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INTRINSIC MEASURES AND HOLOMORPHIC
RETRACTS

IAN GRAHAM

In this paper we examine the consequences of the equality of the
Eisenman and Caratheodory norms on /^-vectors, 2 < k < n - 1, at a
point in an ^-dimensional complex manifold M. We also investigate the
consequence of the existence of a large number of two-dimensional
holomorphic retracts of a complex manifold—one tangent to each 2-vec-
tor at a given point.

1. Introduction. The equality of the Kobayashi and Caratheodory
metrics on strictly convex domains in C" is one consequence of the work
of Lempert [12,13,14,19]. This remarkable fact is deduced from the
existence of a large supply of one-dimensional holomorphic retracts of
such domains—one through each point tangent to each direction. In this
paper we examine the consequences of the equality of the Eisenman and
Caratheodory norms on k~vectors, 2 < k < n — 1, at a point in an
^-dimensional complex manifold M. (The Eisenman norm is the analog of
the infinitesimal Kobayashi metric and is the object of a recent study by
H. Wu and the author [9]; see also the papers of Eisenman [7, 15].) H. Wu
and the author considered the top-dimensional case in [10] (for earlier
results see [6, 17, 22]) obtaining a criterion for biholomorphic equivalence
with the unit ball in C". We also investigate the consequences of the
existence of a large number of two-dimensional holomorphic retracts of a
complex manifold—one tangent to each 2-vector at a given point. Both
assumptions lead to the conclusion, if M is Caratheodory-hyperbolic (see
§4 for precise statements of the theorems) that the indicatrix of the
Caratheodory metric at the point in question is an analytic ellipsoid; the
first assumption also implies that the infinitesimal Kobayashi and
Caratheodory metrics coincide at the point in question. Later in the paper
we consider intrinsic norms on £>vectors at the origin of a circular domain
in C'7, exhibiting some differences between the k = 1 case and the k > 1
case.

Lempert [13] has already observed that there do not in general exist
2-dimensional holomophic retracts containing three given points of a
strictly convex domain; his argument shows that there does not in general
exist a 2-dimensional retract tangent to a given 2-vector at a point. It is
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worth pointing out that some facts from the theory of Banach and Hubert

spaces shed some light on this situation and on the theorems proved here.

Specifically, if X is a real or complex Banach space, there always exists a

projection of norm 1 onto any one-dimensional subspace by the Hahn-

Banach theorem. However, if there exists a projection of norm 1 onto all

two-dimensional subspaces, then the given Banach space X is actually a

Hubert space. (The real case of this result was proved by Kakutani [11]
and Phillips [16], the complex case by Bohnenblust [3].) Of course a

projection of norm 1 is just a linear retraction of the unit ball of X, and,

in the finite-dimensional case, X is a Hubert space iff the unit ball is an

ellipsoid.

The plan of the paper is as follows: In §2 we recall the definitions of

the Eisenman and Caratheodory norms on decomposable /c-vectors. In §3

we give estimates in the form of two lemmas for these norms which are

used in the proof of the theorems as well as in some further results in §6.

The main theorems are proved in §4. In §5 we give a variant on the known

versions of the Schwarz lemma on circular domains; this result as well as

the lemmas of §3 are used in §6 to give further formulas and estimates for

the Eisenman and Caratheodory norms at the origin of circular domains.

It is a pleasure to record my thanks to Man-Duen Choi and Peter

Rosenthal for discussions about projections in Banach spaces and for

locating the characterizations of Hubert space by Kakutani [11] and

Bohnenblust [3].

2. Definitions. In this section we recall some basic definitions, most of

which appear in [9]. Let M be an ^-dimensional complex manifold and

let p G M. Let TpM (respectively TM) denote the holomorphic tangent

space to M at p (respectively the holomorphic tangent bundle). Let

AkTpM (respectively AkTM) be the kth exterior power of TpM (respec-

tively TM). Of special interest are the decomposable elements of AkTpM

(respectively AkTM); these we denote by DkM (respectively DkM). There

is a natural way of extending a hermitian metric ( , ) on TM to a

hermitian metric on AkTM: first, for α j E DkM with a = vλ A Λ υk

and β = wγ A - - - Awkwe define

(2-1) (a,β)=det{(vl,Wj))ιj=u k

and then extend the definition to arbitrary elements of AkTpM by

linearity.

The unit ball in C'7 is denoted by Bn. Bn carries the Euclidean metric

which may be extended to k-vectors as above. We orient C" so that the

(n, n)-ϊoτm (i/2)n dzλ A dzλ A Adzn A dzn is positive.
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For decomposable Λ>vectors, we define the Eisenman and

Caratheodory norms by constructions modelled on the definitions of the

differential Kobayashi and Caratheodory pseudo-metrics. Let 1 < k < n

and let a e D£M.

DEFINITION 1. The Eisenman norm of a is

Ek(p; a) = inf{ | |γ | | 21 γ e D^Bk and there exists a holo-

(2.2) morphic mapping /: Bk-+ M such that /(0) = p and

DEFINITION 2. The Caratheodory norm of a is

C/ciP* a) = s uP{llϊll 2 ; y e DoBk a n < ^ there exists a
(2.3) holomorphic mapping g: M -^ Bk such that g(/*) = 0

and g*(α) = γ} .

By | |γ | | we mean the Euclidean norm of γ; the reason for squaring (as

in [2, 9, 10]) arises from the computation of volumes in local holomorphic

coordinates. It suffices to define Ek and Ck for decomposable k-vectors in

order to compute volumes. If A is a fc-dimensional complex submanifold

of an open subset U of M we introduce intrinsic volume forms τj4 and

η™ as follows: let p & A and let zl9...9zn be local holomorphic coordi-

nates in M near p so that θ/3z l 9 . . . , θ/θz^ are tangent to A at /?. Then

(2.4)

p ; 9^"Λ ' ' ' Λ W^Pηyί) dZχ A d ϊ ι Λ ' ' ' κdZk Λ J ^

is the Eisenman volume form of A (as a submanifold of Λf) while

(2.5)

p ; a ^ A """ Λ ^ p η \ ϊ ) dZl Ad*ιA •" AdzkΛdh

is the Caratheodory volume form of A (as a submanifold of M). If S is a

Borel subset of A then its Eisenman volume is

(2.6) <?

and its Caratheodory volume is

(2.7) Vk

When necessary we shall indicate the manifold on which the intrinsic

/c-norms are defined by a superscript, as in E™( ), Cj?( ). It is

elementary to verify that if A is a complex submanifold of M which is a
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holomorphic retract of M then Ejf = Ek and Cjf = Ck on decomposa-
ble A:-vectors of A. (There is a general theorem of Rossi to the effect that
any holomorphic retract of a complex manifold must be a complex
submanifold [18, Theorem 5.2].) Also the inequality Ck < Ek is elemen-
tary [7].

The indicatrix of the Kobayashi pseudo-metric at p e M is the set
Iκ{p) = {v e TpM\Eλ(p\υ) < 1). Ex as defined above is actually the
square of the Kobayashi pseudo-metric. Similarly Cx is the square of the
Caratheodory pseudo-metric so that the indicatrix of the Caratheodory
pseudo-metric is the set Ic(p) = {v e TpM\Cλ(ρ\ υ) < 1}. Both indi-
catrices are complete circular domains; Ic(p) is convex.

By an analytic ellipsoid we shall mean a domain of the form

where (α . ) " . β l is a positive definite hermitian matrix. Note that all such
domains are centered at the origin.

Finally we recall that a complex manifold M is said to be taut if for
any other complex manifold N the set of holomorphic mappings from N

into M form a normal family [23].

3. Estimates for the Eisenman and Caratheodory norms. Let p be a

point in an ^-dimensional complex manifold M which carries a hermitian

metric ( , >. The unit ball Bk in C* is equipped with the Euclidean metric.

A preliminary estimate is given by the following:

LEMMA 1 Let a e D^M. Let L be the k-dimensional {complex) linear

subspace ofTM which is tangent to a. Then

«'••>*

( | |α | | 2 , vol(L Π Iκ(p)), and vol(L Π Ic(p)) are computed with respect to

the hermitian metric ( , ); vo\(Bk) denotes the Euclidean volume of the unit

ball in Ck. The right-hand sides of (3.1) and (3.2) are of course independent

of the choice of hermitian metric on M.)
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Proof of (3.1) Suppose that /: Bk -> M is a holomorphic map and

Z ) * ^ are such that /(0) = /> and /*(γ) = a. Then

1 j f|γ||
2

where the last inequality is a consequence of the fact that /* maps the

indicatrix of the Kobayashi metric of Bk at 0 into L Π Iκ(p). (For the

terms in the numerator of (3.3) the metric ( , > is used, while the

Euclidean metric is used for the terms in the denominator. Also by abuse

of notation we are denoting the unit ball in T0Bk by Bk.) Thus

(3.4)
vol(L Π Iκ

from which (3.1) follows.

Proof of (3.2) Suppose that g: M -> Bk is a holomorphic map and

γ e JDQ̂ B̂  are such that g(p) = 0 and g*(α) = γ. Then

l ' j | | α | | 2 vol(LΠ/ c(j,)) - v o l ( L Π

(Euclidean metric in the numerator, ( , ) in the denominator) from which

(3.2) follows. As before we have used the fact that g*(Ic(p)) c Bk.

The estimates in Lemma 1 can be sharpened. In fact we actually have

LEMMA 2. Let a e DfM. Let L be the k-dimensional linear subspace of

TpM which is tangent to a.

(a) Let s be the supremum of the volumes (w.r.t. ( , )) of the analytic

ellipsoids which can be inscribed in L Π Iκ(p). (There is an ellipsoid of

maximal volume if L Π Iκ(p) is bounded.) Then

(3.6) Ek(p;a)>\\a\\\o\(Bk)S-\

(b) Let t be the infimum of the volumes (w.r.t. ( , )) of the analytic

ellipsoids which can be circumscribed about L Π Ic(p). (t is finite iff

L Π Ic(p) is bounded, in which case there is a circumscribing ellipsoid of

minimal volume.) Then

(3.7) Ck(p;a)<\\a\\\ol(Bk)r\

(The estimates (3.6) and (3.7) are of course independent of the choice of

< > > • )
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Proof (a) Referring to the proof of (3.1) in the previous lemma, we
note that f*(Bk) must be an analytic ellipsoid and hence vol( f*{Bk)) < s.
This gives the sharpened estimate (3.6). To see that the supremum is
attained if L Π Iκ{p) is bounded, let T : Ck -> L be a sequence of
complex-linear maps such that Tj(Bk) c Iκ(p) and volTj(Bk) -> s. The
maps Tj are uniformly bounded, hence a subsequence converges in the
norm topology to a linear map T: Ck -> TpM. Evidently vo\{T(Bk)) = s
and T(Bk) c Iκ(p). But since T is open we must have T(Bk) c Iκ{p).

(b) Referring to the proof of (3.2) in the previous lemma, we note that
if there exist a holomorphic map g: M -» Bk and γ e D^Bk such that
g(p) = 0 and g^α) = γ, then

(3 8) !!&>(«) f =

 2

IN2 i
since g i^ i^) is an analytic ellipsoid which contains L Π Ic(p). (As the
reader will surmise, by g*1 we really mean (g*^)"1.) The finiteness
statement about t is obvious, and the assertion that there is a circumscrib-
ing ellipsoid of minimal volume follows from applying a normality
argument to the set of linear maps from L to Ck which map L Π Ic(p)
into Bk.

4. The main results.

THEOREM 1. Suppose that M is a complex manifold of dimension n and
p e M. Suppose that for some integer k,l < k < n, there exists a e DkM
such that Ek(p; a) = Ck(p; a) Φ 0. Let L be the k-dimensional complex
subspace of T M which is tangent to a. Then Eλ(p\ v) = Cλ(p\ v) for all
v G L and Iκ{p) Π L = Ic(p) Π L is an analytic ellipsoid.

Proof. The assumption that Ck(p\ a) Φ 0 is easily seen to imply that
Cλ(p\ υ) Φ 0 for all υ e L - {0}. The continuity of Cλ implies that
Ic(p) is bounded, hence Iκ(p) is bounded as well since Iκ(p) ^ Id?)-
By Lemma 2 there exist /^-dimensional analytic ellipsoids R a L Cλ Iκ(p)
and S ^ L Π Ic(p) such that i? has maximal volume and S has minimal
volume, volumes being computed with respect to some hermitian metric
( , ) on M (the choice of which does not affect the choice of R and S).
Also by Lemma 2 we have

(4.1) *
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and

(4.2) C t i f i a U l

These estimates, together with the assumption that Ek(p; a) = Ck(p; a)

and the obvious inequality vol(i?) < vo^S) lead us to the conclusion that

vol(jR) = vo^S), from which it follows (since R c S and both are ana-

lytic ellipsoids) that R = Iκ{p) Π L = Ic{p) Π L = S.

THEOREM 2. With hypotheses as in Theorem 1, suppose that in addition

M is taut. Then there exists a k-dimensional complex submanifold A of M

which is biholomorphic to Bk and tangent to a at p, and there exists a

holomorphic retraction φ: M -> A.

Proof. In view of the assumption of tautness of M, there exists a

holomorphic map /: Bk -> M and γ1 e D$Bk such that /(0) = /?, f+iyj

= α, and \\"Yι\\2 = Ek(p; a). Normality also implies that there exists a

holomorphic map g: M -> Bk and γ2 e i ) 0 ^ s u c ^ Λat g(p) = 0, g*(«)

= γ2, and | |γ 2 | | 2 = Q(/ι; a). By hypothesis ||τrx||
2 = | |γ 2 | | 2; hence since

the fibre of AkT0Bk = D£Bk has dimension 1 we must have γ2 = eiθy1 for

some choice of θ. By replacing g by e~'* g we may assume that γx = γ2.

But this implies that the composed mapping g o /: Bk -» 1?̂  has Jacobian

determinant equal to 1 at the origin and hence, since the origin is fixed,

must be a unitary transformation U. By replacing g by U~ι ° g we may

assume that g ° / is the identity transformation.

Now let A = f(Bk). It is easy to see that 4̂ is a holomorphic retract

of M and in fact the map Φ = f° g gives the desired retraction. The

mapping / must have maximal rank everywhere and be 1-1 since these

statements are true of g ° /. Hence / is an embedding, which completes

the proof. (We note that a theorem of Rossi [18, Theorem 5.2] guarantees

that any holomorphic retract of a complex manifold must be a complex

submanifold.)

REMARK. It would certainly be of interest if the assumption of

tautness could be removed from Theorem 2. It is not needed in the

top-dimensional case [10]. Some results for the k = 1 case have been

obtained by Fox [8] for general complex manifolds, but with a local

tautness assumption.

THEOREM 3. Suppose that M is an n-dimensional complex manifold

(n > 2) andp e M. Suppose that there is a point p e M and an integer k,

2 < k < n such that Ek(p; a) = Ck(p; a) Φ 0 for all a e D*M. Then
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Eι(P' > υ) = Cλ(p\ v) for all v e TpM and Iκ(p) = Ic(p) *s an analytic
ellipsoid.

Proof. The assumptions of Theorem 3 together with Theorem 1 imply

that Eλ(p; ) = Cλ(p\ ), and that whenever L is a /c-dimensional complex

subspace of TpM then Iκ(p) Π L = Ic{p) Π L is an analytic ellipsoid.

The boundedness of Ic(p) = Iχ(p) follows from the continuity of

Cλ(p\ ), and of course Ic(p) is always a convex circled domain. We now

wish to argue that a bounded convex circled domain in C" which

intersects every ^-dimensional complex subspace in a /^-dimensional

analytic ellipsoid (k > 2) must be an w-dimensional analytic ellipsoid. It

clearly suffices to establish the result when k = 2, but in this case our

statement is equivalent to the fact that a (finite-dimensional) Banach

space in which the parallelogram law holds is a Hubert space, for the

parallelogram law is a statement about the Banach space norm on all

two-dimensional subspaces.

THEOREM 4. Suppose that M is an n-dirnensional complex manifold

(n > 2) and p e M. Suppose that there is a point p e M such that for all

a G DpM there is a 2-dimensional holomorphic retract of M tangent to a at

p. Then if M is Caratheodory-hyperbolic (respectively if M is hyperbolic and

Iκ(p) is convex) then Ic(p) is an analytic ellipsoid (respectively Iκ(p) is

an analytic ellipsoid).

Proof. It is easy to see that the hypotheses of the theorem imply that

whenever L is a two-dimensional complex subspace of TpM there are

(complex) linear retractions of Ic(p) onto Ic(p) Π L and of Iκ(p) onto

Iκ(p) Π L. We now invoke a result of Bohnenblust [3] concerning projec-

tions in complex Banach spaces: if X is a complex Banach space in which

there is a projection of norm 1 onto any two-dimensional complex

subspace, then X is a Hubert space. (The real case of this result is due to

Kakutani [11] and Phillips [16].) Of course the unit ball in any finite

dimensional Hubert space is an ellipsoid (an analytic ellipsoid in the

complex case).

THEOREM 5. Suppose that Ω is a bounded complete circular domain

of holomorphy in C n, n > 2, and that for some k, 2 < k < n, we have

Ek(0; a) = Q ( 0 ; a) for all a e D^Ω. Then Ω is an analytic ellipsoid.

Proof. From a result of Barth [1] we obtain the fact that Iκ(0) = Ω.

We now simply invoke Theorem 3.



INTRINSIC MEASURES AND RETRACTS 307

5. The Schwarz lemma on circular domains. A domain Ω c C " is

called circled or circular if z e Ω implies eiθ z G Ω for all real θ. Ω is

complete circular or star-shaped circular or disked if z e Ω implies

cz e Ω for all C E C such that |c| < 1. Ω is convex circled if Ω is

simultaneously circular and convex.

In §6 we shall need a version of the Schwarz lemma for mappings

from circular domains to convex circled domains (cf. [20, Theorem 8.1.2]

for the case when the map is defined on a complete circular domain). The

following result actually generalizes the Cauchy estimates; the idea for the

proof comes from an argument of Lempert [13, p. 261].

LEMMA 3. Suppose that Ωx c C"1 is circled and contains the origin and

Ω2 c C"2 is convex circled. Suppose that f: Ωx -» Ω2 is a holomorphic map

such that /(0) = 0. Let f = ΣJ>

==1PJ be the series expansion of f in terms of

(n2-tuples of) homogeneous polynomials. Then Pj(Qι) c Ω2.

Proof. We note that

(5.1) Pj(z) = ± £w e-"f(ze«) dθ

and that the series expansion of / is valid for all Z G Ω J [5, p. 17]. Now

fix z e Ω P The set [f(zeιθ)\θ e R} is a compact subset Kλ of Ω2. Let

K2 be the circled subset of Ω2 generated by Kx (also compact), and let K2

be its convex hull, a convex circled set and a compact subset of Ω2. Now

any value of the integrand in (5.1) lies in K2, and any Riemann sum for

the right-hand side of (5.1) is a convex combination of points in K2.

Hence P y(z) e K2 c Ω2.

6. Intrinsic measures on circular domains. Using the lemmas in §3, we

show how to compute the Eisenman norm of k-vectors at the origin of a

complete circular domain of holomoφhy. For the Caratheodory norms we

consider slightly more general domains (circular domains containing 0),

but unless k = 1 or k = n we obtain only a pair of inequalities, essentially

because of the nonexistence in general of projections of norm 1 onto

subspaces of a Banach space of dimension greater than one.

THEOREM 6. Let Ω be a complete circular domain of holomorphy. Let

a G D^Ω and let L be the k-dimensional complex linear subspace of Cn

tangent to a at 0. Let s be the supremum of the volumes of the k-dimensional

analytic ellipsoids (centered at 0 as always) which can be inscribed in
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L Π Ω. Then

(6.1) Ek(0;a)=\\a\\\ol(Bk)s-\

(\\a\\ and s may be computed using the Euclidean metric or any constant-

coefficient hermitian metric)

Proof. The inequality Ek(0; a) > \\a\\2 woliB^s'1 follows from

Lemma 2 and the fact, already noted, that 7^(0) coincides with Ω[l]. The

opposite inequality is obtained by considering complex linear maps from

Bk into ίl Γ) L.

REMARKS. (1) A linear extremal map exists if Ω is bounded (cf.

Lemma 2).

(2) Remark 1 shows that an extremal map for α e ΰ^Sl need not be

proper unless Ω Π L is a ^-dimensional analytic ellipsoid. This is to be

contrasted with the behaviour of extremal mappings for the Kobayashi

metric on strictly convex domains [12].

In studying the Caratheodory norms of /c-vectors at the origin of a

circular domain, we first note the following:

LEMMA 4. Let Ω be a circular domain in Cn and let Ω denote its convex

hull, a convex circled domain. Then

( 6 . 2 ) C Ω ( 0 ; ) = c f ( 0 ; ) * = 1 , . . . , Λ .

Proof. From Lemma 3 we see that it suffices to consider linear maps

from Ω to Bk in computing QΩ(0; ) and c f (0; ). But if T: C" -> CMs

any linear map such that T(Ω)c Bk, then from the fact that Γ(Ω) = Γ(Ω)

it follows that T(Ώ) c Bk. Hence the class of linear maps under consider-

ation is identical whether one is computing Ck(0; a) or Ck(0; α).

THEOREM 7. (a) Let Ω be a circular domain in Cn and let U be its

convex hull. Let a e Dfi Ω and let L be the k-dimensional linear subspace of

C" tangent to a at 0. Let t be the infimum of the volumes of the

k-dimensional analytic ellipsoids in L which contain L Π Ω (t is finite iff

L Π Ω is bounded, in which case t is assumed.) Then

(6.3) Ck(0;a)<\\a\\\o\(Bk)rl.
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(b) // in addition Ω is bounded let m denote the minimal norm with
respect to the Banach space structure on Cn whose unit ball is Ώ of a
projection of C" onto L. (Thus m > 1.) Then

(6.4) m-2k\\a\\\ol(Bk)rι < Q(0; a) < \\a\\\ol(Bk)rι.

(\\a\\2 and t may be computed using the Euclidean metric or any constant-
coefficient hermitian metric, vol(Bk) denotes the Euclidean volume of the
unit ball in Ck.)

Proof, (a) The right-hand side of (6.3) is zero iff L Π Ω is unbounded.
In this case there does not exist a linear map Γ: Ω -> Bk such that
T*(a) Φ 0. In view of Lemmas 3 and 4 it follows that if g: Ω -> Bk is any
holomorphic map such that g(0) = 0 then g*(a) = 0. Hence Q(0; a) = 0
and (6.3) is valid in this case.

We may therefore assume that L Π Ω is bounded. For the fact that
the infimum t is assumed in this case see Lemma 2. In view of Lemma 3 it
suffices to consider linear maps T: Ω -> Bk in estimating Ck(0; a). Since
T(L Π Ω) c Bk for such a map we obtain, abbreviating (T \ L)*1 to 7V1,

||α| | ^
since T*ι(Bk) is an analytic ellipsoid containing L Π Ω.

(b) To prove the remaining inequality in (b), let A be an analytic
ellipsoid of minimal volume circumscribing L Π Ω and let T: L -> Ck be
a linear transformation such that T(A) = Bk. Let TΓ: C" -» L be a
projection of minimal norm m > 1 with respect to the Banach space
structure on C" whose unit ball is Ω. It is elementary to see that a
projection of minimal norm exists, and also, in view of the linearity of the
transformations, that m~ι - T° π maps Ω into Bk. Hence

l α l i 2 H a l l 2

HI2

from which it follows that Q(0; a) > m~2k\\a\\2 vo\(Bk)t~\ This com-
pletes the proof of Theorem 7.

REMARK. There always exists a projection of norm 1 onto a 1-dimen-
sional subspace of a Banach space by the Hahn-Banach theorem. It is this
fact which allowed Caratheodory [4] to compute the infinitesimal
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Caratheodory metric at the origin of a convex-circled domain. Projections

of norm 1 also play a role in the study of fixed points of holomorphic

maps [21].
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