Eε)

< μx{Xx) -(μι(B2) - ε/2) -{μM - ε/2) = ε.

Now letting ε = l/n, n = 1,2,..., we obtain sequences {En} and {Gn}
in SS(X2) such that μ2{Gn - En) < 1/n. Let Fλ = Γ\™=1Gn and F2 =
U^=i^ n . Then /; and F2 are in &(X2), F2cAc Fv and μ2(Fλ - F2)
= 0. Hence A is in £§(X2T\ completing of the proof of the lemma.

REMARK. It can be shown that Lemma 3.1 is still true with the same
proof, for any Hausdorff topological space Xλ with finite Radon measure
/x1 and any separable metric space X2.

THEOREM 3.2. Let (H,B,v) be an abstract Wiener space, and let
[hl9 h2,...,hn} be a linearly independent subset of H. For any subset Fof
Euclidean space Rn, let

W= {xeB:((hl9x)~ 9(h2,x)~ ,...,(hn,x)~)eF}.

Then (i) W is ^(B)-measurable if and only if F is Borel measurable in Rn.
(ii) W is £#(B)V-measurable if and only if F is Lebesgue measurable in Rn.

Proof (i) Let f(x) = ((hv x) ~ ,(A2, x) ~ , . . . ,(Λn, x) ~), x e B. Then
by Lemma 2.1, / is an ^-dimensional Gaussian random vector on B with



34 DONG MYUNG CHUNG

mean zero and covariance V = (v^) where viJ= (hi9hj) for i, j =
1,2,..., n. Hence if F is Borel measurable in Rn, then W = f~\F) is
^(immeasurable. Conversely, suppose that W is ^(immeasurable. Since
{h v A2,..., hn) is linearly independent in H, the matrix V is non-singu-
lar. Let's define a function g: Rn-+B by g(u) = Σ"=1Vjhj where

( ί ^ l , l>2> > ϋ

Λ ) = ( W l > W 2 > ' > U n ) ' V~l f θ Γ U = ( U V 1*2>' > U n ) <= R"'

Then it is easy to see that G is a continuous (hence Borel measurable)
function, and further we have (Σ"=1^AZ, Ay-)~ = (Σ^x^A,-, Ay ) = wy for
every y = 1,2,...,«. Hence w = (w1? w2? > w«) G F if a n d only if G{u)
G WΓ, equivalently IF(u) = Iw°G(u) for all u^Rn. Therefore i 7 is
^?(/?w)-measurable since PF is ^?( Immeasurable. This completes the
proof of (i).

(ii) Suppose that F is a Lebesgue measurable set in Rn. Then there
exist a Borel set G and a subset iVx of a Borel null set N in Rn. Let / be
as in the proof of (i). Then since / is Borel measurable, it follows that
f~\G) and f~\N) are in SS{B). Since v<>f-\N) = 0, f~\N1) is in
a(B)v and hence W = f~\F) = f~\G) U Γ H ^ i ) is in #(Λ) . Con-
versely, suppose that W is in 38{BY. Let λ = v ° f'1. Then λ is a Borel
probability measure on /?". By Lemma 3.1, F is SS(Rn) -measurable and
hence Lebesgue measurable because λ is clearly equivalent to Lebesgue
measure on JR". This completes the proof of (ii).

As an application of Theorem 3.2, we give the following example
which shows how to obtain the corresponding result of Skoug's for
Yeh-Wiener space [10].

EXAMPLE 3.3. Let B = C2[β], H = C2'[g] and v = my. Let a = s0 <
si < S2 < ' " < sm = b and c = t0 < tx < < tn = d be partitions of
[a, 6] and [c, J], respectively. Let

hij{sj)= ί f I[a,Sι]x[Ctt](u9υ)dudυ,
J a Jc

for / = 1,2,..., m and j = 1,2,...,«. Then {Aiy.} is clearly a linearly
independent set in C2'[<2], and for any x e C2[β],

= (φ) f ίd Z)2Aiy(5, 0 &(J, 0

Hence by Theorem 3.2, for any subset F of Rm"

e C2[Q):{(hn,x)~ ,...,(h

e C2[β]: (XUΛ),---,*



MEASURABILITY IN ABSTRACT WIENER SPACES 35

is in ^{C2[Q])my if and only if F is Lebesgue measurable in Rmn, and
furthermore, W is in &(C2[Q]) if and only if F is Borel measurable in
Rmn

COROLLARY 3.4. Let (H,B,v) be an abstract Wiener space, and let
{h l 9 h2,..., hn) be a linearly independent set in H. Let G be a complex-val-
ued function defined on Rn. Then the functional

F(x) = G((hl9x)~ 9...,(hn9x)~)

on B is £8{B)v-measurable (SS(B)-measurable) if and only if G is Lebesgue
(Borel, resp.) measurable in Rn.

4. Scale-invariant measurability and translations in abstract Wiener
space. Let (H, B, v) be an abstract Wiener space. For any a > 0, let Ta:
B -* B be the transformation defined by Ta(x) = ax and va the Borel
measure on B defined by v ° T^"1. Then vx = v and va(A) = vλ(a~ιA) for
every A in Λ(B). Let <Sa = W(B)\ Sr=Πa>0Sra9 JΓa = {A G ^
va(A) = 0} and JΓ= Πa>0J

r

a. Every set in 5^(JΓ) is called scale-in-
variant measurable (scale-invariant null, resp.) set. In this section, we
extend the results of [6] on scale-invariant measurable sets, translations
and scale-invariant measurable functions in Wiener space to abstract
Wiener space.

Now, extensions to the abstract Wiener space setting of the results
contained in Propositions 2 to 4 and Theorem 5 of [6] can be shown to
hold using exactly the same arguments as given in [6]. For brevity we omit
these statements and refer the reader to [6]. Further, the proof of the
following two results in the abstract Wiener space setting can also be
given using similar techniques as used in [6]. However, for completeness,
we include the statements and proof of these results.

PROPOSITION 4.1. For every a > 0, $#{B) c ^ c Sfa.

Proof. The proof of the containments, <%(B) c £f<z Sfa is clear from
the fact that 3S^Sfa for every a > 0 and the equaltiy &>= Πa>0Sfa. The
proof of 3S(B) Φ Sf can be easily shown by using Theorem 3.2. To show
that Sfφ Sfa, let α, β > 0 with a Φ β. Then by using Theorem 3.2, we can
find a subset W of B such that W is not in Sfv Clearly W Π Ca is not in
Sfa. Now let A = β~\W C\ CJ. Then A is in JΓa and hence A is in ^ .
But βA = W Π Ca is not in STa. Thus A is in Sfa, but not in ^β and so
not in S?.
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THEOREM 4.2. Let f be any function from (0, oo) to [0,1]. Then there
exists A in SP such that vx(aA) = f(a) for all a > 0.

Proof. We first show that for each a > 0, there exists Aa<z Ca such
that Aa is in Sfa and va(Aa) = f(a~ι). To show this, let f{a~ι) = p and
h(Φ 0) G H. Then there exists a real number ap such that

/ exp( - TΓΓTT } du= p .
J-oo \ 2|Λ|/

Let W = {x e B: (Λ, x)~ < α^}. Then W is in 3t(B) and hence in ^
and vλ(W) = p. Let Aτ = WΠ Cv Then yίx is in 5^ and ^(^x) =/?.
Let ^4α = ĉ 4χ. Then ^4α is in S?a9 Aa c Ca and ^(^4a) = t̂t(α^4χ) =
v^A^ = p = /(α~ 1). Next, we show that the set A = \Ja>0Aa is the
desired set. A is clearly in S? and vx(aA) = va-ι{A) = va-i(Aa-i) = /(«),
completing the proof of the theorem.

Before we study translations in abstract Wiener spaces, we collect a
few more definitions and notation, which will be needed in this section.
Let £ be a real separable Banach space with the topological dual E* of
E. Let ( , •) denote the natural dual pairing between E and E*. For two
Borel probability measures λx and λ 2 on E, the convolution λx * λ 2 of λλ

and λ 2 is defined by

X1*λ2(G) = λx X X2({(x,y) ^ExE .x+yeG})

for every Borel set G in E. The characteristic functional of a Borel

probability measure λ on E is defined on E * by

eiix-y)dλ(x)9 y e £ * .

It is well-known that λλ* λ2( ) = λχ( ) X2( ) and that λx = λ2 if and

onlyifλ 1(.) = λ 2(.).

LEMMA 4.3. Let p and q be positive real numbers.

*

(ii) IfT: (B X B, Λ(B) X Λ(B)9 vp X vq) -> (B, 3${B)) is the trans-
formation defined by T(x, y) = x + y, then for any A c B, T~1(A) is in

1 if and only if A is in 6^jp2+q2. Further, we have (vp X vQ) <> T~λ

on

(iii) / / Γ̂  X Tq: (B X 5, &(B) X Λ(JB), ^ X vx) ^ (B X B,

X 38{B)) is the transformation defined by TpX Tq{x,y) = (px,qy), then
for any A c B X B, (Tp X Tq)-\A) is in Sfλ X ^ 1 * " 1 if and only if A is in
5fp XSfq

VpX"q. Further, we have (pλ X vλ)o{Tp X Tq)~ι = vp X vq on
cp v cpvpxvi
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Proof, (i) Since vp{y) = exp{ ~(p2/2)\y\2} for every j G ί * (see [8,
p. 78]), it follows that

H P 2 + q2)\y\2} = p

] ^

for every J G 5 * . Hence vp*vq = vJp^Vf o n ®(P\ which implies that

VnX-Vn

(ii) Suppose Γ " 1 ^ ) is in SpX^q

p \ Since Γ is Borel measurable

and {vp X vq) <> T~ι = vp * vq on SS{J5), it follows from Lemma 3.1 that A

is in #(2?) "**''* = ^V^V* Conversely, suppose yί is in Sfπr^z. Then

A = G U N where G is in &§{B) and N a M, M is a i^ * ̂ -null set in
rr-l/

Thus ( ^ X Vl)oT-\M) = vp*vq(M) = vy[pf—ϊ{M) = 0,

T'\N) c T~\M) and Γ 'H^) = Γ-^^) U T~\N). Since Γ is Borel

measurable and @{B X B) = J^(5) X ^ ( 5 ) , T~ι(A) is in

# ( Λ ) X 9»{BYfXv" = ̂ X ^ X ϊ ; < 7 and

(^ X vq)T-ι{A) = (^ X vq)T-\G) +{vp X vq)T-\N)

= vp * ̂ ( G ) + ̂  * vq{N) = ̂  * vq{A)

{N) = v n—
yp+

^ r ^ r ( G ) + v Γ Ύ Ϊyp+q yp+q y

This completes the proof of (ii).

(iii) Let A be a subset of B X B. Since TpX Tq is Borel measurable

and (vx X ^ ) ° ( ^ X ^ Γ 1 = vp X vq on @(B X B) = @{B) X @{B\ it

follows from Lemma 3.1 that if (Tp X Tq)~\A) is in ̂  X 9>

1

VχXv\ then A

is in &(B) X@(B)VpXVq = 5fpX5fq

pXv\ Since (Tp X Tq)~ι = 2^-i X T -̂i

is also a Borel measurable transformation from (B X B,&(B) X 3&(B),

VpXvq) to (BXB,<%(B)X@(B)) and (^ X ^)o(Γ^i X Tq-,)~ι =

i^ X ^x on $$(B) X SS(B), by Lemma 3.1 again, it follows that if

v'x\is in ^ X S?q

v'x\ then (Tp X Tq)'\A) is in seλ X se^v\ proving the

first part of (iii). The second part of (iii) can be proved by the similar

argument as in the proof of second part of (ii).

The following result follows immediately from Lemma 4.3, (ii) and

the Fubini theorem.

PROPOSITION 4.4. Let p and q be positive real numbers. Let A be in

Sηprϊf. Then
(i) A — y is in Sfp for vq-a.s.y and vp{A — y) is a ^-measurable

function ofy.
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(ii) A — x is in Sfq for vp-a.s.y and vq(A — x) is a ^-measurable

function of x.

(iii)

Vp*vq(A) = V

P

X vq{{{x,y): x+yisinA})

= f vp{A - y) dvq{y) = / y(A - x) dvp{x).
JB JB

The extensions to the abstract Wiener space setting of the results

contained in Corollaries 11 to 15 of [6] now can be easily proved by using

Proposition 4.4. For brevity, we omit the statements of these corollaries

and their proofs. Now we give a proof of the following result which is the

extension of Theorem 9 in [6] to abstract Wiener space. We point out that

the present proof is different in spirit from the proof of corresponding

result given in [6]: The proof in [6] uses, for instance, a result of Bearman

concerning rotations in Wiener space; our proof depends on Lemma 3.1

and on some properties of convolution of measures.

THEOREM 4.5. Let p and q be positive numbers and f a complex-valued

function on B. Then the following assertions are equivalent:

(a) f(]jp2 + q2 z) is a £f^measurable function of z.

(b) f(z) is a SP/ 2 + 2-measurable function of z.

(c) f(x -f y) is a 3f X £f -measurable function of x andy.

(d) f(px + qy) is a Sfχ X ^-measurable function of x andy.

If any one {and hence all) of (a)-(d) holds, then

f(x+y)d{v Xv)(x,y)
BXB

- qy)d(v1 X *Ί)(x,y)
BXB

where = means that the existence of one side implies that of the other with

the equality.

Proof, (i) The equivalence of (a) and (b): Define a transformation

f-i are Borel measurable and vx

= vv Hence by Lemma 3.1, for any Borel

set G in the complex plane C, T hr~i{f~\G)) is in @(B)Vι = ̂  if
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v i '-,

and only if f~\G) is in @(B)vp2+q2 = ^ / ^ T ^ . Therefore, (a) and (b) are
equivalent and the corresponding integration formula follows from the
fact that vγ <> T ιpi+qi = vJP

2+q

2 o n ^Jp2+q2 a n ( ^ ̂ e change of variable
theorem ([5], p. 163).

(ii) The equivalence (b) and (c): Let G be a Borel set in C and T the
transformation defined in Lemma 4.3, (ii). Then by Lemma 4.3, (ii),
f~\G) is in SPπtt if and only if T-\Γ\G)) = (f<>τy\G) is in

S?p X S?q

p \ Hence (b) and (c) are equivalent and the corresponding
integration formula follows from the fact that vp X vq ° T~ι = vor~i on

and the change of variable theorem.
(iii) The equivalence of (c) and (d): Let G be a Borel set in C and T

the transformation defined in Lemma 4.3, (ii). Then by Lemma 4.3, (iii),
(Tp X Tq)-\T-\f-\G))) = (foToTp X Tχ\G) is in &^x#?XWι if
and only if T-\f-\G)) = (/ <> T)~\G) is in ̂  X S?q

v'x\ Hence (c) and
(d) are equivalent and the corresponding integration formula follows from
the fact that v1Xv1o(TpX Tq)~ι = vp X vq and the change of variable
theorem.

Let 3§{&) (y(#Ί K(&\ α > 0) denote the class of all
complex-valued functions which are defined on a Borel measurable
(scale-invariant measurable, ^-measurable, resp.) subset of B and which
are measurable with respect to the σ-algebra 3&(B) (5f, Sfa resp.). The
extensions to the abstract Wiener space setting of all the results contained
in §4 of [6] can be shown to hold by using the same arguments as given in
[6]. For brevity, we omit these statements and refer the reader to [6].
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