UNITARY EQUIVALENCE OF INVARIANT SUBSPACES IN THE POLYDISK

Keiji Izuchi

Invariant subspaces M and N of $H^2(T^n)$ are called unitarily equivalent if $M = \psi N$ for a unimodular function ψ on T^n . In this note, it is given a complete characterization of pairs of invariant subspaces Mand N of $H^2(T^n)$ such that $M = \phi N$ for an inner function ϕ . This is a generalization of Agrawal, Clark and Douglas' results. As an application, if M is an invariant subspace of $H^2(T^n)$ and if M is unitarily equivalent to S(f), an invariant subspace generated by an outer function f, then $M = \phi S(f)$ for some inner function ϕ .

It is well known that Beurling [4] showed that every invariant subspace M of $H^2(T)$ can be written by $M = \psi H^2(T)$ for some inner function ψ . Although it is easy to see that a Beurling-type characterization is not possible for invariant subspaces of $H^2(T^n)$, $n \ge 2$, it is very difficult to determine all invariant subspaces of $H^2(T^n)$ for $n \ge 2$. In [3], Ahern and Clark studied an invariant subspace which has finite codimension in $H^2(T^n)$. These invariant subspaces are not Beurling-type. Recently Agrawal, Clark and Douglas [2] studied pairs of invariant subspaces of $H^2(T^n)$ which are unitarily equivalent. Here two invariant subspaces M_1 and M_2 are called *unitarily equivalent* if there is a unimodular function ψ on T^n with $M_2 = \psi M_1$. In [1, Corollary 3], they showed that distinct invariant subspaces having finite codimensions in $H^2(T^n)$ are not unitarily equivalent. In [9], Rudin gives two examples of unitarily equivalent invariant subspaces of $H^2(T^2)$ answering problems posed in [2]. In [6], Nakazi gives a characterization of invariant subspaces M of $L^{2}(T^{2})$ with $M = FH^{2}(T^{2})$ for some unimodular function F. From the view point of the Beurling theorem, it is interesting to characterize pairs of unitarily equivalent subspaces M_1 and M_2 of $H^2(T^n)$ such that $M_2 = \psi M_1$ for some inner function ψ . In [2], they give some sufficient conditions of these pairs. One of these conditions is $M_2 \subset M_1$.

In §2, we shall show a theorem which contains Schneider's lemma as a corollary (Corollary 1). Also our theorem gives us a complete characterization of pairs of invariant subspaces M_1 and M_2 of $H^2(T^n)$ such that $M_2 = \psi M_1$ for some inner function ψ (Corollary 2). Of course this

KEIJI IZUCHI

theorem covers Propositions 1, 2, 3, and 4 in [2]. In \$3, we shall study invariant subspaces which are unitarily equivalent to the one generated by an outer function.

1. Notations and Theorems. For a positive integer n, let T^n denote the cartesian product of n unit circles. The usual Lebesgue spaces, with respect to the normalized Haar measure m_n on T^n , are denoted by $L^p(T^n)$, $1 \le p \le \infty$. Let $H^p(T^n)$ be the space of all f in $L^p(T^n)$ whose Fourier transforms

$$\hat{f}(\alpha) = \int_{T^n} f(z) \bar{z}_1^{\alpha_1} \bar{z}_2^{\alpha_2} \cdots \bar{z}_n^{\alpha_n} dm_n(z)$$

vanish outside $(Z_+)^n$, the *n*-fold product of nonnegative integers. A function ψ in $L^{\infty}(T^n)$ and $H^{\infty}(T^n)$ is called *unimodular* and *inner* if $|\psi| = 1$ a.e. dm_n , respectively. A closed subspace M of $L^2(T^n)$ is called *invariant* if $z_i M \subset M$ for every i = 1, 2, ..., n. We note that if M is an invariant subspace then $H^{\infty}(T^n)M \subset M$. A function f in $H^2(T^n)$ is called *outer* if

$$\log |f(0)| = \int_{T^n} |f(z)| \, dm_n(z).$$

We denote by S(f) the invariant subspace generated by a function f in $L^{2}(T^{n})$. [8] is a convenient reference for the function theory in the polydisk.

To state our theorem, we use the following notations. Let H_k and \mathscr{H}_k denote the closure in $L^2(T^n)$ of the algebra generated by

$$\{1, z_i; i = 1, 2, \dots, n\} \cup \{\bar{z}_k\}$$
 and
 $\{1, z_i, \bar{z}_i: i = 1, 2, \dots, n\} \setminus \{\bar{z}_k\},\$

respectively. Let L_k^p denote the closure in $L^p(T^n)$, weak*-closure if $p = \infty$, of the algebra generated by

$$\{1, z_i, \overline{z}_i: i = 1, 2, \ldots, n\} \setminus \{z_k, \overline{z}_k\}.$$

Then H_k and \mathscr{H}_k are invariant subspaces, $\bigcap_{k=1}^n \mathscr{H}_k = H^2(T^n)$, and \mathscr{H}_k coincides with the closed linear span of $\{z_k^m L_k^2; m = 0, 1, 2, ...\}$.

For an invariant subspace M (generally not closed), let $(M)_k$ denote the closure of $L_k^{\infty}M$ in $L^2(T^n)$. Then $(M)_k$ is an invariant subspace and $L_k^{\infty}(M)_k = (M)_k$. We note $(H^2(T^n))_k = \mathscr{H}_k$. A closed subspace N of $L^2(T^n)$ is called *reducing* if $z_iN = N$ for every i = 1, 2, ..., n. If N is reducing, then $L^{\infty}(T^n)N = N$, hence $N = \chi_U L^2(T^n)$, where χ_U is a characteristic function for a Borel subset U of T^n . We note that \mathscr{H}_k does not contain any reducing subspaces.

Our main results are

THEOREM 1. Let M_1 be an invariant subspace of $H^2(T^n)$ and $\phi \in L^{\infty}(T^n)$. Let M_2 denote the closure of ϕM_1 in $L^2(T^n)$. Then $\phi \in H^{\infty}(T^n)$ if and only if $(M_2)_k \subset (M_1)_k$ for every k = 1, 2, ..., n.

COROLLARY 7. Let $f \in H^2(T^n)$ be an outer function, and M be an invariant subspace of $H^2(T^n)$ which is unitarily equivalent to S(f). Then $M = \psi S(f)$ for some inner function ψ .

2. Proof of Theorem 1 and its applications. The following lemma is a corollary of the Merrill and Lal theorem [5] (see Remark after Lemma 1). In this case, we can prove it directly. For the sake of completeness, we give its proof.

LEMMA 1. Let M be an invariant subspace of $H^2(T^n)$. Then for each $k = 1, 2, ..., n, (M)_k = F_k \mathscr{H}_k$ for a unimodular function F_k in \mathscr{H}_k .

Proof. Let fix k. Since $M \subset H^2(T^n)$, $(M)_k \subset \mathscr{H}_k$. Hence $\bigcap_{i=1}^{\infty} z_k^i(M)_k = \{0\}$. Put

$$N = (M)_k \ominus z_k(M)_k.$$

Then $N \neq \{0\}$. Since $L_k^{\infty}(M)_k = (M)_k$, $L_k^{\infty}N = N$. Thus we have

(1)
$$(M)_k = N \oplus z_k N \oplus z_k^2 N \oplus \cdots$$

Let $g \in N$. Since $g \perp gz_k^i$ for i = 1, 2, ..., we get

$$\int_{T^n} \left| g \right|^2 z_k^i \, dm_n = 0$$

for every nonzero integer *i*. This implies $|g| \in L_k^2$. Since |f| > 0 a.e. dm_n for $f \in H^2(T^n)$, by (1) there exists g_0 in N such that $|g_0| > 0$ a.e. dm_n . Put $g_0 = F|g_0|$, where F is unimodular. Since $L_k^{\infty}N = N$, $N \supset L_k^{\infty}g_0 = FL_k^{\infty}|g_0|$. Since $L_k^{\infty}|g_0|$ is dense in L_k^2 , we have $FL_k^2 \subset N$.

To show $FL_k^2 = N$, let $g \in N$. Since $F \in N$,

$$Fz_k^i \perp gz_k^j$$

for every $i, j \ge 0$ with $i \ne j$. Hence

$$\int_{T^n} \overline{F}gz_k^p \, dm_n = 0$$

KEIJI IZUCHI

for every nonzero integer p. Thus $\overline{F}g \in L_k^2$, so that $g \in FL_k^2$. Consequently $FL_k^2 = N$. By (1),

$$(M)_k = FL_k^2 \oplus Fz_k L_k^2 \oplus Fz_k^2 L_k^2 \oplus \cdots = F\mathscr{H}_k$$

Since $F \in (M)_k \subset \mathscr{H}_k$, this completes the proof.

REMARK. In [5], they showed the following (in more general form); if M is an invariant subspace of $L^2(T^n)$ with $z_iM = M$ for i = 1, 2, ..., n with $i \neq k$, then $M = \chi_U F \mathscr{H}_k \oplus \chi_V L^2(T^n)$, where F is unimodular. In this case, it is easy to see that $M = F \mathscr{H}_k$ if and only if M has no reducing subspaces and there is a function f in M with |f| > 0 a.e. dm_n . This fact is essentially pointed out, for the case n = 2, by Nakazi (see [6, Theorem 6]). Using this fact, we can also prove Lemma 1.

Proof of Theorem 1. Let M_1 be an invariant subspace of $H^2(T^n)$, $\phi \in L^{\infty}(T^n)$ and M_2 be the closure of ϕM_1 in $L^2(T^n)$. By Lemma 1, $(M_1)_k = F_k \mathscr{H}_k$ for some unimodular function F_k for k = 1, 2, ..., n.

First suppose that $(M_1)_k \supset (M_2)_k$ for k = 1, 2, ..., n. Then

$$F_k \mathscr{H}_k = (M_1)_k \supset (M_2)_k \supset \phi(M_1)_k = \phi F_k \mathscr{H}_k.$$

Hence $\phi \mathscr{H}_k \subset \mathscr{H}_k$, so that $\phi \in \bigcap_{k=1}^n \mathscr{H}_k = H^2(T^n)$. Thus $\phi \in H^\infty(T^n)$.

Next suppose $\phi \in H^{\infty}(T^n)$. We note that $(M_2)_k$ coincides with the closure of $\phi(M_1)_k$ in $L^2(T^n)$. Since $\phi \mathcal{H}_k \subset \mathcal{H}_k$, we have

$$\phi(M_1)_k = \phi F_k \mathscr{H}_k \subset F \mathscr{H}_k = (M_1)_k.$$

Thus $(M_2)_k \subset (M_1)_k$. This completes the proof.

The following corollary is proved in [2, Proposition 3] using an idea of Schneider [10]. We can prove this as an application of our theorem.

COROLLARY 1. Let $\phi \in L^{\infty}(T^n)$ and $f \in H^2(T^n)$ such that $f \neq 0$ and $\phi^m f \in H^2(T^n)$ for m = 1, 2, ... Then $\phi \in H^{\infty}(T^n)$.

Proof. Let M_1 denote the invariant subspace of $H^2(T^n)$ generated by $\{\phi^m f; m = 1, 2, ...\}$. Let M_2 denote the closure of ϕM_1 in $L^2(T^n)$. Then $M_2 \subset M_1 \subset H^2(T^n)$, so that $(M_2)_k \subset (M_1)_k$ for k = 1, 2, ..., n. By Theorem 1, $\phi \in H^\infty(T^n)$.

The following is a direct corollary of our theorem. This answers the question posed in the introduction.

COROLLARY 2. Let M_1 and M_2 be unitarily equivalent invariant subspaces of $H^2(T^n)$. Put $M_2 = \psi M_1$, where ψ is unimodular. Then ψ is inner if and only if $(M_1)_k \supset (M_2)_k$ for every k = 1, 2, ..., n.

COROLLARY 3. Let M_1 and M_2 be invariant subspaces of $H^2(T^n)$ such that $(M_1)_k = (M_2)_k$ for k = 1, 2, ..., n. Then M_1 is unitarily equivalent to M_2 if and only if $M_1 = M_2$.

Proof. Suppose that $M_2 = \psi M_1$ and ψ is unimodular. By Corollary 2, ψ and $\overline{\psi}$ are inner. Hence ψ is constant, so that $M_1 = M_2$.

COROLLARY 4. Let M_1 be an invariant subspace of $H^2(T^n)$ such that $(M_1)_k = \mathscr{H}_k$ for k = 1, 2, ..., n. If M_2 is an invariant subspace of $H^2(T^n)$ with $M_2 = \psi M_1$, where ψ is unimodular, then ψ is inner.

Proof. Since $M_2 \subset H^2(T^n)$,

$$(M_2)_k \subset (H^2(T^n))_k = \mathscr{H}_k = (M_1)_k.$$

By Corollary 2, ψ is inner.

An invariant subspace M of $H^2(T^n)$ has full range if the closed linear span of $\{\bar{z}_k^m M; m = 1, 2, ...\}$ coincides with H_k for k = 1, 2, ..., n (see [2, p. 5]).

By the following lemma, we can consider that Corollary 4 is a generalization of both Propositions 1 and 2 in [2].

LEMMA 2. Let M be one of the following invariant subspaces of $H^2(T^n)$. (1) M has full range.

(2) *M* contains a nonzero function independent of z_k for each k = 1, 2, ..., n.

Then $(M)_{k} = \mathcal{H}_{k}$ *for* k = 1, 2, ..., n.

Proof. (1) Suppose that M has full range. Then by the definitions, $H_i \subset (M)_k$ for $i \neq k$. Since \mathscr{H}_k coincides with the linear span of $\{H_i; i = 1, 2, ..., n \text{ and } i \neq k\}$, we get $\mathscr{H}_k \subset (M)_k$, so that $\mathscr{H}_k = (M)_k$.

(2) Suppose that $f_k \in M$ is a nonzero function independent of z_k . Then

 $(M)_k$ = the closure of $L_k^{\infty} M$ in $L^2(T^n)$

 \supset the closure of $L_k^{\infty} f_k$ in $L^2(T^n) = L_k^2$,

the last equality follows from $|f_k| > 0$ a.e. dm. Since $z_k(M)_k \subset (M)_k$, we get $\mathscr{H}_k \subset (M)_k$, so that $\mathscr{H}_k = (M)_k$.

The following example shows that Corollary 4 is not covered by the work of Agrawal, Clark and Douglas [2].

EXAMPLE. For cases $n \ge 3$, there is an invariant subspace M of $H^2(T^n)$ such that

- (a) M does not contain a function independent of z_k ,
- (b) *M* does not have full range, and
- (c) $(M)_k = \mathscr{H}_k$ for k = 1, 2, ..., n.

We shall show the existence of M as above for n = 3. Let $\{\psi_i\}_{i=0}^{\infty}$ be a sequence of nonconstant inner functions in $H^{\infty}(T)$ satisfying the following conditions.

(i) $\psi_i H^2(T) \subsetneq \psi_{i+1} H^2(T)$ for every *i*, and

(ii) $\bigcup_{i=0}^{\infty} \psi_i H^2(T)$ is dense in $H^2(T)$.

Let *M* denote the invariant subspace of $H^2(T^3)$ generated by

$$\bigcup_{i=0}^{\infty}\bigcup_{j=0}^{\infty}z_1^i z_2^j \psi_j(z_3) H^2(T^3).$$

Then every nonzero function in M is not independent of z_3 . Hence M satisfies (a). By (i), $\psi_0(z_3)H^2(T^3) \subsetneq H^2(T^3)$. Hence by the definition of M, the linear span of $\{\overline{z}_1^m M; m = 1, 2, ...\}$ does not contain $H^2(T^3)$, because it does not contain nonconstant functions. Thus M satisfies (b). By (ii), $(M)_3 = \mathcal{H}_3$. Since the linear span of $\{z_3^k \psi_j(z_3); k \text{ is an integer}\}$ coincides with $L^2(T)$, we have $(M)_k = \mathcal{H}_k$ for k = 1, 2. Thus M satisfies (c).

COROLLARY 5 [2, Proposition 4]. Let M and M_1 be invariant subspaces of $H^2(T^n)$ such that $M \supset M_1$ and M_1 has finite codimension in M. If M_2 is an invariant subspace of M with $M_2 = \psi M_1$, where ψ is unimodular, then ψ is inner.

Proof. Since $M \ominus M_1$ has finite dimension, it is easy to see $(M)_k = (M_1)_k$ for k = 1, 2, ..., n. Since $M \supset M_2$, $(M_2)_k \subset (M)_k = (M_1)_k$. By Corollary 2, ψ is inner.

COROLLARY 6. Let M_1 and M_2 be invariant subspaces of $H^2(T^n)$. Suppose that both of $M_1 \ominus M_2$ and $M_2 \ominus M_1$ have finite dimensions. Then M_1 and M_2 are unitarily equivalent if and only if $M_1 = M_2$.

Proof. Let M denote the invariant subspace generated by M_1 and M_2 . Then M_1 and M_2 have finite codimensions in M. Put $M_2 = \psi M_1$ for some unimodular function ψ . By Corollary 5, ψ is constant, so that $M_1 = M_2$.

3. Outer functions. Rudin [7] showed the following.

(i) If $S(f) = H^2(T^n)$ and $f \in H^2(T^n)$, then f is outer.

(ii) There is an outer function f such that $S(f) \neq H^2(T^n)$.

If M is an invariant subspace of $H^2(T^n)$ such that M is unitarily equivalent to $H^2(T^n)$, then $M = \psi H^2(T^n)$ for some inner function ψ [2, Corollary 1]. In this section, we shall show that the above assertion is true if $H^2(T^n)$ is replaced by S(f) for outer functions f.

THEOREM 2. Let $f \in H^2(T^n)$ be an outer function. Then $(S(f))_k = \mathscr{H}_k$ for every k = 1, 2, ..., n.

By Corollary 4, we get

COROLLARY 7. Let $f \in H^2(T^n)$ be an outer function and let M be an invariant subspace of $H^2(T^n)$. If M is unitarily equivalent to S(f), then $M = \psi S(f)$ for some inner function ψ .

Proof of Theorem 2. Let $f \in H^2(T^n)$ be an outer function. Without loss of generality, we may assume k = n. By Lemma 1, $(S(f))_n = F_n \mathscr{H}_n$ for some unimodular function F_n in \mathscr{H}_n . We shall show that F_n is independent of z_n . We can write $f = F_n h$, where $h \in \mathscr{H}_n$. Write

 $z = (z', z_n) \in T^n$, where $z' \in T^{n-1}$.

Since f, F_n and h are contained in \mathscr{H}_n , there is a Borel subset E of T^{n-1} with $m_{n-1}(E) = 1$ such that for every fixed $z' \in E$,

(2)
$$f(z', z_n), F_n(z', z_n), h(z', z_n) \in H^2(T)$$

and $F_n(z', z_n)$ is inner. Since $f(z', 0) \in H^2(T^{n-1})$,

$$\log |f(0)| = \log \left| \int_{T^{n-1}} f(z', 0) \, dm_{n-1}(z') \right|$$

$$\leq \int_{T^{n-1}} \log |f(z', 0)| \, dm_{n-1}(z') \quad \text{by } [\mathbf{8}, \mathbf{p}, 47].$$

Hence, by our assumption,

$$\int_{T^{n-1}} \left\{ \log |f(z',0)| - \int_{T} \log |f(z',z_n)| \, dm_1(z_n) \right\} \, dm_{n,-1}(z') \ge 0.$$

Since $\log |f(z',0)| \le \int_T \log |f(z',z_n)| dm_1(z_n)$ for $z' \in E$,

$$\log |f(z',0)| = \int_T \log |f(z',z_n)| dm_1(z_n)$$
 a.e. $z' \in E$.

KEIJI IZUCHI

Thus $f(z', z_n)$ is outer for a.e. $z' \in E$. Since $f = F_n h$, for a.e. fixed $z' \in E$, we have

 $f(z', z_n) = F_n(z', z_n)h(z', z_n)$ a.e. $z_n \in T$.

By (2), an inner function $F_n(z', z_n)$ is constant for a.e. $z' \in E$. Then for nonzero integers *i*,

$$\int_{T^n} F_n(z) z_n^i dm_n(z) = \int_{T^{n-1}} dm_{n-1}(z') \int_T F_n(z', z_n) z_n^i dm_1(z_n) = 0.$$

This implies that $F_n(z)$ is independent of z_n . Hence F_n is invertible in \mathscr{H}_n , so that we get $(S(f))_n = \mathscr{H}_n$. This completes the proof.

References

- O. P. Agrawal, Invariant subspaces of shift operator for the quarter plane, PhD Thesis, SUNY Stony Brook, 1983.
- O. P. Agrawal, D. N. Clark and R. G. Douglas, *Invariant subspaces in the polydisk*, Pacific J. Math., **121** (1986), 1–11.
- [3] P. R. Ahern and D. N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech., 19 (1970), 963–969.
- [4] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239–255.
- [5] S. Merrill and N. Lal, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math., **30** (1969), 463–474.
- [6] T. Nakazi, Certain invariant subspaces of H^2 and L^2 on a bidisc, Preprint.
- [7] W. Rudin, Proof of a conjecture of Helson, Bull. Amer. Math. Soc., 74 (1968), 727-729.
- [8] _____, Function Theory in Polydiscs, Benjamin, New York, 1969.
- [9] $\frac{1}{378-384}$, Invariant subspaces of H^2 on a torus, J. Functional Anal., **61** (1985),
- [10] R. B. Schneider, Isometries of H^p(Uⁿ), Canad. J. Math., 25 (1973), 92-95.

Received July 12, 1986. The author was supported in part by Grand-in-Aid for Scientific Research, Ministry of Education.

Kanagawa University Yokohama 221, Japan