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SURGERY OF INVOLUTIONS WITH
MIDDLE-DIMENSIONAL FIXED POINT SET

KARL HEINZ DOVERMANN AND REINHARD SCHULTZ

Surgery on manifolds with involution is considered when the dimen-
sion of the fixed point set is less than or equal to half the dimension of
the ambient manifold. As in earlier work of the first author, there are
some sharp contrasts with the corresponding results when strict inequal-
ity holds. The overall approach is based upon earlier work of the first
author, but the results are reformulated in broader contexts reflecting
both known and anticipated applications of the underlying ideas.

During the past quarter century surgery theory has proved to be a
very powerful tool for studying group actions on manifolds (compare [5],
[26]). Usually the strongest applications require a condition called the Gap
Hypothesis', for actions of the group Z2, this condition says that the
dimension of the fixed point set is strictly less than half the dimension of
the ambient manifold with Z2-action. In [11] the first named author
studied equivariant surgery problems in cases just beyond the realm of the
Gap Hypothesis; specifically, in [11] the dimension of the fixed point set
is exactly half the dimension of the ambient manifold. The ideas of [11]
have subsequently found applications in several separate contexts (Schultz
[28], Masuda [25], S.-i. Kakutani [19], Kitada [20], and Dovermann-
Masuda-Schultz [12]). Many interesting applications are in cases that
require modifications of the general theory. For example, it is often
necessary to be flexible about the fundamental group and orientability
properties of the fixed set. Although such extensions can often be verified
in special cases by ad hoc discussions, for several reasons it is not always
possible to justify the full generalizations by short, unambiguous refer-
ences to [11]. Therefore it seems appropriate to establish explicit, uniform
generalizations of the main results in [11] that will systematically cover the
applications in the five papers mentioned as well as potential future
applications. Some of the generalizations in this paper were proposed in
the review of [11] by G. A. Anderson [1].

Comments and acknowledgments. We are grateful to S. Zdravkovska
of Mathematical Reviews for providing a copy of the original typescript of
the review of [11] by G. Anderson [1]. This made it possible to understand
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more completely some of the comments in the printed version. Several

remarks in [1] and the original typescript were helpful in the preparation

of this paper. In particular, we have attempted to address the comments in

[1] regarding the wording of some results in [11].
Both S.-i. Kakutani and M. Masuda have been very generous in

furnishing accounts of their work before publication. Comments by S.

Cappell and W. Weinberger have yielded improvements in the discussion

of Γ-groups, and their advice in this connection has been very much

appreciated.

1. Summary of results. Most of our conclusions will be stated for

smooth involutions. Some remarks regarding analogs for other categories

of Z2-manifolds are included immediately following the main part of this

summary.

Roughly speaking, an equivariant surgery problem in our context is

an equivariant degree 1 map /: X -> Y between two smooth Z2-mani-

folds together with some additional technical data. Our main objective is

to modify / by a process called equivariant surgery in order to obtain a

new equivariant map / ' : Xf -> Y' that is a homotopy equivalence (but

not necessarily a Z2-homotopy equivalence). Such maps are called pseudo-

equivalences in [13].

To be more precise, our equivariant surgery problems will satisfy

some additional restrictions. The reasons for the extra conditions will be

discussed immediately following the definition.

Notation. Given a map f: X -> Y between two smooth Z2-manifolds,

let Fa denote the components of the fixed point sets of 7, and let Ea

denote the union of all components of the fixed point set of X that are

mapped into Fa by /. The map induced by / from Ea to Fa will be called

fa.\ίb: £ -> η is a vector bundle isomorphism covering the identity on X

then the restriction ba of b to Ea splits into a direct sum ba( + ) θ ba( — )9

corresponding to the eigenspaces of ± 1 (note that Z 2 acts on each fiber as

a linear involution and thus induces a fiberwise decomposition into

eigenspaces). Finally, we define NEa to be the normal bundle of Ea in X.

DEFINITION. Let /: X -> Y be a Z2-equivariant map of degree 1

between smooth, compact, 1-connected Z2-manifolds. Let ξ be a Z2-vec-

tor bundle over Y and b: TX -> f*ξ a stable Z2-vector bundle isomor-

phism. Finally, for each component Fa of the fixed point set of Y let ηa

be a vector bundle over Fa9 let ca: NEa -»/ft*τjα be a vector bundle

isomorphism, and let ca be a stable equivalence between ca and ba{-).
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Set c equal to (c, c). The data (/, b, c) will be called a Z2-normal map (or
equivalently a Z2-surgery problem) if the following conditions are satis-
fied:

(1.1a) Each of the sets Ea is nonempty, in other words, the induced map

of fixed point set components is surjectiυe.

(1.1b) // Fa is a component of the fixed point set of Y and Eβ is a

component of the fixed point set of X that is mapped into Fa, then the

dimensions of Fa and Eβ are equal and the first Stiefel-Whitney classes of

these components correspond under f.

(1.1c) The dimension of Y is at least 5, and for each a either the

dimension of Fa is at least 5 or else the map fa is a Z2-homology

equivalence.

(l.ld) The induced map of boundaries is a pseudoequiυalence.

Many of these conditions are standard in surgery theory. For exam-
ple, the dimension restrictions are the ones needed to carry through the
usual surgery-theoretic techniques, and the low-dimensional assumptions
are designed to ensure that everything is already satisfactory on such
components. The conditions involving fixed point sets are necessary for
the existence of a pseudoequivalence. Normal maps always involve some
additional bundle data, and the Z2-vector bundle map b corresponds
exactly to what one has in the nonequivariant case.

The role of the unstable data c is more subtle. In nonequivariant
surgery theory there is an important characterization of normal maps in
terms of homotopy-theoretic invariants (compare [4] or [30]). This follows
from the basic transversality theorems for maps of manifolds. If an
equivariant map / is constructed by equivariant transversality, then the
information in c is given fairly explicitly (compare [13]). More generally,
the information carried by c is needed to ensure that equivariant normal
maps are characterizable by reasonable equivariant homotopy-theoretic
invariants arising from equivariant transversality; abstract classifying
spaces for these invariants may be produced using results of F. Connolly
and V. Vijums [9]. Independent work of P. Lόffler provides detailed
classification information in an important special case (see [21], Korollar
2.8, p. 297).

In many cases it is possible to construct c from / and b, and under a
slight strengthening of the Gap Hypothesis there is an essentially unique
way of doing so. We shall discuss these points in §4. In contrast to this,
there is no simple a priori condition for recovering c in the analogous
surgery theories for locally linear piecewise linear or topological actions.
The reasons for this will be discussed at the end of §4.
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There is a natural notion of normal cobordism associated to the above

definition of Z2-normal map; as in nonequivariant surgery, if two normal

maps are related through a sequence of surgeries then the maps are

normally cobordant. For the sake of completeness, a normal cobordism is

defined to be a map of triads from (W, Xθ9 Xλ) to 7 X [0,1] such that the

restrictions to the Xx are normal maps and the map on W satisfies all the

conditions for a normal map except perhaps the last.

We shall need a general position assumption that is close (but not

identical) to the standard Gap Hypothesis. A connected smooth Z2-mani-

fold M will be said to satisfy the Borderline Gap Hypothesis provided the

dimension of the fixed point set is at most \ dim X and there is exactly

one component of the fixed set whose dimension is actually equal to \ dim X.

Such a component will be called a dominant component. For some results

the existence of a dominant component is crucial (e.g., Theorem B).

The first step in Z2-surgery is to adjust the induced map of fixed

point sets. By Smith theory, if the map is a pseudoequivalence then the

induced map of fixed point sets must be a Z2-homology equivalence. Thus

the first order of business is to see if one can modify / to make the map of

fixed point sets a Z2-homology equivalence. We shall say that a Z2-surgery

problem is adjusted if the induced map of fixed point sets induces an

isomorphism in Z2-homology. The problem of converting a normal map

into an adjusted map is basically a question in nonequivariant surgery

theory, and it can be answered using the homology surgery theory

developed by S. Cappell and J. Shaneson [7]. Specifically, the discussion

of §2 yields the following conclusion:

(1.2) Let (/, b, c) be a Z2-normal map, let Fa denote the components of

the fixed point sets of Y, let n{a) be the dimension of Fa, and let πa denote

the fundamental group of Fa. Then there are obstructions

°« e Tn{a){Z[va] - Z2)

such that (/, b, c) can be modified to an adjusted normal map if and only if

all obstructions vanish.

The Γ-groups for homology surgery are those defined by Cappell and

Shaneson in [7].

In some cases not all of the assumptions on (/, b, c) are needed. Some

specific comments in this direction appear in §2.
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The second step in Z2-surgery involves modifications on the comple-

ment of the fixed point set (i.e., the set of free orbits). This process has

been described in [11]; the surgery obstructions arising in that paper need

to be reconsidered in order to accommodate the more general assumptions

here. At this point it is important that there is one fixed point component

of half the ambient dimension. There are two separate cases depending on

whether dim X is congruent to 0 or 2 mod 4.

Let (/, b, c) be an adjusted Z2-normal map whose underlying degree 1

map is / : X -> Y. Denote the dominant components of the fixed point

sets of X and Y by Xo and Yo respectively. By assumption the induced

map f0: XQ -> YQ is a Z2-homology equivalence and consequently has an

odd degree; this degree is well-defined up to sign and will be called d.

THEOREM A O . Let (/, b, c) be an adjusted 4k-dimensional Z2-normal

map as above. Assume that the Borderline Gap Hypothesis applies, both X

and Y are without boundary, and that the dominant components of X and Y

are orientable. Then (/, b, c) is normally cobordant to a pseudoequivalence,

relative to the fixed point sets, if and only if

(i)[sgn(Z2,X)-sgn(Z2,y)] = 0,

(n)(d2-l)sgn(T,Y) = 0.

Here T represents the generator of Z 2 , and the equivariant signature

invariants sgn(Γ, Y) and sgn(Z2, X or Y) are defined in the standard

fashion as in [11]. Theorem Ao was stated and proved in [11] with a simple

connectivity assumption on Xo and Yo.

If the dominant components of the fixed point sets are not orientable

the conclusion is slightly different.

THEOREM A 2 . Let (f,b,c) be an adjusted Ak-dimensional Z2-normal

map as in the preceding theorem, but assume that the dominant components

of X and Y are not orientable and drop the assumption that X and Y are

without boundary. Then (f,b,c) is normally cobordant to a pseudoequiva-

lence, relative to the fixed point sets and boundaries, if and only if

[ s g n ( Z 2 , X ) - s g n ( Z 2 , 7 ) ] = 0.

Special cases of this result were mentioned and used in [12] and [19].

We shall now consider adjusted Z2-normal maps in the (4 k + 2)-

dimensional case. Two invariants are relevant. The first is the Arf in-

variant C(/, b, c) of the ordinary normal map obtained by forgetting the
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involution. To describe the second invariant, make / connected up to the

middle dimension by surgery on the free part. As in [11] it follows that the

only nonvanishing surgery kernel K2k + 1(Y) is free over the group ring

Z[Z 2]. Take the rank of this free module over Z[Z2] and reduce it mod 2.

This invariant is called r(/, b, c), and it turns out to depend only on the

normal cobordism class of the normal map (compare [11], Lemma 3.1,

page 277).

THEOREM B. Let (/, b, c) be an adjusted (4k 4- 2)-dimensional Z2-nor-

mal map, and assume that the Borderline Gap Hypothesis holds. Then

(/, b,c) is normally cobordant to a pseudoequivalence, relative to the fixed

point sets and boundaries, if and only if C(/, b, c) and r(/, b, c) are both

zero.

The proofs of Theorems Ao, A 2, and B will be discussed in §3.

One can also attempt to modify a normal map to an equivariant

homotopy equivalence rather than merely a pseudoequivalence. In this

case each of the induced maps on fixed point components must be

converted into a homotopy equivalence. Consequently, one needs an

additional assumption that the degree of each induced map be ± 1 .

Furthermore, we must also assume that the map on the boundaries is an

equivariant homotopy equivalence. A normal map that satisfies these

restrictions will be called a normal map of type h or an h-normal map. For

normal maps of type h we have the following conclusion:

THEOREM C. Let (/, b, c) be a 2m-dimensional Z2-normal map of type

h satisfying the Borderline Gap Hypothesis. If m is even assume both X and

Y are without boundary. Then (/, b, c) is h-normally cobordant to a

Z 2-homotopy equivalence, relative to the fixed point sets and boundaries, if

and only if

(i) all surgery obstructions σα

Λ(/J e Lh

n{a)(Z[va\wa) are zero,

(ii) [sgn(Z2, X) - sgn(Z2, Y)] = 0 if m is even,

(iii) C(/, b, c) and r(/, b, c) are both zero if m is odd.

In §3 we shall indicate how one can modify the proofs of the

preceding results to establish this theorem. The notation in part (i) is

parallel to that of (1.2), with wa denoting the first Stiefel-Whitney class of

Fa, Lh the obstruction group for surgery up to homotopy equivalence, and

σh the algebraic obstruction for surgery up to homotopy equivalence.
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Similarly, one can attempt to modify a normal map to a simple

equivariant homotopy equivalence in the sense of [17] or [27] rather than

merely an equivariant homotopy equivalence. Equivariant versions of the

s-cobordism theorem (e.g., see [14] or [27]) show that simple Z2-surgery is

very closely related to the classification of smooth Z2-manifolds up to

equivariant diffeomorphism. The appropriate notion of normal map in

this case (i.e., an s-norrnal map) requires still further assumptions. Specifi-

cally, we must also assume the map on the boundaries is a simple

equivariant homotopy equivalence. In this case we have the following

analog of Theorem C:

THEOREM C S . Let (/, b, c) be a 2m-dimensional Z2-normal map of type

s satisfying the Borderline Gap Hypothesis. If m is even assume both X and

Y are without boundary. Then (/, b, c) is ^-normally cobordant to a Z2-sim~

pie homotopy equivalence, relative to the fixed point sets and boundaries, if

and only if

(i) all simple surgery obstructions o^(fa) e Ls

n^(Z[πa],wa) are zero,

(ii) the appropriate condition (ii) or (iii) in the precedisng theorem is

fulfilled.

Notation is basically the same as in Theorem C, with U denoting the

obstruction group for surgery up to simple homotopy equivalence and σs

the algebraic obstruction for surgery up to simple homotopy equivalence.

The results above were stated in simplified forms in order to keep the

discussion relatively uncluttered. In many cases it is possible to obtain

similar results with weaker data. For example, we could consider normal

maps whose codomains are Z2-Poincare duality complexes. In particular,

Theorems A 2 , B, and C generalize. However, Theorem A o uses and

Atiyah-Singer G-signature Theorem and thus requires that Y be smooth.

Comparisons to other equivariant surgery settings

It is instructive to compare the preceding results with the corre-

sponding conclusions under the Gap Hypothesis. The obstructions to

surgery on the fixed point set remain the same, but under the Gap

Hypothesis the surgery obstruction for an adjusted normal map lies in a

Wall group L 2 w(Z[Z 2], w), where w is trivial or nontrivial depending on

whether the involution preserves or reverses orientation. This result is

contained in many treatments of equivariant surgery theory including [13],

[14], and [21].
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Much earlier work of W. Browder and F.Quinn yields a setting for

equivariant surgery in which the Gap Hypothesis need not be assumed but

the normal maps must satisfy some other restrictions [6]. In particular, it

is meaningful to apply the Browder-Quinn theory in the setting of this

paper, and in fact one can show that, within this setting, every Browder-

Quinn surgery problem gives rise to a surgery problem as defined in

(l . la-d) above (compare [15]). It follows that every Browder-Quinn

surgery obstruction determines a well-defined surgery obstruction given

by one of the theorems stated above. The relationship between these

surgery obstructions is discussed in [11] (in particular, see Example 4.13,

page 281).

2. Adjusting maps of fixed point sets. As noted in §1, the first step

in Z2-surgery is an attempt to make the map of fixed point sets into an

equivalence of the appropriate type. This type depends on whether we are

considering surgery up to pseudoequivalence, Z2-homotopy equivalence,

or simple Z2-homotopy equivalence. Although the discussions differ in

details, the overall patterns are similar. In particular, the initial portion is

identical in all three cases.

Let (/, b, c) be a Z2-normal map with /: X -» Y. As in §1 the

underlying components of the fixed point set of Y will be denoted by Fa

and the induced map of fixed point sets will be written as a disjoint union

of maps fa: Ea -> Fa. The conditions on a normal map imply that each Ea

is nonempty and of the same dimension as Fa\ this dimension is denoted

by n(a).
If b: TX -> f*ξ is the Z2-vector bundle map for the given Z2-surgery

problem, then as noted in §1 there is a splitting of b\Ea into ba( + ) θ

ba( — ) corresponding to the eigenspaces of ± 1 . The pair (/α, 6α( + )) is

then a normal map in the usual nonequivariant sense. By assumption its

degree da is ± 1 for surgery up to Z2-homotopy equivalence or simple

Z2-homotopy equivalence, and the degree is odd for surgery up to

pseudoequivalence (compare [4]).

The study of the map of fixed point sets splits naturally into the study

of the individual normal maps (/α, ba( + )) and therefore when convenient

we shall concentrate on some fixed but arbitrary component Fa.

At this point the discussion separates into the three individual cases.

Since the treatments for surgery up to Z2-homotopy equivalence (both

ordinary and simple) are the most standard, we shall consider them first.

For surgery up to (ordinary or simple) Z2-homotopy equivalence, the

goal is to modify the map of fixed point sets into an ordinary or simple

homotopy equivalence respectively. The fundamental results of surgery
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theory imply this is possible if certain surgery obstructions

are zero, where B = h for homotopy equivalence and B = s for simple

homotopy equivalence. Strictly speaking, we must have n(a) > 5 to apply

surgery theory. However, our definitions stipulate that fa be an ordinary

or simple homotopy equivalence in dimensions less than 5, and conse-

quently the conclusion in lower dimensions is trivially true by our choice

of definition.

For surgery up to pseudoequivalence, the goal is to modify the map of

fixed point sets into a Z2-homology equivalence. If the degree da of fa is

± 1, then results of Cappell and Shaneson [7] state that (/α, ba{ +)) can be

modified to a Z2-homology equivalence if and only if an algebraic surgery

obstruction

vanishes. The appropriate homomorphism from Z[πJ to Z 2 is the aug-

mentation sending each group element to 1. Definitions of the Γ-groups

may be found in [7], §§1 and 2 (especially pages 285-288 and following

Proposition 2.1 on page 296).

In order to treat maps fa whose degrees da are odd integers but not

± 1, we need the following observation:

(2.1) (compare the Theorem on page 284 of [7]). Let (7 ,37) be a

manifold pair with πλ(Y) = π and n = dim Y > 5. Let Λ be a ring with

involution and

F:Z[ττ] -* Λ

a local epimorphism of rings with involution. Let (/, 6) be a normal map

into ( 7 , 9 7 ) such that the degree d is a unit in Λ and the induced map on

the boundary is a A-homology equivalence. Then (f,b) determines an

element σ(/, b) G Tn(F), and this element vanishes if and only if (/, b) is

normally cobordant, relative the boundary, to a A-homology equivalence.

The proof of this result is nearly identical to the proof in [7] for the

case da= ± 1 . Of course, a few additional remarks are needed. There is

no problem making the domain connected; this can be done by adding

1-handles to form connected sums exactly as in the degree 1 case. On the

other hand, the usual arguments for making a map 1-connected require

some modifications. Degree 1 maps of connected manifolds always induce

surjections of fundamental groups, but the corresponding statement for
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maps of higher degree is generally false. However, even in these cases one

can perform low-dimensional surgery to make the domain connected and

the map of fundamental groups bijective (compare [15]). Let Cd denote

the Serre class of abelian groups whose tensor products with Z[d~ι] are

trivial. One can then proceed to make the normal map highly connected

mod Cd as in the first three sections of [7], the main change being the need

to use the m o d Q relative Hurewicz Theorem rather than the standard

relative Hurewicz Theorem. The algebra involving Λ-homology becomes

formally the same as in [7] provided the degree d is a unit in Λ; for

example, the relative homology with local coefficients in Λ vanishes

except in the middle dimension(s). The middle dimensional surgery kernels

with coefficients in Λ may now be studied exactly as in [7]. One easy way

to see this (suggested by S. Weinberger) is to replace the fundamental

class of ( 7 , 3 7 ) with d~ι times the usual fundamental class. With this

convention the given degree d normal map / induces a degree 1 map in

Λ-homology and the discussion in the first chapter of [7] applies word for

word.

As in the other cases, one cannot apply the results and methods of [7]

directly if n(a) < 4, but on the other hand our definitions require that fa

be a homology equivalence in these dimensions, and consequently the

conclusion in lower dimensions is once again a tautology by our choice of

definition.

It now follows that the induced map of fixed point sets can be

converted into an equivalence of the appropriate type if and only if the

corresponding surgery obstructions σa are all zero. However, we need

something stronger; namely, the Z2-normal map (f,b,c) is Z2-normally

cobordant to an adjusted map if and only if the obstructions σa are all zero.

This will be a consequence of the preceding discussion and the following

normal cobordism extension theorem:

THEOREM 2.2. Let (/, b, c) be a Z2-normal map with domain X, and

let (F\ B') be a disjoint union of normal cobordisms with domain V and

d0F' = Fix(/). Then there is a Z2-normal cobordism (F,B,C) such that

d0F = fand¥ix(F) = F\

Derivation of (1.2) from Theorem 2.2. Suppose that the σa all vanish.

Then one can construct a map F' as above with dxF' an equivalence.

Take F to be an extension of Fr as given by Theorem 2.2. Then F defines

a Z2-normal cobordism from / to an adjusted Z2-normal map 3 ^ .

Proof of 2.2. The basic idea is fairly standard (compare Browder [4],

pp. 716-717). Let V denote the cobordism on which Fr is defined.
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Observe that the equivariant normal bundle of d0V in X is identified with
/*τj via c, and this vector bundle extends to a vector bundle ω = F'*η
over V. If we denote the disk and sphere bundles for a vector bundle γ by
D(y) and S(y) respectively, then it follows that

9D(ω) = S(ω) U D(ω\d0V) U D{ω\^V).

By construction ω0 = ω | d0V is the normal bundle f*η.
From the locally linear Z2-manifold

W0 = Xx[-l,0] UD(ω),

where D(ω0) c 3Z)(ω) is identified (equivariantly!) with a closed tubular
neighborhood of d0V in XX {0} via c. The manifold Wo is in fact a
smooth Z2-manifold with corners, and by a standard argument as in [10]
these corners may be rounded to produce a smooth approximation W that
is piecewise differentiably isomorphic to Wo (see Figure 1 below).

Since I X {0} U F is an equivariant strong deformation retract of
Wo and W, it is fairly straightforward to extend the data

(f9b,c)u(F'9B')

to a Z2-normal bordism (F,B,C). The upper end of this bordism has
domain

(X X {0} - IntZ>(ω0)) U S(ω) U D(ω\dxV)

and fixed point set dxV. By construction the restriction of the bordism to
the fixed point set is precisely F'.

y

rounded

Ix[-l,O]

FIGURE 1
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Relative version of (1.2)

In some cases it is possible to do without some of the usual data. For
example, suppose there is a set B of components Fβ such that each map fβ

is an equivalence of the desired type. Then it is not necessary to have the
unstable bundle data cβ for J 8 E B . In this case one still has surgery
obstructions oa for a not in B, and a normal map is normally cobordant
to an adjusted map, relative to the boundaries and the components in B,
if and only if these obstructions vanish.

3. Surgery on the free part. Once a Z2-normal map has been
modified to be an equivalence on the fixed point set, the next step is to
attempt surgery on the complement (i.e., the free part of the Z2-manifold)
such that the original map on the fixed point sets is left unchanged.
Throughout this section we assume that the Borderline Gap Hypothesis
holds.

Let (f,b,c) be an adjusted Z2-normal map. One can do surgery
below the middle dimension exactly as in [11] to make / connected up to
the middle dimension of the underlying manifolds X and Y. If this
dimension is 2m, then the only surgery kernel that can be nonzero is in
dimension m, and this kernel is a free Z[Z2]-module.

The kernel Km has two associated forms; namely, the (-l)w-Hermi-
tian intersection form λ and the quadratic self-intersection form μ. The
basic algebraic properties of the quasi-Hermitian form (K, λ, μ) are listed
on pages 268-269 of [11]; these are similar to the properties of a
Hermitian form as defined by Wall [30], but the associated form x Π Ty
over the integers need not be even. The results of [11] show that the Witt
classes of these forms are completely characterized by

(i) the equivariant signature if m is even (see [11], Theorem 2.3, page
274),

(ii) the Arf invariant and the mod 2 rank over the group ring if m is odd
(see [11], Theorem 4.3, page 281).

A quasi-Hermitian form represents the zero Witt class if and only if
there is a free submodule N such that λ and μ both vanish on N and
furthermore N is its own orthogonal complement. Following Wall [30] we
shall call such a submodule a subkernel.

Suppose now that (Km,λ,μ) represents the zero Witt class. The
standard techniques of surgery theory allow us to represent a basis of the
free submodule N by embedded spheres. One would like to do surgery on
these classes in order to kill Km as in [28]. However, in order to do this we
must know that the embedded spheres miss the fixed point set of X. The
results of [11] show that one can find such embedded spheres if the
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dominant components of the fixed point sets are orientable. This im-

mediately yields Theorem A o and also Theorem B when the dominant

components of the fixed point sets are orientable. The following well-known

version of the Whitney trick supplies the information needed when the

dominant components are not orientable.

LEMMA 3.1. Let X be a simply connected Im-dimensional manifold and

F an m-dimensional nonorientable submanifold of X, where m > 3. Let j be

an embedding of Sm in X intersecting F transversely. Then the embedding] is

regularly homotopic to an embedding j λ disjoint from F if and only if the

image ofj intersects F in an even number of points.

Let x G Km be represented by an embedding j of Sm. It is easy to

compute the mod 2 number of intersection points in j(Sm) Π F. Let T be

the generator for Z 2 , and approximate j by a smooth embedding that is

also transverse to Tj. Away from the fixed point set the intersection points

for j(Sm) and Tj(Sm) appear in pairs, and thus we obtain the following

conclusion:

(3.2) The mod2 intersection number of F and j(Sm) is given by

λ(x, Tx) mod2.

Proofs of Theorems A 2 and B (nonorientable case).

In either case the geometric information implies that the Witt class of

the quasi-Hermitian form (Km, λ,μ) is zero. Thus we have an algebraic

subkernel N inside Km. Choose a free basis of N> say {el9...,ek}, and

represent the et by smooth embeddings gt. Since λ(e / ? 7e;) = 0, the

preceding discussion implies that the gt may be chosen so that their

images are disjoint from F. The conditions on N also imply that the

images of gi and gj may be chosen to be disjoint if / Φ j , and furthermore

the images of g, and Tgj may be chosen to be disjoint for all / and j .

Therefore we may apply the standard techniques of surgery theory to the

embeddings gi and their translates under Γ; if one performs surgery

equivariantly along these classes, the standard results of surgery theory

imply that the modified map has zero surgery kernel in the middle

dimension and is therefore a homotopy equivalence.

Proofs of Theorems C and C s.

The argument for Theorem C is similar to the proofs of Theorems A o,

A 2 , and B. By Theorem 2.2 an h-normal map is equivalent to an

h-adjusted map if and only if the homotopy surgery obstructions of the fa

all vanish. The preceding discussion of adjusted maps dealt exclusively
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with surgery steps that are disjoint from the fixed point set, and therefore
the vanishing of these obstructions is sufficient to modify an adjusted
h-normal map so that it induces homotopy equivalences on both the fixed
point sets and the ambient Z2-manifolds. Since the basic results in
equivariant homotopy theory imply that such a map is an equivariant
homotopy equivalence (compare [3], Corollary 5.5, p. 11.12), this con-
cludes the proof.

The same sort of argument also proves Theorem Cs. By Theorem 2.2
an s-normal map is equivalent to an s-adjusted map if and only if the
simple homotopy surgery obstructions of the fa all vanish. As in the proof
of Theorem C, the vanishing conditions are sufficient to modify an
adjusted s-normal map so that it induces simple homotopy equivalences
on the fixed point set components and a pseudoequivalence on the
ambient Z2-manifolds. Since the Whitehead group of Z2 is trivial, the
modified map is a simple equivariant homotopy equivalence by the
standard algebraic splitting of equivariant Whitehead groups (compare
[17] and [27]).

4. Unstable data and the borderline gap hypothesis. In [11] the
definition of a Z2-normal map does not include the unstable data given by
c. It is also possible to prove versions of the main results of this paper
without using c if either the Gap Hypothesis or the Borderline Gap
Hypothesis holds. An examination of §§1-3 shows that c is only needed
in the proof of Theorem 2.2. The argument in [11], paragraph 1.1, page
272, provides an alternate approach that yields (1.2) of this paper without
using c or Theorem 2.2. Thus it is natural to ask if the information carried
by c is redundant. In this section we shall show that a degree 1 map / and
a stable bundle map b almost always yield a choice for the unstable data c
under the Gap Hypothesis or Borderline Gap Hypothesis (see Theorem
4.2 below); furthermore, this choice is almost always unique if the Gap
Hypothesis holds. In fact, the equivariant surgery obstructions only de-
pend on a portion of the unstable data, and following Dovermann and
Rothenberg [14] we formalize this by defining unstable data with de-
ficiency. Under the Gap Hypothesis or the Borderline Gap Hypothesis
there is a unique choice of unstable data with deficiency, and this fact is
implicit in [11], paragraph 1.1, page 272.

Although the information carried by unstable data is redundant for
many of our purposes, it seems worthwhile to retain the extra structure for
several reasons. First, one needs unstable data to define a notion of
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equivariant normal map that has a purely homotopy-theoretic interpreta-

tion (compare the comments in §1). Second, suitable unstable data cannot

always be found if the Gap Hypothesis and the Bounded Gap Hypothesis

fail to hold, and the same applies for unstable data with deficiency.

Further analyses of Z2-surgery obstructions without such hypotheses will

almost certainly rely more heavily on the homotopy-theoretic invariants of

Z2-normal maps, and therefore it seems highly advisable to retain the

unstable data c for the sake of uniformity. Additional reasons for discuss-

ing unstable data explicitly are mentioned at the end of this section.

We shall begin by considering the existence and uniqueness of unsta-

ble data c associated to a map / and stable bundle data b. Both the

existence of a choice for c and the classification of all possible choices

reduce to standard questions in homotopy theory. In order to state the

basic results, we need a substantial amount of notation. As in §1, let /:

X -> Y be an equivariant map between two smooth Z2-manifolds, b:

TX -»/*£ a vector bundle isomorphism covering the identity on X, Fa

the components of the fixed point sets of 7, and Ea the union of all

components of the fixed point set of X that are mapped into Fa by /. The

map induced by / from Ea to Fa will be called fa. Furthermore, split the

restriction ba of b to Ea into a direct sum ba( 4-) Θ ba( —), corresponding

to the eigenspaces of ± 1, and define NEa to be the normal bundle of Ea

in X. If γ is an m-dimensional vector bundle over a space B, let Prin(γ)

denote the associated principal bundle of orthonormal w-frames with

respect to some Riemannian metric.

Let q{a) be the dimension of NEa9 and let q(a) + s(a) denote

the fiber dimension for the domain and codomain of ba( —). It follows

that ba(-) induces an C^(α)+5(α)-equivariant map of principal bundles

that we shall call Ba( —). There is a natural inclusion of Fήn(NEa) in

Pήn(NEa Θ Rs) given by sending a #-frame V = (υv ..., vq) to

( υ l 9 . . . , υq; el9..., es) for some orthonormal basis (ev..., es) of Rs. This

map is equivariant with respect to the natural action of Oq{a) on the

domain and the action on the codomain induced by restriction to the

standardly embedded copy of Oq{a) in Oq{a)+S^a). Let B'a denote the

restriction of Ba( — ) to T?ήn(NEa). Standard theorems on equivariant

maps (compare Cartan [8], Heller [16]) imply that Ba( — ) corresponds to a

lifting B* of the associated fiber bundle

( - ) ) X *«<«)) Mn(NEa) - Fa.
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Let ψ* be the induced bundle of ψα under the canonical projection from
the mapping cylinder of fa to Fa. It follows that B* determines a section
of ψ* restricted to Ea viewed as a subspace of the mapping cylinder

Cyl(/J.
Let

Pa: P r i n ( U - ) ) X*<,<«)) Pήn(NEa) -> P r i n ( U + ))/<>(<?(«))

be the canonical map induced by projection onto the first factor, and let

be the fiber bundle projection determined by the principal Oq(Oί)+s(a)-bun-
dle. Observe that the fiber of this bundle is the Stiefel manifold
°q{a)+S{a)/°q{ay I n analogy with the preceding paragraph let ω* be the
induced bundle of ωa under the canonical projection from the mapping
cylinder of fa to Fa. It then follows that the composite map paB*
determines a section of co* restricted to Ea viewed as a subspace of the
mapping cylinder Cyl(/Λ).

We can now state the homotopy-theoretic criteria for the existence of
the unstable data ca over some arbitrary Fa and also the classification of
all such choices up to equivalence.

PROPOSITION 4.1. In the notation developed above, there is a 1-1
correspondence between equivalence classes of pairs (cay ca) as in the defini-
tion of Z2-normal map and relative homotopy classes of cross sections of ω*
that agree with ρaB* on Ea c Cyl(/J.

This result is a routine consequence of standard results on the
reducibility of the structure group of a principal 0^+5-bundle to an
6^-bundle (once again see Cartan [8] or Heller [16]).

It follows that one can define homotopy-theoretic obstructions to the
existence of ca with values in the cohomology groups

H'(Cy\(fa), Ea; ^ ( O ^ ^ / O ^ ) ) ;

in general these cohomology groups involve twisted coefficients (as in all
obstruction-theoretic problems). Given two choices ca and c'a one has
corresponding obstructions to the equivalence of these choices with coeffi-
cients in 77, rather than mi_v These lead to the following sufficient
conditions for the existence and uniqueness of ca\

PROPOSITION 4.2. Let f: X -> 7, b: TX^f*ζ, Fa, Ea, fa be as
described in the second paragraph of this section. Denote the dimensions of Y
and Fa by m and n(a) respectively.



EQUIVARIANT SURGERY PROBLEMS 291

(i) Ifn(a) < \m then one can find unstable data ca over the component

Fa9 and if n{ά) < \{m — 1) there is a unique choice for such data up to

equivalence.

(ii) Ifn(a) = \m then one can find unstable data ca over the component

Fa under any of the following conditions:

(a) m is congruent to 2 mod 4.

(b) Fa is nonorientable.

(c) The degree offa is 1.

In each of the cases described above, the obstructions lie in cohomol-

ogy groups that are automatically zero. It follows immediately that one

can always find unstable data ca whenever the Gap Hypothesis holds.

If the Borderline Gap Hypothesis holds, then Proposition 4.2 implies

that unstable bundle data can be found over all fixed point components

except perhaps the dominant component. Furthermore, data can also be

found for the latter except perhaps when m is divisible by 4, the dominant

component is orientable, and the degree of the map of dominant compo-

nents has absolulte value greater than 1. In particular, one can always find

unstable data in the settings of Theorems A o , A 2 , B, C, and Co. On the

other hand, even if none of conditions (a)-(c) is valid, it is still possible to

describe the obstruction to the existence of unstable data over the domi-

nant component very simply.

PROPOSITION 4.3. In the preceding notation, assume that the Borderline

Gap Hypothesis holds but conditions (a)-(c) above do not hold. Then

unstable data ca can be constructed over the dominant component if and only

if the Euler class of the normal bundle NEa is divisible by the degree da of

the map fa.

The necessity of this condition is immediate, for if ca exists then NEa

is the pullback of some bundle under fa. To see sufficiency, use the fact

that the Euler class defines the primary obstruction to lifting from BSO to

Unstable data and values of surgery obstructions

In general there are several choices of c that make (/, b, c) into a

normal map. If either the Gap Hypothesis or the Borderline Gap Hy-

pothesis holds, one can use the methods of James and Thomas [18],

Sutherland [29], or Becker [2] to find reasonable homotopy-theoretic
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invariants that classify the different choices up to equivalence. It is natural
to ask if the equivariant surgery obstructions depend upon the choice of c.
In the remainder of this section we shall develop machinery to show that
the obstructions are in fact independent of c provided the Gap Hypothe-
sis or the Borderline Gap Hypothesis holds. The key step is to define a
slight weakening of unstable bundle data.

Unstable data with deficiencies

We wish to consider unstable data that is defined on only a portion of
the fixed point set. In order to do this we need to describe the sorts of
subsets on which the unstable data need not be defined. First, we shall
only consider closed Z2-invariant subsets of locally linear Z2-manifolds
that are unions of locally linear Z2-submanifolds and whose intersections
with all components of the fixed point sets are submanifolds. If the
ambient manifold has a boundary, we assume the submanifolds are
properly embedded (boundary to boundary and interior to interior). Such
a union of submanifolds will be called a geometric Z2~variety. Given a
locally linear Z2-manifold M without boundary, we shall say that a
geometric Z2-variety P is saturating (or saturates M) if for each compact
component C of the fixed point set the intersection P Π C is nonempty.
We shall say that P is ksaturating if in addition the inclusion of P c C
is ^-connected (hence saturating means O-saturating).

Let /: X -> Y be a degree 1 map and let b be stable bundle data for
/ as in the preceding discussion. Following the ideas of [14], we define
unstable data with deficiency k to consist of a ^-saturating geometric
variety PXQ X with dimension at most k, a (fc-l)-saturating geometric
variety Rγ c Y with dimension at most ( / : - ! ) , a family of vector
bundles ηa over the Fa — Rγ, and vector bundle isomorphisms ca =
(ca/ca) defined over the sets Ea — Px. Two such objects {PX9ca} and
{P'X9 c'a) are said to be equivalent if there is a bundle isomorphism over
the Fa such that the vector bundle morphisms agree over the complement
of some Qx containing both Px and Px.

REMARK. If fa is the induced map from Ea to Fa9 then by obstruction
theory there is a unique factorization of fa | Ea — Px through Fa — Rγ up
to homotopy, at least if the codimension of Px Π Ea is at least three.
Since in most cases the dimension of Px will be at most 2 and the
dimension of Ea will be at least 5, this factorization exists in all cases of
interest to us in this paper. We shall denote this factorization of fa\Ea~
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Suppose now that (F9 B) gives a cobordism from (/0, b0) to (/1? bx)9

and let (Pn ct) denote unstable data with deficiency k for (/., bt\ where
/ = 0,1. The appropriate notion of cobordism for (Pi9 ct) is a pair (£?, C),
where Q is a /^-saturating geometric variety of dimension H I and C is
unstable data for (F,B), such that the restrictions to the ends of the
cobordism are unstable data of deficiency k and are equivalent to the
(P/9 Cy). (Technical note: If we would insist upon (k + l)-saturation for Q,
the product of data with the unit interval would not necessarily be a
cobordism.)

We define a Z2-normal map with A -dimensional deficiency to be a
triple (/, b, d), where / is a degree one map, b is stable bundle data for /,
and d is an equivalence class of unstable data with ^-dimensional
deficiency. Cobordisms of such objects are defined analogously. If k < kf

then there is an obvious forgetful morphism from normal maps with
A>dimensional deficiency to those with k '-dimensional deficiency, and of
course there are consistent forgetful morphisms from ordinary normal
maps to normal maps with deficiencies. The next result says that equiv-
ariant surgery theory goes through for normal maps with deficiencies
provided the dimensions of the deficiencies are not too large.

PROPOSITION 4.4. The conclusions of Theorems Ao, A2, B, C, and C8

all remain valid if we replace normal maps by normal maps with k-dimen-

sional deficiencies, provided k is less than half the dimension of each Fa for

which fa is not known to be an equivalence.

Proof. (Sketch) If we do surgery on fa through the middle dimension,
by general position we can always choose the embedded spheres to miss
the geometric variety on which the unstable data are not defined. Thus for
each relevant component Fa the surgery cobordism over Fa is a product
over some neighborhood of P Π Ea. Using this and the unstable bundle
data on the complement of P one can establish a relative version of the
Normal Cobordism Extension Theorem 2.2. This provides all one needs to
generalize the proof of (1.2), which deals with the obstructions to doing
surgery on the fixed point set; one can proceed similarly to study surgery
on the fixed point set for equivariant normal maps of type h or s. It
remains to consider possible differences involving equivariant surgery on
the complement of the fixed point set. But the entire discussion of this
topic in §3 does not use the unstable data at all, and therefore the
treatment of surgery on the free part goes through unchanged.

Proposition 4.4 implies that equivariant surgery obstructions only
depend upon the restriction of unstable data to the complement of a



294 KARL HEINZ DOVERMANN AND REINHARD SCHULTZ

1-saturating geometric variety. If for some reason we know that one
always has unique unstable data with 1-dimensional deficiency for some
class of equivariant surgery problems, then it will follow that unstable
data is not needed to define equivariant obstructions for all problems
within this class. The next result proves a uniqueness theorem of this type
provided either the Gap Hypothesis or the Borderline Gap Hypothesis
holds.

THEOREM 4.5. Let (f,b) be a degree 1 map and associated stable
bundle data b, and assume either the Gap Hypothesis or the Borderline Gap
Hypothesis. Then up to homotopy and equivalence there is a unique choice of
unstable bundle data with l-dimensional deficiency.

Proof. (Sketch) We begin with some general considerations. If P is a
^-saturating geometric variety for Ea and

Ff — F — P

then by duality and the ^-connectivity of the inclusion EaΓ\ P c Ea we
know that the cohomology groups of E'a vanish in dimensions greater
than d(ά) — k — 1, where d(a) is the dimension of Ea. This is true for
twisted as well as untwisted coefficients. A similar conclusion holds with
R replacing P, (k - 1) replacing k, and Fa replacing Ea. Denote the
complement of R in Fa by F£.

Let /α' be the factorization of fa | Ea through F£ discussed previously,
and let n be the dimension of X and Y. By the remarks following
Proposition 4.1 it suffices to show that the obstruction groups

^'•(Cyl(Λ'), E'a;*,_u{O/On_d(a)))

are zero for all values of i and u = 0,1. Since d(a) < (n/2), the coeffi-
cients vanish unless i = d(a) 4- 0 or 1. But for these choices of i we know
that the (/ — l)-dimensional cohomology groups of E'a and the /-dimen-
sional cohomology groups of Fα' vanish by the discussion in the preceding
paragraph, and therefore the relative cohomology groups vanish by exact-
ness. One has an exact sequence even if the coefficients happen to
be twisted because the twistings are given by the homomorphisms of
πι(Ea or Fa) into Z 2 = Aut(Z), and fa is compatible with these maps.

Final remarks

One can also consider equivariant surgery problems for piecewise
linear and topological involutions satisfying local linearity; in other words,
each orbit has an invariant neighborhood that is equivariantly (piecewise
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linearly or topologically) equivalent to the total space of a G-vector
bundle over that orbit. In particular, equivariant surgery on such G-mani-
folds is studied in papers of Dovermann and Rothenberg [14] in the
topological category and Madsen and Rothenberg [22, 23] in the piecewise
linear category when the Gap Hypothesis holds. As one would expect,
these theories have many of the same formal properties as G-surgery
theory for smooth G-manifolds. However, the results of Madsen and
Rothenberg imply that for G = Z 2 the analog of Theorem 4.5 fails
systematically in both the piecewise linear and topological categories
(compare [ 23], Section 4, especially Corollary 4.4). Specifically, if V and
W are representations of the group G = Z 2 and CATC denotes the
appropriate group of CAT-equivariant automorphisms of the associated
unit sphere, then there are no dimension conditions on V that yield good
connectivity properties for the join map from CATG( V) to CATG( V θ W).
Thus in the nonsmooth categories one cannot expect to retrieve unstable
data for PL or topological Z2-surgery from the stable data under an
assumption such as the Gap Hypothesis.

Incidentally, the failure of PL and topological bundle stability is
basically unique to the prime 2. If p is an odd prime and CAT refers to
either the PL or topological category, then Z^-CAT bundle theory has
extraordinarily good stability properties resembling those of the classical
linear groups and the nonequivariant CAT bundle theories. These results
are a central feature in the machinery of Madsen and Rothenberg;
specifically, the case G = Zp is treated in [22b], §3, for the piecewise
linear category and [22c], §7, for the topological category.

In a very precise sense this contrast between p = 2 and p odd can be
seen by comparing the desuspension results for free PL and topological
Z^-actions on spheres in the cases p = 2 and p odd (for background
information see [30], Chapter 14A, especially the paragraph beginning on
page 184 and continuing to page 185). If p is odd, then free Zp~actions
usually have unique desuspensions (compare [30], Corollary, page 219),
but if p = 2 then this need not be true (compare [30], Theorem 14D.4,
page 200). The results of [22b-c] on stability may be viewed as multi-
parameter generalizations of the earlier results on desuspensions in [30].
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