APPROXIMATION OF PRIME ELEMENTS IN DIVISION ALGEBRAS OVER LOCAL FIELDS AND UNITARY REPRESENTATIONS OF THE MULTIPLICATIVE GROUP

Lawrence Corwin

Abstract

Let K be a locally compact, non-Archimedean field of residual characteristic p, and let D be a central division algebra of dimension n^{2} over K. In constructing the irreducible unitary representations of D^{\times}, a technical question repeatedly arises. Let $x \in D$, and let x_{1} be "close" to x (in the sense that, for the usual absolute value on $D,\left|x-x_{1}\right|<|x|$). Let $D_{x}, D_{x_{1}}$ be the subalgebras of elements commuting with x, x_{1} respectively. Is it possible to pick a prime element $\eta_{1} \in D_{x_{1}}$ and an element $\eta_{0} \in D_{x}$ that are also close, and how close can η, η_{1} be to one another? The first part of this paper analyzes this problem. It turns out that η, η_{1} can be chosen close enough to one another so that CliffordMackey theory easily permits the construction of $\left(D^{x}\right)^{\wedge}$ only if $p^{2}=n$ or $p^{2} \mid n$. The construction has been given in earlier papers except for the case where $p \mid n, p \neq n$, and $p^{2} \mid n$; the second part of the paper is a construction of $\left(D^{x}\right)^{\wedge}$ in this remaining case.

We recall some details of the construction of $\left(D^{x}\right)^{\wedge}$. Let π be a prime of K, and let K_{n} be an unramified extension of K of degree n, embedded in D. One can choose a prime $\eta \in D$ such that $\eta^{n}=\pi$ and conjugation by P is an automorphism of K_{n} generating $\operatorname{Gal}\left(K_{n} / K\right)$. We write $\eta a \eta^{-1}=a^{\sigma}, a \in K_{n} ; \sigma \in \operatorname{Gal}\left(K_{n} / K\right)$ is the Hasse invariant of D up to isomorphism. (See [11] for these and other unreferenced facts about division algebras.) Let R be the group of roots of unity in K_{n} of order prime to p; let $O=O_{D}$ be the ring of integers in D, and let $P=\eta O$ be the prime ideal in O. Then one has

$$
D^{\times}=U\langle\eta\rangle, \quad U=(1+P) R,
$$

where U is the group of units of O, the products are semidirect products, and the first subgroup is normal. The main step in computing the irreducible representations of D^{\times}is that of computing the irreducibles of $G=1+P$, and it is on this step that we concentrate. The general idea is this: a representation π_{0} of G will be trivial on some normal subgroup $\left(1+P^{m+1}\right)$ of G. Choose m as small as possible; for convenience of exposition, assume m odd, and let $2 m^{\prime}=m+1$. Then π_{0} is a representation of $G /\left(1+P^{m+1}\right)$, and $\left(1+P^{m^{\prime}}\right) /\left(1+P^{m+1}\right)$ is an Abelian sub-
group. Furthermore, $\left(1+P^{m^{\prime}}\right) /\left(1+P^{m+1}\right) \cong P^{m^{\prime}} / P^{m+1}$ via the map $1+y \rightarrow y$. In this way, $\pi_{0} \mid\left(1+P^{m^{\prime}}\right)$ can be regarded as a direct sum of (1-dimensional) characters of $P^{m^{\prime}}$, all trivial on P^{m+1}. To describe these characters, let χ be an additive character of K that is trivial on $P \cap K$ but nontrivial on $O \cap K$; for $x \in D$, let $\chi_{x}(y)=\chi\left(\operatorname{Tr}_{D / K}(x y)\right)$. Then every character on D is of the form χ_{x} for some $x \in D ;\left(P^{m+1}\right)^{\perp}=\left\{\chi_{x}\right.$: $\left.x \in P^{-m}\right\}$, and restricting to $P^{m^{\prime}}$ means that x is determined only $\bmod P^{-m^{\prime}+1}$. Given π_{0}, we thus get $x\left(\bmod P^{-m^{\prime}+1}\right.$, and up to conjugation
 becomes a problem in Mackey (or Clifford) theory.

It is here that the relation between n and p becomes important. One needs to determine the $w \in G$ for which $\chi_{x}\left(w y w^{-1}\right)=\chi_{x}(y)$ for all $y \in 1+P^{m^{\prime}}$. It is easy to see that w satisfies this condition iff w commutes with x mod some sufficiently high power of P. In the tamely ramified case and in the case $n=p$, one can arrange to have w and x commute; this simplifies matters. (See [1], [5], [4], [3], and [10] for details and further results.) For $n=p^{2}$, however, matters are less simple. The problem is that one can pick elements $x \in D$ such that $[K(x): K]=p^{2}$, but such that $K(x)$ contains no extension of degree p over K. However, it may be possible to choose x_{1} such that $\left[K\left(x_{1}\right): K\right]=p$, and x and x_{1} agree modulo some moderately high power of P. Certain elements commuting with x_{1} commute with χ_{x} and not with any element in $K(x) \sim K$. In [2], this problem was handled by showing that in the division algebras $D_{x_{1}}, D_{x}$ of elements commuting with x_{1}, x respectively, one could find prime elements η_{1}, η_{0} respectively that were congruent mod some moderately high power of P; thereafter, the analysis could proceed roughly as before.

It is therefore useful to consider the following type of approximation question: suppose that $x \in P^{j_{0}} \sim P^{j_{0}+1}$, and suppose that $x_{1} \equiv x \bmod P^{j_{1}}$, $j_{1}>j_{0}$. Let $D_{x}, D_{x_{1}}$ be the division algebras of elements in D commuting with x, x_{1} respectively. How close to one another can one choose an element $\eta_{0} \in D_{x}$ and a prime element $\eta_{1} \in D_{x_{1}}$? This is the topic of the first half of this paper. It turns out, unsurprisingly, that the difficulties arise primarily with wild ramification; much of the analysis, therefore, deals with the case of totally wildly ramified extensions, and the notation for this part $(\S \S 2,3)$ is somewhat different from the notation in other sections.

The results are rather negative; they show that the methods of [2] apply directly only to the cases $p^{2} \mid n$ and $p^{2}=n$. (One needs to replace $\boldsymbol{P}^{s_{j+1}-s_{J}}$ in Theorem 4.2 by $\boldsymbol{P}^{s_{j+1}-s_{1}}$ to use these methods, and in general that is impossible.) In the second part of this paper, we construct the
irreducible representations for the case $n=p n_{0}$, with n_{0} prime to p. The cases $(n, p)=1$ and $n=p^{2}$ have previously been treated, as noted earlier.

Part I. Approximation Theorems

2. Some results on finite fields. Let k be a finite field of characteristic p; for each integer $r \geq 0$, denote by k_{r} the extension field with $\left[k_{r}: k\right]=p^{r}$. In particular, $k_{0}=k$. Fix $n \geq 1$; we shall be interested primarily in the k_{r} with $r \leq n$. Let σ generate $\operatorname{Gal}\left(k_{n} / k\right.$). Write $\operatorname{Tr}_{i / j}$ for $\operatorname{Tr}_{k_{1} / k,}($ if $i \geq j$), and write Tr_{i} for $\mathrm{Tr}_{t / 0}$; write $N_{i / j}, N_{l}$ for the corresponding norm maps.

Proposition 2.1. (a) There exist elements $\alpha_{1}, \ldots, \alpha_{n} \in k_{n}$ such that

$$
\begin{equation*}
\alpha_{r}^{\sigma}-\alpha_{r}=\prod_{i=1}^{r-1} \alpha_{i}^{p-1}, \quad 1 \leq r \leq n\left(\text { and } \alpha_{1}^{\sigma}-\alpha_{1}=1\right) ; \tag{2.1}
\end{equation*}
$$

moreover, $k_{r}=k\left(\alpha_{1}, \ldots, \alpha_{r}\right)=k\left(\alpha_{r}\right)$.
(b) For $0 \leq j<p^{n}$, define $\beta_{j}=\beta(j)$ by

$$
\beta_{j}=\prod_{i=1}^{r} \alpha_{i}^{m_{1}}, \quad \text { where } \sum_{i=1}^{r} m_{i} p^{i-1}=j ; \quad \beta_{0}=1
$$

Then the β_{j} with $j<p^{r}$ give a vector space basis for k_{r} / k.
(c) Let V_{j}, be the vector space spanned by the β_{i} with $i<j$; in particular, $V_{0}=\{0\}$. Then for all $j \geq 1$, there is a nonzero $c \in \mathbf{F}_{p}$ (the prime field) such that

$$
\beta_{j}^{\sigma}-\beta_{j}-c \beta_{j-1} \in V_{J-1} .
$$

(d) $\operatorname{Tr}_{m}\left(\beta_{p^{m}-1}\right)=(-1)^{m} ;$ for $j<p^{m-1}, \operatorname{Tr}_{m}\left(\beta_{j}\right)=0$.

Proof. We proceed by induction on n.
(1) Let $n=1$. As $\operatorname{Tr}_{1} 1=0$, there exists $\alpha_{1} \in k_{1}$ with $\alpha_{1}^{\sigma}-\alpha_{1}=1$. Then $\alpha_{1} \notin k_{0}$, the fixed field of σ, and we must have $k_{0}\left(\alpha_{1}\right)=k_{1}$. Now (a) and (b) follow. For (c) and (d), we use the formula

$$
\begin{equation*}
\left(\alpha_{1}^{j}\right)^{\sigma}=\left(\alpha_{1}+1\right)^{j}=\alpha_{1}^{j}+j \alpha_{1}^{\prime-1}+\sum_{i=2}^{j}\binom{j}{i} \alpha_{1}^{j-i} . \tag{2.2}
\end{equation*}
$$

Now (c) follows immediately; just let $j=1,2, \ldots, p-1$. As

$$
j \alpha_{1}^{j-1} \equiv\left(\alpha_{1}^{j}\right)^{\sigma}-\alpha_{1}^{j} \bmod V_{\jmath-1}, \quad j \leq p-1
$$

the second part of (d) is also immediate. Finally, the case $j=p$ gives

$$
\left(\alpha_{1}^{p}\right)^{\sigma}=\left(\alpha_{1}+1\right)^{p}=\alpha_{1}^{p}+1 .
$$

Hence σ fixes $\alpha_{1}^{p}-\alpha_{1}$, or $\exists \delta \in k$ with $\alpha_{1}^{p}-\alpha_{1}-\delta=0$. The roots of $X^{p}-X-\delta=0$ are therefore α_{1} and its conjugates. Write the coefficient of X as a symmetric function of the roots:

$$
\begin{aligned}
-1=(-1)^{p-1} \sum_{j=0}^{p-1} N\left(\alpha_{1}\right) / \alpha_{1}^{g^{\prime}}=(-1)^{p-1} \operatorname{Tr}_{\nu}(& \left.N\left(\alpha_{1}\right) / \alpha_{1}\right), \\
& N=\text { norm in } k_{1} / k .
\end{aligned}
$$

But the conjugates of α_{1} are $\alpha_{1}+1, \ldots, \alpha_{1}+p-1$, and thus $N\left(\alpha_{1}\right) / \alpha_{1}$ $\equiv \alpha_{1}^{p-1} \bmod V_{p-1}$. Now the first part of (d) is obvious, since $(-1)^{p-1} \equiv 1$ $\bmod p$ for all p.
(2) Now assume the result for $n-1$. Then

$$
\operatorname{Tr}_{n} \beta\left(p^{n-1}-1\right)=p \operatorname{Tr}_{n-1} \beta\left(p^{n-1}-1\right)=0,
$$

so that we can find $\alpha_{n} \in k_{n}$ with $\alpha_{n}^{\sigma}-\alpha_{n}=\beta\left(p^{n-1}-1\right)$. As $\operatorname{Tr}_{n-1} \beta\left(p^{n-1}-1\right) \neq 0, \alpha_{n} \notin k_{n-1}$. Just as in (1), we get all of (a) and (b) except for the claim that $k_{n}=k\left(\alpha_{n}\right)$. We do have $k_{n}=k_{n-1}\left(\alpha_{n}\right)$. Also, $\beta\left(p^{n-1}-1\right) \in k\left(\alpha_{n}\right)$, and (b) and (c), applied to k_{n-1}, show that $k\left(\beta\left(p^{n-1}-1\right)\right)=k_{n-1}$. Hence

$$
k\left(\alpha_{n}\right)=k\left(\alpha_{n}, \beta\left(p^{n-1}-1\right)\right)=k_{n-1}\left(\alpha_{n}\right)=k_{n},
$$

as required.
We need to prove (c) only for those $\beta(j)$ with $j>p^{m-1}$. We first prove it for $\alpha_{n}^{\prime}, 1 \leq i \leq p-1$. For $i=1$, the result is immediate from the definition of α_{n}; in general, it follows from the formula

$$
\left(\alpha_{n}^{i}\right)^{\sigma}=\left(\alpha_{n}+\beta\left(p^{n}-1\right)\right)^{i} .
$$

Now we deal with the remaining case: $\beta_{j}=\alpha_{n}^{i} \beta(l), 1 \leq l<p^{n-1}$ and $i>0$. Then

$$
\begin{aligned}
& \beta_{j}^{\sigma}=\left(\alpha_{n}^{i}+\gamma\right)(\beta(l)+c \beta(l-1)+\delta), \\
& \gamma \in V_{i p^{n-1}}, \delta \in V_{l-1}, \text { and } c \in \mathbf{F}^{p} \\
&=\beta_{J}=c \alpha_{n}^{i} \beta(l-1)+\alpha_{n}^{i} \delta+\varepsilon, \quad \varepsilon \in V_{i p^{n-1}},
\end{aligned}
$$

which is (c) for β_{j}. The same argument as in (1) now shows that $\operatorname{Tr}_{n} \beta_{j}=0$ if $j<p^{m-1}$.

We need more calculation to get $\operatorname{Tr}_{n} \beta\left(p^{n}-1\right)$. For $\gamma \in k_{n}$, define $\gamma\{0\}, \gamma\{1\}, \ldots$ inductively by

$$
\gamma\{0\}=\gamma, \quad \gamma\{j+1\}=\gamma\{j\}^{\sigma}-\gamma\{j\}
$$

An easy induction gives

$$
\begin{equation*}
\gamma^{\sigma^{s}}=\sum_{j=0}^{s}\binom{s}{j} \gamma\{j\} \tag{2.3}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
\gamma^{\sigma^{s}}=\gamma+\gamma\{s\} \quad \text { if } s \text { is a power of } p \tag{2.4}
\end{equation*}
$$

Now let $\gamma=\beta_{r}$. Applying (c) p times and using (2.4), we get

$$
\beta_{r}^{\sigma^{p}}-\beta_{r} \equiv c^{\prime} \beta_{r-p} \bmod V_{r-p} \quad \text { for some } c^{\prime} \in \mathbf{F}_{p}
$$

and an easy induction shows that if s is a power of p, then there is a $c \in \mathbf{F}_{p}$ such that

$$
\beta_{r}\{s\}=\beta_{r}^{\sigma^{s}}-\beta_{r} \equiv c \beta_{r-s} \bmod V_{r-s}
$$

For $r=p^{n-1}$, we get

$$
\alpha_{n}^{\sigma^{p^{n-1}}}=\alpha_{n}+c, \quad c \in \mathbf{F}_{p}
$$

But $\sigma^{p^{n-1}}$ generates $\operatorname{Gal}\left(k_{n} / k_{n-1}\right)$, and $k_{n}=k_{n-1}\left(\alpha_{n}\right)$. Thus, from (d) in the case $n=1$,

$$
\operatorname{Tr}_{n / n-1}\left(\alpha_{n} / c\right)^{p-1}=-1
$$

As $c^{p-1}=1$, we have

$$
\operatorname{Tr}_{n / n-1} \alpha_{n}^{p-1}=-1
$$

or

$$
\operatorname{Tr}_{n / n-1} \beta\left(p^{n}-1\right)=-\beta\left(p^{n-1}-1\right)
$$

The inductive hypothesis on $\beta\left(p^{n-1}-1\right)$ now gives the first part of (d).
We note two corollaries. The first was essentially proved in the course of the above proof.

Corollary 1. If $s=a p^{r}$ with $p+a$, then for each j there is a nonzero $c \in \mathbf{F}_{p}$ with

$$
\beta_{j}^{\sigma^{s}}-\beta_{j}-c \beta_{j-p^{r}} \in V_{j-p^{r}}
$$

(If $j-p^{r}<0$, then $\beta_{J-p^{r}}$ is taken to be 0 .)

Proof. This is an easy calculation from (c) and (2.3).
Corollary 2. If $r<n$, and if $\gamma \in k_{n}$ satisfies $\operatorname{Tr}_{n / r} \gamma \in k$, then $\gamma \in V_{p^{n}-p^{r}+1}$.

Proof. This follows from (d) (applied to k_{n} / k_{r}) and the linearity of the trace.

We now prove a result about "partial traces".
Lemma 2.2. Let $r<s$; suppose that $p+a$. Then \exists a nonzero $c \in \mathbf{F}_{p}$ such that

$$
\left(\sum_{i=0}^{a p^{\prime-r}-1} \beta_{J}^{\sigma^{\prime} p^{r}}\right) \equiv c \beta\left(j-p^{s}+p^{s-r}\right) \bmod V_{J-p^{s}+p^{s-r}}
$$

Proof. For $\gamma \in k_{n}$, define $\gamma\{j\}$ as in the proof of Lemma 2.1. Then (2.4) and induction give

$$
\gamma^{\sigma^{t^{\prime} r}}=\sum_{j=0}^{i}\binom{i}{j} \gamma\left\{j p^{r}\right\} .
$$

Hence

$$
\begin{aligned}
\sum_{i=0}^{a s^{s-r}-1} \gamma^{\sigma^{\prime p r}} & =\sum_{i=0}^{a p^{s-r}-1} \sum_{j=0}^{i}\binom{i}{j} \gamma\left\{j p^{r}\right\} \\
& =\sum_{j=0}^{a p^{\prime-}-1} \sum_{i=j}^{a p^{\prime-\prime}-1}\binom{i}{j} \gamma\left\{j p^{r}\right\}=\sum_{j=0}^{a p^{s-r}-1}\binom{a p^{s-r}}{j+1} \gamma\left\{j p^{r}\right\} .
\end{aligned}
$$

As

$$
\binom{a p^{s-r}}{j+1} \equiv 0 \bmod p \quad \text { if } p^{s-r}+j-1
$$

and

$$
\binom{a p^{s-r}}{p^{s-r}} \equiv a \bmod p
$$

we have

$$
\sum_{i=0}^{a p^{s-r}-1} \gamma^{\sigma^{\prime} p^{r}}=a \gamma\left\{p^{r}\left(p^{s-r}-1\right)\right\}+\gamma^{\prime}
$$

where γ^{\prime} is a k-linear combination of terms of the form $\gamma\left\{p^{r}\left(i p^{s-r}-1\right)\right\}$,
$i>1$. Now let $\gamma=\beta_{j}$. Since (c) of Proposition 2.1 and an easy induction shows that for each i there is $c \in \mathbf{F}_{p}$ such that $\gamma\{i\}-c \beta_{J-i} \in V_{j-i}$, the result follows.

Recall that $N_{i / j}$ is the norm map from k_{i} to $k_{j}(j<i)$. We shall also need the following result about norms and traces in k_{m}.

Proposition 2.3. Let $s<m$. Given $\alpha \in k_{n}^{\times}$, there exists a nonzero $\lambda \in k_{n}$ with $N_{n / s} \lambda \in k$ and $\operatorname{Tr}_{n}(\alpha \lambda)=0$.

Proof. We use the following lemma:
Lemma 2.4. Let q be a power of p; let $q^{\prime}=\left(q^{p^{s}}-1\right) /(q-1)$. Then for all $n>s, q^{\prime}$ and $\left(q^{p^{n}}-1\right) / q^{\prime}$ are relatively prime.

Proof of the Lemma. Since

$$
q^{p^{n}}-1=\left(q^{p^{s}}-1\right) \sum_{j=0}^{p^{n-s}-1} q^{j p^{s}}
$$

and $q^{j p^{s}} \equiv 1 \bmod q^{p^{s}}-1$, we see that

$$
\left(q^{p^{n}}-1\right) /\left(q^{p^{s}}-1\right) \equiv p^{n-s} \bmod q^{p^{s}}-1
$$

Hence $q^{\prime}(q-1)$ and $\left(q^{p^{n}}-1\right) / q^{\prime}(q-1)$ are relatively prime. Similarly, q^{\prime} and $q-1$ are relatively prime, and this proves the lemma.

Proof of Proposition 3.3. Let $|k|=q,\left(q^{p^{n}}-1\right) /\left(q^{p^{s}}-1\right)=r$. As $N_{n / s} \lambda=\lambda^{r}$, we need to pick λ so that its order divides $(q-1) r=$ $\left(q^{p^{n}}-1\right) / q^{\prime}$. Now let β generate k_{n}^{\times}as a cyclic group, and let $\alpha=\beta^{t}$. From Lemma 3.4, we can find an integer a such that

$$
(q-1) r \mid t+a q^{\prime}
$$

Let $\lambda=\beta^{a q^{\prime}}$. Then the order of λ divides $(q-1) r$, and $\alpha \lambda$ has order dividing q^{\prime}. But then $\alpha \lambda \in k_{s}$, so that $\operatorname{Tr}_{n} \alpha \lambda=0$.
3. Prime elements in sub-division algebras: Totally wildly ramified case. We begin by describing the notational conventions in this section, since they are somewhat different from those for other sections. We assume that the index of D over K is p^{n} (so that $\operatorname{dim}_{K} D=p^{2 n}$); we choose $x \in D$, and assume that $K(x)$ is totally ramified over K. We assume further that x is in general position, or that $|x| \leq|x+z|$ for all $z \in K$. Define n by $|x|=p^{m}$.

We recall some results from [7]. For each $j \in \mathbf{Z}$, let $x_{(j)}$ be an element such that $x_{(j)} \equiv x \bmod P^{-m+j+1}$ and $\left[K\left(x_{j}\right): K\right]$ is minimal (subject to the above condition). For $j<0$, we have $x_{(J)} \in K$, and we take $x_{(j)}=0$ there; for sufficiently large j, we may take $x_{(j)}=x$. The fields $K\left(x_{(j)}\right)$ are all totally ramified over K. There are integers $s_{0}=0$, s_{1}, \ldots, s_{t-1} such that for each $r,\left[K\left(x_{\left(s_{r}\right)}\right): K\right]>\left[K\left(x_{\left(s_{r}-1\right)}\right): K\right]$. These integers are the jump points of x. Set $s_{-1}=-\infty, s_{t}=\infty$, and define $x_{r}=x_{\left(s_{r}-1\right)}$, with $x_{t}=x$. We may (and henceforth do) assume that $x_{(j)}=x_{r}$ if $s_{r-1} \leq j<s_{r}$. We call the x_{j} the approximating elements for x. Let $D_{r}=$ algebra of elements commuting with x_{r}. We shall be interested in how closely we can approximate a prime element in D_{r} by one in D_{r-1}.

Write K_{n} for the unramified extension of degree p^{n} that is normalized by η, and let K_{b} be the subfield of K_{n} of degree p^{b} over K. (Note: K_{n} is what was called $K_{p^{n}}$ in the introduction.) We write k_{n} for the residue class field of K_{n} (and of D); this corresponds to the notation in §2. The residue class map $\mathcal{O} \rightarrow \mathcal{O} / P \cong k_{n}$ is bijective on $R \cup\{0\}$, and we generally identify $R \cup\{0\}$ with k_{n}, for notational ease. Thus we write a typical element $y \in D$ as $\sum_{j=j_{0}}^{\infty} \delta_{j} \eta^{j}, \delta_{j} \in k_{n}$. We use $\alpha_{j}(1 \leq j \leq n)$ and $\beta_{j}=\beta(j)\left(0 \leq j \leq p^{n}-1\right)$ for the elements of k_{n} so denoted in $\S 2$, and write

$$
\begin{equation*}
x=\sum_{j=-m}^{\infty} \gamma_{j} \eta^{j} . \tag{3.1}
\end{equation*}
$$

Let $\left[K\left(x_{j}\right): K\right]=p^{a_{J}}=e_{j}$, and let $a_{J}+b_{J}=n$. Since x is in general position, m is divisible by $p^{b_{1}}$ but not by $p^{b_{1}+1}$. Furthermore, $\left(\gamma_{-m} \eta^{-m}\right)^{p^{a_{1}}}$ $\in K$. It follows that we may assume $\gamma_{-m} \in K$, possibly by replacing η with some $\varepsilon \eta, \eta \in k_{n}$. (Every element of the form $c \eta^{-m p^{a_{1}}}, c \in k$, can be written as $\left(c^{\prime} \eta^{-m}\right)^{p^{a_{1}}}$ with $c^{\prime} \in k$, essentially because $c^{\prime} \mapsto\left(c^{\prime}\right)^{p}$ is an automorphism of k. See p. 55 of [2].) It also follows from p. 55 of [2] that we may assume (after conjugating x by an element of G) that

$$
\begin{equation*}
K_{b,} \subseteq D_{j} . \tag{3.2}
\end{equation*}
$$

Note, incidentally, that a_{j} increases with j, while b_{j} decreases.
Our first job is to find a "normal form" for the x_{j}.
Proposition 3.1. By possibly conjugating x in D, we may assume that

$$
x_{i}-x_{i-1}=\sum_{j=-m+s_{t-1}}^{\infty} \gamma_{t ; \eta^{j}} \eta^{j}
$$

with $\gamma_{i ;-m+s_{l-1}}=c \beta\left(p^{m}-p^{b_{t-1}}\right)$ for some nonzero $c \in k$.

Proof. Induction on i. For $i=1$, this is just our assumption that $\gamma_{-n} \in k$; thus assume $i \geq 2$. Apply Satz 8 of [7] with $v=x_{i-1}$, ω a prime element in D_{l} such that $\omega \equiv \eta \bmod P^{2}$, and $\beta=\gamma_{l ;-n+s_{l}} \omega^{-n+s_{l}}$; if ψ_{l} is the irreducible polynomial satisfied by x_{t-1}, then

$$
\psi_{l}\left(x_{l}\right) \equiv\left(\operatorname{Tr}_{m / b_{t-1}} \gamma_{l ;-m+s_{t-1}}\right) \eta^{b} \bmod P^{b+1}
$$

where b is an integer divisible by $p^{b_{t}}$ but not by $p^{b_{t-1}}$. Set

$$
\delta=\operatorname{Tr}_{n / b_{t-1}}\left(\gamma_{i ;-m+s_{t-1}}\right)
$$

Then $\delta \in k_{b_{t-1}}$. Furthermore,

$$
\left(\delta \eta^{b}\right)^{p^{a_{i}}}=\left(N_{n / b_{i}} \delta\right) \eta^{b p^{a_{i}}} \in K
$$

otherwise, $N_{n / b_{1}} \delta \in k_{n} \backslash k$ and Hensel's lemma implies that $K\left(x_{i}\right)$ is not totally ramified over K. But since $\delta \in k_{b_{t-1}}$,

$$
N_{n / b_{t}} \delta=\left(N_{b_{t-1} / b_{t}} \delta\right)^{p^{n-b_{t-1}}}
$$

Hence $N_{t / i-1} \delta \in k$, and there exists $d \in k$ with $N_{t / l-1}(d / \delta)=1$.
Suppose that $\delta \notin k$. Set $h=b_{i-1}-b_{i}$; let $-m+s_{l}=g$. Then $p^{b_{i}} \mid g$, but $p^{b_{i-1}}+g$. Hence

$$
\left(\delta \eta^{g}\right)^{p^{h}}=\left(N_{t / l-1} \delta\right) \eta^{g p^{h}}=\left(d \eta^{g}\right)^{p^{h}}
$$

and so $\delta \eta^{g}$ and $d \eta^{g}$ satisfy the same equation over K. Therefore, they are conjugate in D (and, in fact, by an element of K_{m}). That is, there is a prime η^{\prime} such that

$$
\delta \eta^{g}=d\left(\eta^{\prime}\right)^{g}
$$

Hence $\left(\eta^{\prime}\right)^{g p^{h}}=d^{-p^{h}}\left(d \eta^{g}\right)^{p^{h}}=d^{-p^{h}}\left(\delta \eta^{g}\right)^{p^{h}}=d^{-p^{h}}\left(d \eta^{g}\right)^{p_{h}}=\eta^{g p^{h}}$, or $\left(\eta^{\prime}\right)^{p^{b_{t-1}}}=\eta^{p^{b_{t-1}}}$. But x_{t-1} commutes with $K_{b_{t-1}}$; hence in the expansion of x_{1-1},

$$
x_{\imath-1}=\sum_{j=-m}^{\infty} \gamma_{j}^{(i-1)} \eta^{j}, \text { say }
$$

we must have $\gamma_{J}^{(t-1)}=0$ unless $p^{b_{t-1}} \mid j$. It follows that the expansion of x_{i-1} is the same if we use powers of η^{\prime} instead of powers of η. On the other hand, we have

$$
x_{i}-x_{t-1}=\sum_{j=m-s_{t-1}}^{\infty} \gamma_{i ; j}^{\prime} \eta^{\prime J}, \quad \gamma_{l,-m+s_{t}}^{\prime}=\gamma_{i,-m+s_{l}} d / \delta
$$

so that

$$
\operatorname{Tr}_{m / b_{1-1}} \gamma_{t ;-m+s_{t-1}}^{\prime} \in k
$$

As η, η^{\prime} are related by a conjugation in D, this all means that we may assume that $\delta \in k$. Now Corollary 2 of Proposition 2.1 says that

$$
\gamma_{t:-n+s_{l}} \in V_{p^{n}-p} b_{l-1_{+1}} .
$$

To limit $\gamma_{t ;-n+s_{i-1}}$ more, we conjugate. Write

$$
\gamma_{l ;-n+s_{t-1}}=a \beta\left(p^{m}-p^{b_{t-1}}\right)+\gamma, \quad \gamma \in V_{p^{n}-p b_{t-1}} \quad \text { and } \quad a \in k .
$$

The inductive hypothesis gives $\gamma_{t-1, m+s_{1-2}}=c\left(p^{n}-p^{b_{t-2}}\right), c \neq 0$. Write $\beta=\beta\left(p^{m}-p^{q_{1-2}}\right)$; conjugate x with $1+\delta \eta^{s_{1}-s_{t-1}}, \delta \in k_{q_{t-2}}$. Then $1+$ $\delta \eta^{s_{1}-s_{i-1}}$ commutes with the $\gamma_{j} \eta^{j}$ such that $j<-m+s_{i-1}$, and the effect of the conjugation $\left(\bmod P^{-m+s_{t-1}}\right)$ is to change γ to

$$
\gamma-c\left(\beta \delta^{\sigma^{-m+s_{1}-1}}-\beta^{\sigma^{s_{1}-s_{1-1}}} \delta\right)
$$

Let $\sigma^{\prime}=\sigma^{s_{t}-s_{t-1}}$, so that σ^{\prime} generates $\operatorname{Gal}\left(k_{n} / k_{b_{t}}\right)$; set $\sigma^{-m+s_{t-1}}=\sigma^{\prime \prime}$. Then $\sigma^{\prime \prime}=\left(\sigma^{\prime}\right)^{a p^{p_{1}-1-b_{1}}}, p+a$, and, in the notation of $\S 2$,

$$
\beta \delta^{\sigma^{\prime \prime}}-\delta \beta^{\sigma^{\prime}}=\beta\left(\delta+c_{0} \delta\left\{p^{b_{t}}\right\}+\delta^{\prime}\right)-\left(\beta+d_{0} \beta\left\{p^{b_{t-1}}\right\}+\beta^{\prime}\right) \delta
$$

(where $c_{0}, d_{0} \in k_{0} ; \quad \delta^{\prime} \in \operatorname{span}\left(\delta\left\{p^{b_{1}}+1\right\}, \ldots, \delta\left\{p^{n}\right\}\right) ;$ and $\beta^{\prime} \in$ $\left.\operatorname{span}\left(\left\{p^{b_{t-1}}+1\right\}, \ldots, \beta\left\{p^{n}\right\}\right)\right)=c_{0} \beta \delta\left\{p^{b_{i}}\right\}-d_{0} \delta \beta\left\{p^{b_{t-1}}\right\}+\beta \delta^{\prime}-\delta \beta^{\prime}$. But $\delta \in V_{p^{b_{t-1}}}$, and it is not hard to verify that $\beta \delta\left\{p^{b_{t}}\right\}$ can be any linear combination of $\beta\left\{p^{m}-p^{b_{t-2}}\right\}, \ldots, \beta\left\{p^{m}-p^{b_{t-1}-1}\right\}$, while the remaining terms are in $V_{p^{m}-p^{b_{t-2}}}$. Hence we can choose δ so that

$$
\gamma-c\left(\beta \delta^{\sigma^{\prime \prime}}-\beta^{\sigma^{\prime}} \delta\right) \in V_{p^{m}-p^{b_{t}-2}}
$$

and we may therefore assume that $\gamma \in V_{p^{m}-p^{b_{t-2}}}$. Continue inductively; the next step is to conjugate with $1+\delta \eta^{s_{i}-s_{t-2}}$, where $\delta \in k_{b_{t-3}}$, and thus to move γ into $V_{p^{m}-p^{b_{1-3}}}$. Since $b_{0}=m$, we eventually move γ to 0 . Hence we may assume that

$$
\gamma_{i ;-m+s_{i}}=a \beta\left(p^{m}-p^{b_{t-1}}\right), \quad a \in k
$$

If $a=0$, then $x_{\left(s_{1}\right)}=x_{\left(s_{t-1}\right)}$. This is impossible, since s_{t} is a jump point. Hence $a \neq 0$, and the proof is complete.

Lemma 3.2. (a) Let $\eta_{1}=\eta+\delta_{2} \eta^{2}+\delta_{3} \eta^{3}+\cdots$ be a prime element of D; suppose that $y \in P^{t}$ commutes with $\eta_{1} \bmod P^{s+2}$, with $s \geq t$ (i.e., $\left.\left[y, \eta_{1}\right] \in P^{s+2}\right)$. Then there exists $y_{1} \in K\left(\eta_{1}\right)$ such that $y_{1} \equiv y \bmod P^{s+1}$. (Note that $K\left(\eta_{1}\right)$ is the algebra of elements commuting with η_{1}, since $\left[K\left(\eta_{1}\right): K\right]=p^{n}$.)
(b) If η_{1} is such that $\delta_{J}=0$ unless $j \equiv 1 \bmod p^{r}($ where $r \leq m)$, and if $y=\sum_{j=t}^{\infty} \varepsilon_{j} \eta^{j}$, with $\varepsilon_{j}=0$ unless $p^{r} \mid j$, then one can pick y_{1} as above so that $K\left(y_{1}\right)$ is totally ramified of degree $\leq p^{n-r}$.

Proof. Let $y=\sum_{j=t}^{\infty} \varepsilon \eta_{j}$; let $\varepsilon_{l} \eta^{i}$ be the first nonzero term. If $i \geq s+1$, there is nothing to prove. If $i \leq s$, then $\varepsilon_{l} \eta^{i}$ commutes with η (as one sees by computing [$\left.y, \eta_{1}\right]$); thus $\varepsilon_{i} \in k$. Now $y-\varepsilon_{i} \eta_{l}^{i}$ commutes with $\eta_{1} \bmod P^{s+2}$, and $\left|y-\varepsilon_{i} \eta_{1}^{i}\right|<y$. Proceed inductively to produce y_{1}.
(b) Continue with the notation of (a). We must have $p^{r} \mid i$, and our construction gives $y_{1}=\sum_{j=t}^{\infty} \varepsilon_{j}^{\prime} \eta_{1}^{j}$, where $\varepsilon_{j} \in k$ and $\varepsilon_{j}^{\prime}=0$ unless $p^{r} \mid j$. Hence $K\left(y_{1}\right) \subseteq K\left(\eta_{1}^{p^{r}}\right) \subseteq K\left(\eta_{1}\right)$, so that $K\left(y_{1}\right)$ is totally ramified. As $\eta_{1}^{p^{r}}$ commutes with k_{r}, the division algebra $D_{y_{1}}$ of elements commuting with y_{1} has index $\geq p^{r}$ over $K\left(y_{1}\right)$, and this implies that $\left[K\left(y_{1}\right): K\right] \leq p^{n-r}$.

We are now ready for the main result of this section.
Theorem 3.3. (Approximation Theorem.) Let notation be as mentioned previously.
(a) There exist $\eta_{1}, \ldots, \eta_{t}$ for D_{1}, \ldots, D_{t} respectively, such that for $2 \leq i \leq t$,

$$
\eta_{i}=\sum_{j=1}^{\infty} \sum_{1 \leq l<i} \delta_{l ; j}^{(i)} \eta_{l}^{j},
$$

where $\delta_{i-1 ; l}^{(i)}=1 ; \delta_{l, j}^{(i)} \in k_{b_{l-1}} ; \delta_{l ; j}^{(i)}=0$ for $j \leq s_{i-1}-s_{l-1}$ and $l<i-1$; and $\delta_{i-1 ; j}^{(i)} \in k_{b_{t-1}}$ for $j \leq s_{i-1}$.
(b) We have $\eta_{i}=\sum_{j=1}^{\infty} \delta_{i, j} \eta^{j}$, with $\delta_{i, j}^{\sim}=0$ unless $p^{b_{i}} \mid j-1$.

Remark. From (a), η_{i} is congruent $\bmod P^{s_{t-1}-s_{t-2}+2}$ to the prime element $\sum_{j=1}^{p_{1-1}^{s_{1-1}-s_{i-2}}} \delta_{i-1 ; j}^{(i)} \eta_{i-1}^{j}$ of D_{i-1}. As the proof will show, we cannot generally do better.

Proof. We use induction on t. For $t=1$, the first statement is vacuous, while the second simply states that D_{1} has a prime η_{1} such that conjugation by η_{1} generates $\operatorname{Gal}\left(K_{b_{1}} / K\right)$.

Assume the theorem for $t-1$. From Proposition 3.1,

$$
x_{t}-x_{t-1} \equiv c \beta\left(p^{m}-p^{b_{t-1}}\right) \eta^{-m+s_{t-1}} \bmod P^{-m+s_{t-1}+1}, \quad c \in k \sim\{0\}
$$

We first find a prime η_{t}^{\prime} in D such that $\eta_{1}, \ldots, \eta_{t-1}$ (from the inductive hypothesis), and η_{t}^{\prime} satisfy (a), (b) and
(c) η_{t}^{\prime} commutes with $x_{t} \bmod P^{-m+s_{t-1}+2}$,

We do this by following the procedure in the proof of Proposition 3.1. Modulo $P^{-m+s_{t-1}+2}$, we have

$$
\begin{aligned}
{\left[\eta_{t-1}, x_{t}\right] } & =\left[\eta_{t-1}, c \beta_{p^{n}-p^{b_{t-1}}} \eta^{-m+s_{t-1}}\right] \\
& =c\left(\beta_{p^{n}-p^{b_{t-1}}}-\beta_{p^{n}-p^{b_{t-1}}}^{\sigma}\right) \eta^{-m+s_{t-1}+1} \\
& =\gamma \eta^{-m+s_{t-1}+1}
\end{aligned}
$$

say, where $\gamma \in V_{p^{n}-p^{b_{t-1}}}$. Now consider $\eta_{t-1}+\delta \eta_{t-1}^{s_{t-1}-s_{t-2}+1}, \delta \in k_{b_{t-2}}$. Modulo $P^{-m+s_{t-1}+2}$, we have

$$
\begin{aligned}
{\left[\delta \eta_{t-1}^{s_{t-1}-s_{t-2}+1}, x_{t}\right]=} & {\left[\delta \eta_{t-1}^{s_{t-1}-s_{t-2}+1}, x_{t-1}\right] } \\
& \quad\left(\text { since } x_{t}-x_{t-1} \in P^{s_{t-1}+1}\right) \\
= & \left(\delta x_{t-1}-x_{t-1} \delta\right) \eta_{t-1}^{s_{t}-s_{t-1}+1}
\end{aligned}
$$

But $x_{t-1}=x_{t-2}+\beta_{p^{m}-p^{b_{t-2}}}+$ higher order terms (which disappear in the commutator once we work $\bmod P^{-m+s_{t-1}+2}$), and x_{t-2} commutes with δ. Thus $\left(\bmod P^{-m+s_{t-1}+2}\right)$

$$
\left[\delta \eta_{t-1}^{s_{t-1}-s_{t-2}+1}, x_{t}\right]=\beta_{p^{n}-p^{b_{t-2}}}\left(\delta-\delta^{s_{t-1}-m}\right) \eta
$$

Also, $\delta^{\sigma_{t-1-n}}=\delta+c^{\prime} \delta\left\{p^{b_{t-1}}\right\}, c^{\prime} \in k \backslash\{0\} ;$ as δ runs through $k_{b_{t-2}}$, $\delta\left\{p^{b_{t-1}}\right\}$ runs through the elements of $V_{p^{b_{t-2}-p}} b_{t-1}$. By choosing δ appropriate, we may arrange to have

$$
\begin{aligned}
{\left[\eta_{t-1}+\delta \eta_{t-1}^{s_{t-1}-s_{t-2}}, x_{t}\right]=\gamma_{(t-2)} \eta^{-n+s_{t-1}+1} \bmod P^{-n+s_{t-1}+1} } & , \\
\gamma_{(t-2)} & \in V_{p^{n}-p^{b_{t-2}}}
\end{aligned}
$$

Continue inductively; the next step involves adding $\delta^{\prime} \eta_{t-2}^{s_{t-1}^{-s_{t-3}}}$ to $\eta_{t-1}+$ $\delta \eta_{t-1}^{s_{t-1}-s_{t-2}}$ and showing in the same way that for an appropriate $\delta^{\prime} \in k_{b_{t-3}}$, we get the commutator to be

$$
\gamma_{(t-3)} \eta^{-m+s_{t-1}+1}\left(\bmod P^{-m+s_{t-1}+2}\right), \quad \gamma_{(t-2)} \in V_{p^{n}-p^{b_{t-3}}}
$$

After $(t-1)$ steps, we get η^{\prime}.
Now let x_{t}^{\prime} be an element in $K\left(\eta_{t}^{\prime}\right)$ with $x_{t}^{\prime} \equiv x_{t} \bmod P^{-m+s_{t-1}+2}$ and $\left[K\left(x_{t}^{\prime}\right): K\right]=\left[K\left(x_{t}\right): K\right]$; this is possible because of Lemma 3.2 and the minimality of $\left[K\left(x_{t}\right): K\right]$. If $x_{t}=x_{t}^{\prime}$, then we are done. If not, then for some $r \geq-m+s_{t-1}+2$ with $p^{b_{t}} / r$ and some $\gamma \in V_{p^{m}-p^{b_{t}+1}}$,

$$
x_{t}-x_{t}^{\prime} \equiv \gamma \eta^{r} \bmod P^{r+1}
$$

The argument to prove this is like the one at the start of the proof for Proposition 3.1. Let F be the minimal polynomials satisfied by x_{t}, and suppose that $x_{t}-x_{t}^{\prime} \in P^{r-1} \backslash P^{r}$. Then we have $x_{t}-x_{t}^{\prime} \equiv \gamma \eta^{r} \bmod P^{r+1}$, with $\gamma \neq 0$; moreover, $F\left(x_{t}^{\prime}\right)=\left(\operatorname{Tr}_{m / b_{t}} \gamma\right) \eta^{h} \bmod \eta^{h+1}$, where $p^{b_{t}} \mid h-r$. But $K\left(F\left(x_{t}\right)\right) \subseteq K\left(x_{t}\right)$, which shows that $p^{b_{t}} \mid h$. Hence $p^{b_{t}} \mid r$. Next, $F\left(x_{t}^{\prime}\right) \cdot\left(\eta^{\prime}\right)^{-h}$ commutes with η^{\prime}; hence $\operatorname{Tr}_{m / b_{t}} \gamma$ commutes with η^{\prime}, and this shows that $\operatorname{Tr}_{m / b_{t}} \gamma=1$. Now apply Corollary 2 of Proposition 2.1.

Modulo P^{r+2} (as the next calculations are also to be understood), we have

$$
\left[\eta_{t}^{\prime}, x_{t}\right]=\gamma_{1} \eta^{r+1}, \quad \gamma_{1} \in V_{p^{m}-p^{b_{t}}}
$$

We now argue as in the first part of the proof to remove γ_{1}. For $\delta \in k_{b_{t-1}}$, we get

$$
\begin{aligned}
& {\left[\delta \eta_{t-1}^{r-s_{t-1}+1}, x_{t}\right]=c\left(\delta \beta\left(p^{n}-p^{b_{t-1}}\right)^{\sigma^{r-s_{t}+1}}-\beta\left(p^{n}-p^{b_{t-1}}\right) \delta^{\sigma^{s_{t}}}\right) \eta^{r+1} } \\
& 0 \neq c \in k
\end{aligned}
$$

Since

$$
\begin{aligned}
& \delta \beta\left(p^{n}-p^{b_{t-1}}\right)^{\sigma^{r-s_{t}+1}} \\
& \quad-\beta\left(p^{n}-p^{b_{t-1}}\right) \delta^{\sigma_{t}} \in-\delta\left\{p^{b_{t}}\right\} \beta\left(p^{n}-p^{b_{t-1}}\right)+V_{p^{n}-p^{b_{t-1}}}
\end{aligned}
$$

and since $\delta\left\{p^{b_{t}}\right\}$ can be arbitrary in $V_{p^{b_{t-1}-p^{b_{t+1}}}}$, we can find δ so that

$$
\left[\eta^{\prime}+\delta \eta_{t-1}^{r-s_{t-1}+1}, x_{t}\right]=\gamma_{(t-1)}^{\prime} \pi^{r+1}, \quad \gamma_{(t-1)}^{\prime} \in V_{p^{m}-p^{b_{t-1}}}
$$

Now iterate, next adding $\delta_{(t-2)} \boldsymbol{\eta}_{t-2}^{r-s_{t-2}+1}$ to put the commutator in $\left(V_{p^{m}-p^{b-2}}\right) \eta^{r+1}$. The same inductive argument as earlier shows that we can find $\eta^{\prime \prime}$ commuting with $x_{t} \bmod P^{t+2}$ and satisfying (a) and (b). The theorem follows by using induction on r and then taking limits.
4. The general approximation theorem. We now remove the restrictions on D that were imposed for $\S 3$; thus $[D: K]=n^{2}$ and n is arbitrary. Let $x \in D$ and write $x=\sum_{j=J_{0}}^{\infty} \gamma \eta^{\prime}$; we assume for notational convenience that x is in general position. Let s_{0}, \ldots, s_{t-1} be the jump points of x, and let $x_{1}, \ldots, x_{t}=x$ be approximating elements for x; note that $s_{0}=j_{0}$. Write $L_{j}=L\left(x_{j}\right)$, and let e_{j}, f_{j} be the ramification index and residue class degree respectively of $K\left(x_{j}\right) / K$; let $e_{j}^{\prime}=e_{j} / e_{j-1}, f_{j}^{\prime}=$ f_{j} / f_{j-1}. (We define $e_{0}=f_{0}=1$.) Finally, set $D_{j}=$ algebra of elements commuting with x_{j}.

Lemma 4.1. Let E_{j} be the maximal tamely ramified extension in L_{j}. By conjugating x in G, we may arrange to have $E_{1} \subseteq E_{2} \subseteq \cdots \subseteq E_{t}$.

Proof. Let $x_{0}=\alpha_{j_{0}} \pi^{j_{0}}$, and let $\left(n, j_{0}\right)=m_{0}, n=n_{0} m_{0}$. Then $K\left(x_{0}^{n_{0}}\right)$ is unramified over K. Let $n_{0}=n_{1} p^{n_{2}}$, where $\left(n_{1} p\right)=1$, then $E_{1}=$ $K\left(x_{0}^{p^{n_{2}}}\right)$ is the maximal tamely ramified extension in $K\left(x_{0}\right)$. Let $y=x_{0}^{p^{n_{2}}}$, and let D_{y} be the algebra of all elements commuting with y.

Let l be the residue class field of D_{y}, k_{n} the residue class field of D. Then $\left[k_{n}: l\right]=e\left(E_{0} / K\right)$ is prime to p. Define

$$
\begin{aligned}
& S_{j}=\left\{\delta \in k_{n}: \delta^{j} \in D_{y}\right\} \\
& T_{j}=\left\{\varepsilon \in k_{n}: \operatorname{Tr}_{k_{n} / l} \delta^{-1} \varepsilon=0 \text { for all nonzero } \delta \in S_{j}\right\}
\end{aligned}
$$

It is easy to verify the following facts (proved as Lemma 2 of [3]):
(a) $S_{0}=l_{i} S_{j}$ is a vector space over l of dimension 1 if $f\left(E_{0} / K\right) \mid j$ and of dimension 0 otherwise.
(b) T_{j} is also a vector space over l, and $S_{j} \oplus T_{j}=k_{n}$. (This uses the fact that $\left[k_{n}: l\right]$ is prime to p.)
(c) If $0 \neq \delta \in S_{J}$, then $S_{\jmath+J^{\prime}}=\delta S_{J^{\prime}}^{\sigma^{\prime}}=S_{j^{\prime}} \delta^{\sigma^{\prime}}$ and

$$
T_{J+j^{\prime}}=\delta T_{j^{\prime}}^{\sigma^{\prime}}=T_{j^{\prime}} \delta^{\sigma^{\prime}}
$$

Furthermore, $\gamma_{J_{0}} \in S_{J 0}$.
We show first that we can conjugate x by an element of G so that $x \in D_{y}$. The proof is by induction (plus an easy convergence argument). Suppose that (by conjugating if necessary) every term in the expansion of x through $\gamma_{J} \eta^{j}$ commutes with y (i.e., $\gamma_{l} \in S_{l}$ if $i \leq j$). For $\varepsilon \in T_{J+1-ر_{0}}$, consider

$$
\begin{aligned}
\left(1+\varepsilon^{j+1-j_{0}}\right) x\left(1+\varepsilon \eta^{j+1-j_{0}}\right)^{-1} & \equiv x+\left(\varepsilon \gamma_{/ 0}^{\sigma^{j+1-\jmath_{0}}}-\gamma_{/ 0} \varepsilon^{\sigma^{\prime / 0}}\right) \eta^{\jmath+1} \bmod P^{\prime+2} \\
& \equiv x+\zeta(\varepsilon) \eta^{j+1}, \quad \text { say }
\end{aligned}
$$

From (c), $\zeta(\varepsilon) \in T_{J+1}$. On the other hand,

$$
\begin{aligned}
\zeta(\varepsilon) & =0 \Leftrightarrow\left[\varepsilon \eta^{\jmath+1-J_{0}}, \gamma \eta^{J_{0}}\right]=0 \Leftrightarrow\left[\varepsilon \eta^{\jmath+1-j_{0}}, y\right]=0 \\
& \Rightarrow \varepsilon \in S_{J+1-j_{0}} .
\end{aligned}
$$

Hence ζ is injective from $T_{J+1-J_{0}}$ to T_{J+1}, and (a)-(c) imply now that ζ is bijective. Hence we can choose ε so that the coefficient of η^{j+1} after conjugation lies in S_{J+1}, and this is the inductive step.

Thus we have $x \in D_{y}$. A simple application of Hensel's lemma shows that every $K\left(x_{r}\right)$ contains a tamely ramified extension conjugate to E_{1}. As this extension is in D_{y} and the center of y is E_{1}, the extension must be E_{1}.

Now the lemma follows by induction on t, since henceforth we can work inside D_{y}.

Theorem 4.2. With notation as above, D_{J+1} has a prime congruent $\bmod P^{s_{j+1}-s_{j}+1}$ to an element of D_{J}.

Proof. We work by induction on j. In view of Lemma 4.1, D_{j} and D_{j+1} both contain the tamely ramified extension E_{j}; thus (by passing, if necessary, to the algebra of elements commuting with E_{j}) we may assume that $K\left(x_{ر}\right)$ is totally wildly ramified over K. Similarly, we may assume that $K\left(x_{\jmath+1}\right)$ is totally ramified over K.

Let E_{j+1} be the tamely ramified piece of the extension for $K\left(x_{j+1}\right)$, and let L be a totally ramified extension of L_{j} in D. We may assume further that x_{J+1}, x_{j} commute with L. Let D_{L} be the algebra of elements commuting with L, and let, e.g., $D_{L, x_{J}}$ be the subalgebra of elements in D_{L} commuting with x_{j}. From Theorem 3.3, we can choose primes $\tilde{\eta}_{j}, \eta_{j+1}$ in $D_{L, x_{j}}$ and $D_{L, x_{j+1}}$ respectively with $\tilde{\eta}_{j} \equiv \eta_{j+1} \bmod P^{s_{j+1}-s_{j}-1}$. Then η_{j+1} is also a prime in $D_{x_{j+1}}$, because L is totally ramified over E_{j+1}, while $\tilde{\eta}_{j} \in D_{x_{j}}$.

Remark 1. It is natural to ask whether the result of the theorem is best possible. If $(n, p)=1$, the answer is certainly "no"; in fact, Lemma 4.1 says that in that case, we can find primes η_{j} for $D_{x_{j}}$ such that $\eta_{j} \in D_{x_{i}}$ for $i<j$. If n is a power of p, the answer (for totally ramified extensions) is "yes" in general; it is easy to construct examples by paralleling the constructions in the proof of Theorem 3.3. In the general case it appears that one cannot do better than Theorem 4.2, but I have not checked an example in detail.

Remark 2. The proof of Theorem 4.2 actually proves a bit more than what is stated. Since the stronger result will be useful in what follows, we state it here as a corollary.

Corollary 4.3. In the situation of Theorem 4.2,
(a) If j_{0} is the largest index $<j_{1}$ such that $s_{j_{0}}$ is a jump point with wild ramification, then there is a prime in $D_{j_{1}}$ congruent $\bmod P^{s_{11}-s_{10}+1}$ to an element of $D_{j_{0}}$;
(b) If there is no index $<j_{1}$ where wild ramification occurs, then for every $j<j_{1}, D_{j_{1}} \subset D_{j}$.
5. Commutators in division algebras. We shall later need a result about commutators, which we prove now. Let $G_{j}=1+P^{j}, G=G_{1}$.

Proposition 5.1. Let $y \in[G, G] \cap G_{h}, h \geq 2$; let r be any integer $>h$. Then we can write $y \bmod G_{r}$ as a product of commutators,

$$
y=\left(u_{1}, v_{1}\right)\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \cdots\left(u_{r-h}, v_{r-h}\right)\left(u_{r-h}^{\prime}, v_{r-h}^{\prime}\right)
$$

where each u_{i}, u_{i}^{\prime} is of the form $1+\delta_{j} \eta\left(\delta_{j} \in k_{n}\right)$ and the v_{j}, v_{j}^{\prime} are of the form $1+\varepsilon_{j} \eta^{h+j-2}$.

Proof. By an obvious induction argument, it suffices to consider the case $r=h+1$. In what follows, all calculations on G are performed modulo G_{r}. Write $y=1+\sum_{j=h}^{\infty} \gamma_{j} \eta^{j}$. If χ is any character of D^{\times}that
factors through the norm map, then $\chi(y)=1$. This implies in particular that if $w \in K \cap\left(1+P^{1-2 h}\right)$, then $\operatorname{Tr}_{D / K} w(y-1)=0$; see, e.g. Theorem 1 of [2]. Thus $\operatorname{Tr}_{k_{n} / k} \gamma_{h}=0$ if $n \mid h$.

In general, we have

$$
\left(u_{1}, v_{1}\right)=1+\left(\delta_{1} \varepsilon_{1}^{\sigma}-\varepsilon_{1} \delta_{1}^{\sigma^{h-1}}\right) \eta^{h}
$$

If $n \mid h$, let $\delta_{1}=1$. Then

$$
\left(u_{1}, v_{1}\right)=1+\left(\varepsilon_{1}^{\sigma}-\varepsilon_{1}\right) \eta^{h}
$$

as γ_{h} has trace 0 , we can choose ε_{1} so that $\left(u_{1}, v_{1}\right) \equiv y \bmod G_{r}$. In this case, we can let $u_{1}^{\prime}=v_{1}^{\prime}=1$.

If $n+h$, write

$$
\lambda_{0}=\delta_{1}^{\sigma^{h}} \delta_{1}^{\sigma^{h+1}} \cdots \delta_{1}^{\sigma^{h+(t-1)}}
$$

where t is the smallest integer such that $n=h+t$; let $\lambda=\delta_{1}^{\sigma^{h+t}} \lambda_{0}$. Then

$$
\lambda_{0}\left(\delta_{1} \varepsilon_{1}^{\sigma}-\varepsilon_{1} \delta_{1}^{\sigma^{h-1}}\right)=\left(\lambda \varepsilon_{1}\right)^{\sigma}-\lambda \varepsilon_{1}
$$

So for fixed δ_{1}.

$$
\gamma_{h}=\delta_{1} \varepsilon_{1}^{\sigma}-\varepsilon_{1} \delta_{1}^{\sigma^{h-1}} \quad \text { for some } \varepsilon_{1} \in k_{n} \Leftrightarrow \operatorname{Tr}_{k_{n} / k}\left(\lambda_{0} \gamma_{h}\right)=0
$$

Let $\delta=\delta_{1}^{\sigma^{h}}$, so that $\lambda_{0}=\delta \delta^{\sigma} \cdots \delta^{\sigma^{t-1}}$. From Hilfsatz 4 of [7], we can (by choosing δ_{1} appropriately) make λ_{0} any element such that

$$
N_{k_{n} / k_{s}} \lambda_{0} \in k, \quad s=(h, n)
$$

Write $n=p^{n_{0}} n_{1}$, where $\left(p, n_{1}\right)=1$. Suppose first that $p^{n_{0}}+h$; let $s=$ $p^{s_{0}} s_{1}$, and set $s^{\prime}=p^{s_{0}} n_{1}$. From Proposition 2.3, we know that there exists λ_{0}^{\prime} such that $N_{k_{n} / k_{s}}, \lambda_{0}^{\prime} \in k_{s^{\prime}}, \operatorname{Tr}_{k_{n} / k_{s}^{\prime}} \lambda_{0}^{\prime} \gamma_{h}=0$. Since n / s^{\prime} is a power of $p, N_{k_{n} / k_{s}^{\prime}}$ is an automorphism on $k_{s^{\prime}}^{x}$. Thus we can multiply λ_{0}^{\prime} by an element of $k_{s^{\prime}}^{x}$ to get λ_{0} with $N_{k_{n} / k_{s}^{\prime}} \lambda_{0} \in k, \operatorname{Tr}_{k_{n} / k_{s}^{\prime}} \lambda_{0} \gamma_{h}=0$. Thus we can find $\delta_{1}, \varepsilon_{1}$ to prove the lemma. Here, too, we have $u_{1}^{\prime}=v_{1}^{\prime}=1$.

Therefore we may suppose that $p^{n_{0}} \mid h$. Restrict attention to elements $\delta_{1} \in k_{n_{1}}$; it is not hard to see that it suffices to consider the case $n_{0}=0$. We are now in the tamely ramified situation. Note that

$$
\left(u_{1}, v_{1}\right)\left(u_{1}^{\prime}, v_{1}^{\prime}\right)=1+\left[\left(\delta_{1} \varepsilon_{1}^{\sigma}-\delta_{1}^{\sigma^{h-1}} \varepsilon_{1}\right)+\left(\delta_{1}^{\prime} \varepsilon_{1}^{\prime \sigma}-\delta_{1}^{\prime \sigma^{h-1}} \varepsilon_{1}^{\prime}\right)\right] \eta^{h}
$$

We need to show that the sum in brackets can be made equal to any element of k_{n}. It suffices, since $\operatorname{Tr}_{k_{n} / k}$ is faithful on k, to show that then
(a) there exists $\varepsilon_{1}, \delta_{1}$ such that $\operatorname{Tr}_{k_{n} / k}\left(\delta_{1} \varepsilon_{1}^{\sigma}-\varepsilon_{1} \delta_{1}^{\sigma-1}\right)=1$; and
(b) if $\operatorname{Tr}_{k_{n} / k} \kappa=0$, then $\exists \delta_{1}^{\prime}, \varepsilon_{1}^{\prime}$ with $\kappa=\delta_{1}^{\prime} \varepsilon_{1}^{\prime}-\varepsilon_{1} \delta_{1}^{\prime \sigma^{n-1}}$.

Part (b) is easy; in fact, we can take $\delta_{1}=1$. As for (a), fix δ_{1} and suppose that $\operatorname{Tr}_{k_{n} / k}\left(\delta_{1} \varepsilon_{1}^{\sigma}-\varepsilon_{1} \delta_{1}^{\sigma_{1}^{h-1}}\right)=0$ for all ε_{1}. Then $\operatorname{Tr}_{k_{n} / k} \varepsilon_{1}^{\sigma}\left(\delta_{1}^{\delta^{h}}-\delta_{1}\right)$ $=0$ for all ε_{1}; hence $\delta_{1}^{\delta^{h}}-\delta_{1}=0$, or σ^{h} fixes δ_{1}. We need only choose δ_{1} to be outside the fixed field of σ^{h} to complete the proof.

Part II. Representations of Division Algebras of Index $p n_{0}, p+n_{0}$.

6. Some simpler cases. Let D be a division algebra of index $p n_{0}$ over its center K, where K has residual characteristic p and (p, n_{0}) $=1$. We use the notation of $\S \S 1$ and 4.

We wish to determine the irreducible unitary representations of D^{\times}. In general, we work by determining those of G. Any such representation has a kernel containing some $\left(1+P^{m+1}\right)=G_{m+1}$ for an $m \geq 0$; choose m to be as small as possible. In this and the next few sections, we assume that m is odd; we remove this assumption in $\S 9$. Let $m=2 m^{\prime}-1$, and let χ be a character on the Abelian group $G_{m^{\prime}} / G_{m+1}$ that is nontrivial on G_{m}. As noted in §1, one can write $\chi=\chi_{x}$ for some $x \in P^{-m} \backslash P^{-m+1}$. Let s_{0}, \ldots, s_{t-1} be the jump points for x. We shall assume until $\S 9$ that the s_{J} are all odd.

The construction of the representations of G is done by (mathematical) induction. We assume that the representations of the corresponding group G^{\prime}, and of $D^{\prime \times}$, are known if D^{\prime} is a division algebra whose index over its center K^{\prime} is a proper divisor of n (of course, K^{\prime} also has residual characteristic p). We also assume that all irreducibles of G containing $\chi_{x^{\prime}}$ are known when $x^{\prime} \in P^{-m+1}$. In this section we deal with some relatively easy cases, leaving the hard work for $\S \S 7$ and 8 .

Case I. x is not in general position. Then there is a central element $x_{0} \in P^{-m}$ such that $x-x_{0} \in P^{-m+1}$. We may let $x_{0}=\gamma_{-m} \eta^{-m}$, in fact. If χ is any character of $K^{\times} \cap G$ satisfying $\chi\left(1+\delta \eta^{m}\right)=\psi\left(\gamma_{-m} \delta\right)$, then $\chi \circ N_{D / K}$ agrees with $\chi_{x_{0}}$ on P^{m}. Therefore $\chi_{\tilde{x}}=\chi_{x}\left(\chi \circ N_{D / K}\right)^{-1}$ is a character on P^{m-1}. Moreover, π_{0} contains $\chi_{\chi}^{-} \Leftrightarrow \pi_{0} \otimes\left(\chi^{\circ} N_{D / K}\right)$ contains χ_{x}, and the representations containing $\chi_{x}^{\tilde{x}}$ are assumed known.

Henceforth we assume that x is in general position. Write

$$
x=\sum_{j=-m}^{\infty} \gamma_{j} \eta^{j}, \quad x_{0}=\gamma_{-m} \eta^{-m} \notin K .
$$

Case II. $t=1$. Then $K\left(x_{0}\right)$ and $K(x)$ have the same ramification index and residue class degree. The following argument is like that in [6]; indeed, it applies whenever $t=1$ (regardless of n). It is also not strictly
necessary for the construction in our case, but I think that it may be useful to have the following result stated explicitly.

Theorem 6.1. Suppose that x is in general position and that $t=1$. Then $y \in D^{x}$ commutes with χ_{x} on $G_{m^{\prime}} \Leftrightarrow y \in G_{m^{\prime}} \cdot D_{x}$. Moreover, χ_{x} extends to a character on $G_{m^{\prime}} D_{x}$. Let χ be any such extension. For each representation π_{0} of D_{x}^{\times}trivial on $G_{m^{\prime}} \cap D_{x^{\prime}}^{\times}$extend π_{0} to $G_{m} \cdot D_{x}$ by making it trivial on $G_{m^{\prime}}$. Then $\chi \otimes \pi_{0}$ induces to an irreducible representation of D^{\times}; moreover, every representation of D^{\times}containing χ_{x} is obtained in this way.

Proof. Satz 2 of [8] gives the result about elements commuting with χ_{x}. If $w \in G_{m^{\prime}}$ and $y \in G_{m^{\prime}} \cdot D_{x}$, then $\chi_{x}((w, y))=1$ because y commutes with χ_{x}, while χ_{x} is 1 on $\left(D_{x}^{\times}, D_{x}^{\times} \cap G_{m^{\prime}}\right)$ because χ_{x} factors through the norm map on D_{x}^{\times}. Hence χ_{x} extends to $G_{m^{\prime}} \cdot D_{x}^{\times} \cdot \chi_{x} \otimes \pi_{0}$ is a multiple of χ_{x} on $G_{m^{\prime}}$, and Theorem 6 of [9] implies that it induces to an irreducible representation of D_{x}^{\times}. Finally, we show that we obtain all representations of D^{\times}containing χ_{x} which are trivial on η^{n}. We may assume that $\chi\left(\eta^{n}\right)=1$. The set $S=\left\{\pi_{0} \in\left(D_{x}^{\times}\right)^{\wedge}: \pi_{0}\right.$ is trivial on $G_{m^{\prime}} \cap$ D_{x}^{\times}and on $\left.\eta^{n}\right\}$ satisfies

$$
\sum_{\pi_{0} \in S}\left(\operatorname{Dim} \pi_{0}\right)^{2}=\left[G \cap D_{x}: G_{m^{\prime}} \cap D_{x}\right] \cdot e_{1}\left(q^{f_{1}}-1\right)
$$

since the left-hand side is $\left[D_{x}^{\times}:\left\langle\eta^{n}\right\rangle \cdot G_{m^{\prime}}\right]$. On the other hand,

$$
\left[D^{\times}: D_{x}^{\times} \cdot G_{m^{\prime}}\right]=\left[G: G_{m^{\prime}}\right]\left(\left[G \cap D_{x}: G_{m^{\prime}} \cap D_{x}\right]\right)^{-1}\left(n / e_{1}\right) \frac{\left(q^{n}-1\right)}{\left(q^{f_{1}}-1\right)}
$$

Since χ_{x} appears in $\pi=\operatorname{Ind}_{G_{m} D_{x}^{x} \rightarrow D^{x}}\left(\chi_{x} \otimes \pi_{0}\right)$ exactly ($\left.\operatorname{dim} \pi_{0}\right)$ times, we see that the π-primary subspace in $\operatorname{Ind}_{G_{m}^{\prime}\left\langle\eta^{n}\right\rangle \rightarrow D^{\star}} \chi_{x}$ has dimension $\left(\operatorname{dim} \pi_{0}\right)^{2}\left[D^{\times}: D_{x}^{\times} \cdot G_{m}\right]$. Hence, by Frobenius reciprocity, these subspaces account for a subspace of dimension

$$
\sum_{\pi_{0} \in S}\left(\operatorname{dim} \pi_{0}^{2}\right)\left[D^{x}: D_{x}^{x} \cdot G_{m}\right]=\left[G: G_{m^{\prime}}\right] n\left(q^{n}-1\right)=\left[D^{x}: G_{m^{\prime}}\left\langle\eta^{n}\right\rangle\right]
$$

or for all of $\operatorname{Ind}_{G_{m}^{\prime}\left\langle\eta^{n}\right\rangle \rightarrow D^{x}} \chi_{x}$. This proves the theorem.
Remarks. 1. We have dealt with D^{\times}rather than G in this theorem; obviously, there is a similar theorem for G. When we come to deal with the case m even, the representation χ_{x} will not extend to $G_{m^{\prime}} D_{x}^{\times}$, and we need to use a Weil representation; see, e.g., [4].
2. In general, $K(x)$ is not determined up to conjugacy by $x \bmod p^{-m^{\prime}}$; this is most evident in the case where $K(x)$ is inseparable. This fact makes it more difficult to arrange for a good parametrization of $\left(D^{\times}\right)^{\wedge}$.

Case III. The first jump point involves only tame ramification. From Lemma 4.1, we may assume that the γ, η^{j} all commute. Now the construction of [5] (or [1]) yields all irreducible representations of D^{\times}that agree with χ_{x} on G_{m}, and hence all such representations agreeing with χ_{x} on $G_{m^{\prime}}$. The proofs are exactly as in [1]; we omit details.

Case IV. The first jump point is not totally wildly ramified. Let K_{0} be the largest tamely ramified field in $K\left(x_{0}\right)$; we may assume again (Lemma 4.1) that every $\gamma_{j} \eta^{j}$ commutes with K_{0}. Let D_{0} be the algebra of elements commuting with K_{0}, and construct all representations σ of $D_{0}^{\times} \cap G$ containing $\chi_{x} \mid D_{0}^{\times} \cap G_{m^{\prime}}$. The same construction as in [1] shows that there is a subgroup N_{0} of $G_{m^{\prime}}$ on which χ_{x} is trivial, which is normalized by $D_{0}^{\times} \cap G$, and which satisfies

$$
N_{0}\left(D_{0}^{\times} \cap G\right)=G_{m^{\prime}}\left(D_{0}^{\times} \cap G\right), \quad N_{0} \cap\left(D_{0}^{\times} \cap G\right) \subseteq G_{m+1}
$$

Then we can extend σ to $G_{m^{\prime}}\left(D_{0}^{\times} \cap G\right)$ by making it trivial on N_{0}. Induce σ to G to get an irreducible π containing χ_{x}. That π is irreducible and that every π containing χ_{x} is obtained in this way can be proved essentially as in Case III, by following the corresponding proofs in [1].
7. Extending χ_{x}. We henceforth assume that
(a) the element x is in general position;
(b) the first jump point of $x, s_{0}=-m$, is totally wildly ramified.

Let $-s_{j}=2 s_{j}^{\prime}-1$ (recall that we are assuming that the s_{j} are all odd), and define $H=H_{x}$ to be the group

$$
G_{s_{0}^{\prime}}\left(G_{s_{1}^{\prime}} \cap D_{x_{1}}\right) \cdots\left(G_{s_{t-1}^{\prime}} \cap D_{x_{t-1}}\right)\left(G \cap D_{x_{t}}\right)
$$

We wish to show that χ_{x} extends to a character of H. This is equivalent to:

Theorem 7.1. If $y \in[H, H] \cap G_{s_{0}^{\prime}}$, then $\chi_{x}(y)=1$.
Proof. This follows the lines of the proof of Lemma 8 of [2]. We write y as a product of commutators. We note that

$$
\begin{equation*}
\left(v_{1} v_{2}, w\right)=\left(v_{1} v_{2} v_{1}^{-1}, v_{1} w v_{1}^{-1}\right)\left(v_{1}, w\right) \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(v, w_{1} w_{2}\right)=\left(v, w_{1}\right)\left(w_{1} v w_{1}^{-1}, w_{1} w_{2} w_{1}^{-1}\right) \tag{7.2}
\end{equation*}
$$

In this way, we can let y be a product of commutators of the form (v, w), where $v=1+\gamma \eta_{0}^{r}, w=1+\gamma \eta^{s}$, and η_{0}, η are specified primes, while $\gamma, \delta \in k_{n}$. Similarly, we can commute commutators by using

$$
u_{2} u_{1}=u_{1}\left(u_{1}^{-1} u_{2} u_{1}\right)
$$

where, if $u_{2}=(v, w)$, then $u_{1}^{-1} u_{2} u_{1}=\left(u_{1}^{-1} v u_{1}, u_{1}^{-1} w u_{1}\right)$.
We proceed by a lengthy sequence of steps.
(a) If $v, w \in H$ and $v w v^{-1} \in G_{s_{0}^{\prime}}=G_{m^{\prime}}$, then $w \in G_{m^{\prime}}$ (since $G_{m^{\prime}}$ is normal in G), and $\chi_{x}\left(v w v^{-1}\right)=\chi_{x}(w)$, since $\chi_{x}\left(v w v^{-1}\right)=\chi_{v^{-1} x v}(w)$ and elements of H preserve χ_{x}. In particular, $\chi_{x}((v, w))=1$.
(b) The following computation will arise repeatedly in the proof: if x and v commute, then

$$
\operatorname{Tr}_{D / K} x\left(v u v^{r-1}-u v^{r}\right)=\operatorname{Tr}_{D / K}\left(v x u v^{r-1}-x u v^{r}\right)=0
$$

since $\operatorname{Tr}_{D / K}(a b)=\operatorname{Tr}_{D / K}(b a)$.
(c) Let $H^{\prime}=H_{x}^{\prime}=G_{s_{0}^{\prime}}\left(G_{s_{1}^{\prime}} \cap D_{x_{1}}\right) \cdots\left(G_{s_{t-1}^{\prime}} \cap D_{x_{t-1}}\right)$. If $u, v \in H^{\prime}$, then $(u, v) \in G_{s_{0}^{\prime}}$ and $\chi_{x}((u, v))=1$. To prove this, it suffices to consider the case where $u \in G_{s_{1}^{\prime}} \cap D_{x_{i}}$ and $v \in G_{s_{,}} \cap D_{x_{,}}$, as repeated use of (7.1) and (7.2) shows. Assume $i \leq j$, for definiteness; write $u=1+u_{0}, v=$ $1+v_{0}$. Then modulo P^{m+1},

$$
\begin{aligned}
(u, v) & =1+\left(u_{0} v_{0}-v_{0} u_{0}\right)+\left(v_{0} u_{0}^{2}-u_{0} v_{0} u_{0}\right)+\left(v_{0} u_{0} v_{0}-u_{0} v_{0}^{2}\right) \\
& =\left(1+u_{0} v_{0}-v_{0} u_{0}\right)\left(1+v_{0} u_{0}^{2}-u_{0} v_{0} u_{0}\right)\left(1+v_{0} u_{0} v_{0}-u_{0} v_{0}^{2}\right)
\end{aligned}
$$

Since $u_{0} v_{0}-v_{0} u_{0} \in P^{m-s_{j}+1}$, we have

$$
\chi_{x}\left(1+u_{0} v_{0}-v_{0} u_{0}\right)=\chi_{x_{j}}\left(1+u_{0} v_{0}-v_{0} u_{0}\right)=1
$$

from (b) (note that x_{j} and v_{0} commute). The other terms are taken care of similarly.
(d) Now (a) and (c) reduce us to considering

$$
\begin{equation*}
w=\left(u_{1}, v_{1}\right) \cdots\left(u_{r}, v_{r}\right) \tag{7.3}
\end{equation*}
$$

where one of each u_{j}, v_{j} is in $G \cap D_{x}$. We shall assume for notational convenience that $u_{j} \in G \cap D_{x}$ for all j; this will not affect the proof. We may also assume that $u_{j}=1+u_{j, 0}, v_{j}=1+v_{j, 0}$, where the $u_{j, 0}, v_{j, 0}$ are "monomials":

$$
\begin{equation*}
u_{j, 0}=\delta \eta_{t}^{a} ; \quad v_{j, 0}=\varepsilon \eta_{l}^{b}, \quad a=a_{J}, b=b_{j} \tag{7.4}
\end{equation*}
$$

where $\delta, \varepsilon \in k_{n}, \quad v_{j_{0}} \in G_{s_{s}^{\prime}} \cap D_{x_{l}}$, and η_{l}, η_{t} are primes for $D_{x_{l}}, D_{x_{t}}$ respectively. We fix these primes so that η_{l} is congruent $\bmod P^{s_{l}-s_{1}}$ to an element η_{l}^{\prime} of $D_{x_{1}}$.

We may assume also that for the first r_{0} commutators, and only for these, we have $v_{j} \in D_{x_{i}}$. Then the product of these commutators is in $G_{s_{t-1}^{\prime}+1}$ (since every other commutator is in $G_{s_{t-1}^{\prime}+1}$), and we may, therefore, assume from Proposition 5.1 that $a_{j}+b_{j} \geq s_{t-1}^{\prime}$ for all j. (In fact, we can have $a_{j}=$ the order of a prime in D_{x}, for $j \leq r_{0}$).

Write $u_{j}^{\prime}=1+u_{j, 0}^{\prime}, v_{j}^{\prime}=1+v_{j, 0}^{\prime}$, where

$$
\begin{equation*}
u_{j, 0}^{\prime}=\delta\left(\eta_{t}^{\prime}\right)^{a}, v_{j, 0}^{\prime}=\varepsilon \eta_{l}^{\prime b} \quad\left(\eta_{t}^{\prime}, \eta_{l}^{\prime} \text { primes in } D_{x_{1}} \text { related to } \eta_{t}, \eta_{1}\right. \tag{7.5}
\end{equation*}
$$

as in Theorem 4.2 and Corollary 4.3);
the $a, b, \delta, \varepsilon$ in (7.5) agree with those in (7.4). Let

$$
y^{\prime}=\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \cdots\left(u_{r}^{\prime}, v_{r}^{\prime}\right)
$$

Then y^{\prime} is a commutator in $D_{x_{1}}$, so that

$$
\chi_{x_{1}}\left(y^{\prime}\right)=1
$$

The proof consists of showing that $\chi_{x}(y)=\chi_{x_{1}}(y)$.
(e) Write $\left(u_{j}, v_{j}\right)=1+w_{j, 0}+w_{j, 1}$, where

$$
w_{j, 0}=\sum_{i=1}^{\infty}(-1)^{i}\left(v_{j} u_{j}^{i}-u_{j} v_{j} u_{j}^{i-1}\right)
$$

write $y=1+w_{0}+w_{1}$, where $w_{0}=\sum_{j=1}^{r} w_{j, 0}$. If one multiplies out all the commutators, w_{1} consists of all terms of degree ≥ 2 in the v_{j}. For instance, we have $\left(\bmod G_{m+1}\right)$
$w_{j, 1}=\sum_{i=1}^{\infty}(-1)^{i}\left(u_{j, 0} v_{j, 0} u_{j, 0}^{i-1} v_{j, 0}-v_{j, 0} u_{j, 0}^{i} v_{j, 0}+v_{j, 0} u_{j, 0}^{i} v_{j, 0}^{2}-u_{j, 0} v_{j, 0} u_{j, 0}^{i-1} v_{j, 0}^{2}\right)$, and w_{1} is a sum of the $w_{j, 1}$, plus products of the $w_{j, 0}$ and $w_{j, 1}$. Thus $w_{1} \in P^{m^{\prime}}$; as $w \in G_{m^{\prime}}$, we have $w_{0} \in P^{m^{\prime}}$, and

$$
\chi_{x}\left(1+w_{0}+w_{1}\right)=\chi_{x}\left(1+w_{0}\right) \chi_{x}\left(1+w_{1}\right)
$$

Similarly, we write $\left(u_{j}^{\prime}, v_{j}^{\prime}\right)=1+w_{j, 0}^{\prime}+w_{j, 1}^{\prime}$ and

$$
y^{\prime}=\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \cdots\left(u_{r}^{\prime}, v_{r}^{\prime}\right)=1+w_{0}^{\prime}+w_{1}^{\prime}
$$

the same argument as above shows that

$$
\chi_{x_{1}}\left(y^{\prime}\right)=\chi_{x_{1}}\left(1+w_{0}^{\prime}\right) \chi_{x_{1}}\left(1+w_{1}^{\prime}\right), \quad w_{0}^{\prime} \text { and } w_{1}^{\prime} \in P^{m^{\prime}}
$$

(f) We have

$$
\chi_{x}\left(1+w_{0}\right)=1
$$

from (b), since each u_{j} commutes with x. Similarly, $\chi_{x_{1}}\left(1+w_{0}^{\prime}\right)=1$.
Moreover, w_{1} and w_{1}^{\prime} are congruent $\bmod P^{-s_{1}}+1$. The reason is that each term of w_{1} is at least quadratic in the $u_{j, 0}$; moreover, if $u_{ر, 0}$ appears, so does $v_{j, 0}$. By Corollary 4.3 (applied to $j_{0}=0$), $u_{j, 0} v_{j, 0} \equiv u_{j, 0}^{\prime} v_{j, 0}^{\prime}$ $\bmod P^{s_{r}-s_{0}+c-1}$, where $v_{j} \in D_{x_{r}}$ and c is the order of $u_{J, 0}^{\prime} v_{J, 0}^{\prime}$. This order is at least $P^{s_{r}^{\prime}+1}$. Thus $u_{j, 0} v_{J, 0} \equiv u_{j, 0}^{\prime} v_{j, 0}^{\prime} \bmod P^{m-s_{r}^{\prime}}$. Now suppose that the term of w_{1} contains a product $u_{j, 0} v_{, 0,0} u_{t, 0} v_{t, 0}$, where $v_{i, 0} \in D_{x_{r^{\prime} j, 0}}$ and $r^{\prime} \geq r$. Then $u_{t, 0} v_{i, 0}$ and $u_{t, 0}^{\prime} v_{t, 0}^{\prime}$ are in $P^{s_{r}^{\prime}+1}$ (and congruent $\left.\bmod P^{m-s_{r}^{\prime}}\right)$; hence the products are congruent $\bmod P^{m-s_{r}^{\prime}+s_{r}^{\prime}+1}$, and therefore congruent $\bmod P^{m+1}$. The remaining terms in $w_{ر, 1}$ are of the form $u_{ر, 0} v_{j, 0}^{2}$ or $v_{J, 0} u_{j, 0} v_{j, 0}$. But, e.g., $u_{j, 0} v_{j, 0}^{2} \equiv u_{j, 0}^{\prime} 0_{j, 0}^{\prime 2} \bmod P^{m-s_{r}^{\prime}+s_{r}^{\prime}}=P^{m}$, and $\chi_{x}, \chi_{x_{1}}$ agree on G_{m}.
(g) It follows that $\chi_{x_{1}}\left(1+w_{1}^{\prime}\right)=\chi_{x}\left(1+w_{1}\right)$; (e) and (f) give

$$
\chi_{x}(w)=\chi_{x_{1}}\left(\left(1+w_{0}^{\prime}\right)\left(1+w_{1}^{\prime}\right)\right)=1
$$

since $\left(1+w_{0}^{\prime}\right)\left(1+w_{1}^{\prime}\right)$ is congruent $\bmod P^{m+1}$ to a commutant in $D_{x_{1}}$. This proves the theorem.
8. Construction of the representations. In this section, we construct "enough" representations of $H=H_{x}$ so that inducing to G produces all the desired irreducibles. This is not too difficult, but takes some time.

Recall that $K\left(x_{1}\right)$ is totally wildly ramified. Hence we may (and do) assume that $\gamma_{-m} \in k$. This implies that the residue class fields of D_{1}, \ldots, D_{t} are all extensions of degree prime to p. The residue class field of $D_{x_{1}}$ is $k_{n_{0}}$; let l_{j} be the residue class field of D_{j}, and let $k\left(x_{j}\right)$ have ramification index and residue class degree e_{j}, f_{j} respectively.

We know that H_{x} is generated by $G_{m^{\prime}}$ and elements $1+\delta \eta_{j}^{r}$, where η, is a prime of D_{J} that is close to an element of $D_{1}, \delta \in l_{J}$, and $r \geq s_{j}^{\prime}$. Moreover, $\eta_{j} \equiv \delta_{J}^{\prime} \eta^{f_{j}} \bmod P^{f_{j}+1}$ for some $\delta^{\prime} \in k_{n_{0}}$. For each integer r, let $S_{r}(j)=\left\{\delta \in k_{n_{0}}\right.$; there is an element of D_{j} congruent $\bmod P^{r+1}$ to $\left.\delta \eta^{r}\right\}$, $T_{r}(j)=\left\{\varepsilon \in l_{1}: \operatorname{Tr}_{k_{n_{0}} / l_{j}}\left(\varepsilon \delta^{-1}\right)=0\right.$ for all nonzero $\left.\delta \in S_{r}(j)\right\}$.
We sometimes write S_{r}, T_{r} for $S_{r}(t), T_{r}(t)$.
Lemma 8.1. (a) $S_{0}(j)=l_{J}$,
(b) If $\delta \in S_{r}(j)$ is nonzero, then

$$
S_{r+r^{\prime}}(j)=\delta^{\sigma^{r}} S_{r^{\prime}}(j)=\delta S_{r^{\prime}}(j)^{\sigma^{r}}
$$

and

$$
T_{r+r^{\prime}}(j)=\delta^{\sigma^{\prime} \prime} T_{r^{\prime}}(j)=\delta T_{r^{\prime}}(j)^{\sigma^{r}}
$$

(c) Both $S_{r}(j)$ and $T_{r}(j)$ are vector spaces over l_{j}, and $S_{r}(j) \oplus T_{r}(j)$ $=k_{n_{0}}$.
(d) $\operatorname{Dim}_{l_{j}^{\prime}} S_{r}(j)=1$ if $F_{j} \mid r$ and 0 otherwise.

Proof. This is essentially done as Lemma 2 of [3].
Now let N be the subgroup of H generated by $G_{m^{\prime}}$ and the elements $1+\varepsilon \eta_{j}^{r} \in D_{j} \cap H$ with $\varepsilon \in T_{r}$.

Lemma 8.2. (a) N is normal in H,
(b) $H / N \cong\left(G \cap D_{x}\right) /\left(G_{m^{\prime}} \cap D_{x}\right)$.

Proof. (a) Since

$$
\left(1+\varepsilon_{1} \eta_{j_{1}}^{r_{1}}\right)\left(1+\varepsilon_{2} \eta_{j_{2}}^{r_{2}}\right) \equiv 1+\varepsilon_{1} \eta_{j_{1}}^{r_{1}}+\varepsilon_{2} \eta_{j_{2}}^{r_{2}} \bmod P^{m^{\prime}}
$$

if the $1+\varepsilon_{i} \eta_{j_{t}}^{r_{i}}$ are generators of N, and since $\eta_{j_{t}}^{r_{i}}$ is congruent to an element of D_{x} modulo $P^{m^{\prime}}$, it is not hard to see that N is composed entirely of elements of the form

$$
\begin{equation*}
w=1+\sum_{j=j_{0}}^{\infty} \varepsilon_{j} \eta_{t}^{j}, \quad 2 j_{0} \geq m^{\prime} \text { and } \varepsilon_{j} \in T_{j} \text { if } j<m^{\prime} \tag{8.1}
\end{equation*}
$$

while H is composed of elements of the form

$$
\begin{equation*}
y=1+\sum_{j=1}^{\infty} \delta_{j} \eta_{t}^{j}, \quad \delta_{j} \in S_{j} \text { if } 2 j<m^{\prime} \tag{8.2}
\end{equation*}
$$

To prove (a), it suffices to show that every element of the form (8.2) normalizes the elements of the form (8.1).

Write

$$
w=w_{j_{0}} w_{j_{0}+1} \cdots w_{m^{\prime}}, \quad w_{j}=1+\varepsilon_{j} \eta_{t}^{J} \quad \text { for } j<m^{\prime}
$$

then $w_{m^{\prime}} \in 1+P^{m^{\prime}}$. Similarly, one can write

$$
\begin{aligned}
& y=y_{1} \cdots y_{s^{\prime}} \quad y_{j}=1+\delta_{j}^{\prime} n_{t}^{j} \quad \text { with } \delta_{j}^{\prime} \in S_{j} \text { for } 2 j<m^{\prime} ; \\
& y_{s} \in 1+P^{s} \text { and } 2 s \geq m^{\prime} .
\end{aligned}
$$

Then y_{s} commutes with $w \bmod 1+P^{m^{\prime}}$ and $w_{m^{\prime}}$ commutes with each $y_{j} \bmod 1+P^{m^{\prime}}$. It thus suffices to show that $y_{i} w_{j} y_{l}^{-1} \in N$ for $i<s$ and
$j<m^{\prime}$. This is a straightforward calculation:

$$
\begin{aligned}
y_{i} w_{j} y_{l}^{-1}= & 1+\varepsilon_{j} \eta_{t}^{J}+\left(\delta_{l}^{\prime} \varepsilon_{j}^{\sigma^{t}}-\varepsilon_{j} \delta_{l}^{\sigma^{\prime}}\right) \eta_{t}^{l+J} \\
& +\left(\delta_{i}^{\prime} \varepsilon_{j}^{\sigma^{\prime} \delta_{i}^{\prime \sigma^{++\jmath}}}-\varepsilon_{j} \delta_{l}^{\prime \sigma^{\prime}} \delta_{i}^{\prime \sigma^{+\dagger}}\right) \eta_{t}^{2 t+\jmath}+\cdots,
\end{aligned}
$$

and repeated application of Lemma 8.1 shows that $y_{t} w_{J} y_{t}^{-1} \in N$.
As for (b), $G \cap D_{x}$ injects into H and hence maps into H / N; from the form of elements in N and H given in (8.1) and (8.2), it is easy to verify that the map is surjective and has $G_{m^{\prime}} \cap D_{x}$ as kernel.

Any representation of $G \cap D_{x}$ that is trivial on $G_{m^{\prime}} \cap D_{x}$ can thus be as a representation of H trivial on N. Take an extension of χ_{x} to G (guaranteed by Theorem 7.1); call the extension χ_{x} as well. Then $\chi_{x} \otimes \sigma$ is also a representation of H, and is a multiple of χ_{x} on N.

Let $H^{\prime}=G_{m^{\prime}}\left(G_{-s_{1}} \cap G_{x_{1}}\right) \cdots\left(G_{-s_{t-1}} \cap D_{x_{t-1}}\right)\left(G \cap D_{x}\right)$. The key results we need about H^{\prime} and H are contained in the following proposition:

Proposition 8.3. (a) $\left[H^{\prime}: H\right]=\left[H: G_{m^{\prime}}\left(G \cap D_{x}\right)\right]$.
(b) If $y \in G$ is such that $\chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ for all $w \in G_{m^{\prime}}$, then $y \in H^{\prime} ;$ conversely, $y \in H^{\prime} \Rightarrow \chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ for all $w \in G_{m^{\prime}}$.
(c) If $y \in H^{\prime}$ is such that $\chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ for all $w \in H$ such that $y w y^{-1} \in H$, then $y \in H ;$ conversely, $\chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ if $w, y \in H$.

Before proving Proposition 8.3, we show how it solves the problem of constructing representations of G containing χ_{x}. For each $\sigma \in$ $\left(D_{x} \cap G / D_{x} \cap G_{m^{\prime}}\right)^{\wedge}$, let $\pi_{\sigma}=\operatorname{Ind}_{H}^{G}\left(\sigma \otimes \chi_{x}\right)$.

THEOREM 8.4. The π_{σ} are distinct irreducibles of G, and $\operatorname{Ind}_{G_{m}}^{G} \chi_{x} \cong$ $\oplus \sigma\left[H^{\prime}: H\right](\operatorname{Dim} \sigma) \pi_{\sigma}$.

Proof. The irreducibility follows from Proposition 8.3 (c) and Theorem 6 of [9]. Proposition 8.3 (c) and Theorem 7 of [9] also imply that the π_{σ} are distinct.

Frobenius reciprocity says that π_{σ} appears in $\operatorname{Ind}_{G_{m}}^{G} \chi_{x}$ with a multiplicity equal to the multiplicity of χ_{x} in $\left.\pi_{\sigma}\right|_{G_{m}}$. But

$$
\left.\left.\pi_{\sigma}\right|_{G_{m}} \cong \bigoplus_{y \in G / H} \sigma \otimes \chi_{y x y^{-1}}\right|_{G_{m}} \cong(\operatorname{dim} \sigma) \underset{y \in G / H}{ } \chi_{y x y^{-1}}
$$

and $\chi_{y x y^{-1}}=\chi_{x} \Leftrightarrow y \in H^{\prime} / H$ from Proposition 8.3(b). Thus the multiplicity of π_{σ} is $\left[H^{\prime}: H\right] \operatorname{dim} \sigma$. Finally,

$$
\begin{aligned}
{\left[H^{\prime}: H\right](\operatorname{dim} \sigma) \operatorname{dim} \pi_{\sigma} } & =\left[H^{\prime}: H\right][G: H] \operatorname{dim}^{2} \sigma \\
& =\left[G: G_{m^{\prime}}\left(D_{x} \cap G\right)\right] \cdot \operatorname{dim}^{2} \sigma
\end{aligned}
$$

by Proposition 8.3(a). Summing over σ shows that we have accounted for a subrepresentation of $\operatorname{Ind}_{G_{m}}^{G} \chi_{x}$ of dimension

$$
\begin{aligned}
\sum_{\sigma}\left[G: G_{m^{\prime}}\left(d_{x} \cap G\right)\right] \operatorname{dim}^{2} \sigma & =\left[G: G_{m^{\prime}}\left(D_{x} \cap G\right)\right]\left[D_{x} \cap G: D_{x} \cap G_{m^{\prime}}\right] \\
& =\left[G: G_{m}^{\prime}\right]
\end{aligned}
$$

and hence for all of $\operatorname{Ind}_{G_{m}}^{G} \chi_{x}$.
We still need to prove Proposition 8.3. For part (b), write $w=1+w_{0}$, $w_{0} \in P^{m^{\prime}}$. Then

$$
\chi_{x}\left(y w y^{-1}\right)=\psi \circ \operatorname{Tr}_{D / K}\left(x y w_{0} y^{-1}\right)=\psi \circ \operatorname{Tr}_{D / K}\left(y^{-\prime} x y w_{0}\right)
$$

This is equal to $\psi \circ \operatorname{Tr}_{D / K}\left(x w_{0}\right)$ for all $w_{0} \in P^{m^{\prime}}$ iff

$$
x-y^{-1} x y \in P^{-m^{\prime}+1}
$$

and this congruence holds iff $y \in H^{\prime}$ by Satz 2 of [8]. Half of part (c) is easy; $y, w \in H \Rightarrow \chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ from Theorem 7.1. For the rest of (c) and for (a), we need to do some more work.

The field k_{n} is the compositum of k_{p} and $k_{n_{0}}$. Define $\alpha_{1}, \beta_{1} \in k_{p}$ as in §2.

Lemma 8.5. Let $x-x_{j} \equiv \zeta_{j} \eta^{s_{j}} \bmod P^{s_{j}+1}$, with $j \geq 1$. Then by conjugating, we may assume that $\zeta_{J}=\beta_{1} \zeta_{j}^{\prime}, \zeta_{j}^{\prime} \in S_{s_{j}}(j)$ and $\zeta_{j}^{\prime} \neq 0$.

Proof. We have seen that $x-x_{0} \equiv \gamma_{-m} \eta^{-m} \bmod P^{-m+1}$, with $\gamma_{-m} \in k$ and $\gamma_{-m} \neq 0$. Since x_{0} is totally wildly ramified, we have $(m, p)=m_{0}$.

Assume the lemma for $j-1$. We certainly have

$$
\zeta_{j}=\sum_{i=0}^{p-1} \alpha_{1}^{\prime} \zeta_{i, j} \quad \text { for appropriate } \zeta_{i, j} \in k_{n_{0}}
$$

We describe anything of the form

$$
\sum_{i=0}^{p-2} \alpha_{1}^{i} \gamma_{j}, \quad \gamma_{j} \in k_{n_{0}}
$$

as "small". Note that if we conjugate x with $1+\gamma \eta^{s_{j}+m}$, we get $x+$ $\gamma_{0}\left(\gamma^{\sigma^{-m}}-\gamma\right) \eta^{s_{j}}\left(\bmod P^{s_{j}+1}\right)$, and $\gamma_{0}\left(\gamma^{\sigma^{-m}}-\gamma\right)$ can be any element α of k_{n} such that $\operatorname{Tr}_{k_{n} / k_{n_{0}}} \alpha=0$; that is, we can always get rid of any small element by conjugating.

Thus we have $\xi_{j}=\alpha_{1}^{p-1} \zeta_{1}^{\prime}, \zeta_{j}^{\prime} \in k_{n_{0}}=S_{s_{j}}(1)$. Now conjugate x with $1+\gamma \eta_{1}^{s_{1}-s_{1}}$, where $\gamma \in k_{n_{0}}=l_{1}$; we get $\left(\bmod P^{s_{j}+1}\right.$, as all future computations are made)

$$
x+\left(\delta \zeta_{1^{\prime}}^{s^{-s_{1}}}-\delta^{\sigma^{s_{1}}} \zeta_{1}\right) \eta^{s_{J}}, \quad \delta \text { any element of } k_{n_{0}}
$$

Now $\zeta_{1}=\alpha_{1}^{p-\prime} \zeta_{1}^{\prime}$ with $\zeta_{1}^{\prime} \in k_{n_{0}}$. Moreover, Satz 8 of [7] shows that the largest tamely ramified extension of $K\left(\zeta_{1} \eta^{s_{j}}\right)$ is (conjugate to) the largest tamely ramified extension of x_{1}; this implies that $\delta \in S_{r}(2) \Leftrightarrow \delta \eta^{r}$ and $\zeta_{1}^{\prime} \eta^{s_{1}}$ commute. So set

$$
F_{1}(\delta)=\delta \zeta_{1}^{\prime \sigma^{s_{j}-s_{1}}}-\delta^{\sigma^{s_{1}}} \zeta^{\prime}, \quad \delta \in k_{n_{0}}=S_{s_{j}-s_{1}}(1)
$$

This is a k-linear map, and it is $0 \Leftrightarrow \delta \in S_{s_{j}-s_{1}}(2)$. For $\delta \in T_{s_{j}-s_{1}}(2)$, Lemma 8.1 implies that $F_{1}(\delta) \in T_{s_{j}}(2)$. Hence counting implies that F_{1} maps $k_{n_{0}}$ into $T_{s_{1}}(2)$. Moreover,

$$
\delta \zeta_{1}^{\sigma_{j}^{s_{j}-s_{1}}}-\delta^{\sigma^{s_{1}}} \zeta_{1}=\alpha^{p-1} F_{1}(\delta)+\text { a small term }
$$

Thus we can change $\gamma_{s_{j}}$ (the coefficient of $\eta^{s_{j}}$ in the expansion of x) by any element of the form $\alpha^{p-1} \varepsilon, \varepsilon \in T^{s,}(2)$. It follows that we can arrange to have $\zeta_{j}=\alpha_{1}^{p-1} \zeta_{j ; 2}$, with $\zeta_{j ; 2} \in S_{j}(2)$.

We continue inductively. Conjugate x with $1+\gamma \eta_{2}^{s_{2}-s_{1}}, \gamma \in l_{2}$; we get $x+\left(\delta \zeta_{2}^{\sigma_{1} s^{-s_{2}}}-\delta^{\sigma^{s_{2}}} \zeta_{2}\right) \eta^{s_{1}}$, where δ is any element of $S_{s_{j}-s_{1}}(2)$. The same argument as before shows that $\delta \in S_{r}(2) \Leftrightarrow \delta \eta^{r}$ commutes with $\zeta_{1}^{\prime} \eta^{s_{1}}$ and $\zeta_{2}^{\prime} \eta^{s_{2}}$. So define $F_{2}(\delta)=\delta \zeta_{2}^{\prime \sigma_{1}-s_{2}}-\delta^{\sigma^{s_{2}}} \zeta_{2}^{\prime}, \delta \in S^{s_{1}-s_{2}}(2)$; by the same argument as above, F_{2} maps $S^{s_{1}-s_{2}}(2)$ onto $T^{s_{,}}(3)$. It follows that we can have $\zeta_{J}=\alpha_{1}^{p-1} \zeta_{j ; 3}, \zeta_{j ; 3} \in T_{j}(3)$, and the same inductive procedure gives the result.

Corollary. In the above setup, let L_{j} be the maximal tamely ramified extension in $K\left(x_{j}\right)$. Choose $\zeta_{j, 0}$ such that $\zeta_{j, 0} \eta_{j}^{s_{j} / f_{j}} \equiv \zeta_{j}^{\prime} \eta^{s_{j}} \bmod \eta^{s_{j+1}}$. Then L_{J+1} is conjugate $(\bmod$ an element of $G)$ to the maximal tamely ramified extension in $L_{j}\left(\zeta_{j, 0} \eta_{j}^{s_{j} / f_{j}}\right)$. (This follows from Satz 8 of [7], as we observed in the course of the proof of Lemma 8.5.)

Remark 1. The corollary shows the following useful fact: suppose that $\delta \in S_{r}(j)$. Then $\delta \in S_{r}(j+1)$ if $\delta \eta^{r}$ and $\zeta_{j}^{\prime} \eta^{s_{j}}$ commute, or, equivalently, if $\delta \eta^{r}$ and $\zeta_{0 ; J}^{s_{j} / f_{j}}$ commute $\bmod P^{s_{j}+r+1}$. The reason is that $\delta \eta^{r}$ then commutes with the largest tamely ramified extension in $K\left(\zeta_{J}^{\prime} \eta^{s}\right)$. Another way of stating the condition is that $\delta^{\prime} \eta_{j}^{r}$ is congruent $\bmod P^{r f_{j}+1}$ to an element of $K\left(x_{j+1}\right)$ if $\delta^{\prime} \in S_{0}(j)$ and $\left[\delta \eta_{j}^{r}, \zeta_{0 ; j} \eta^{s_{J} / f_{j}}\right]=0$.

Remark 2. While the process of Lemma 8.5 may mean that the tamely ramified extensions in $K\left(x_{j}\right)$ are no longer contained in the algebra generated by $k_{n_{0}}$ and η^{p}, conjugating by elements of G does not change the membership of the $S_{r}(j)$ or $T_{r}(j)$.

We now return to the proof of Proposition 8.3. Part (a) is a matter of counting. For each $r \leq m^{\prime}$, we compute $\operatorname{card}\left(H \cap G_{r}\right) /\left(H \cap G_{r+1}\right)$. If $s_{j}^{\prime} \leq r<s_{j-1}^{\prime}$, this number is 1 if $f_{j}+r$ and card $l_{j}=q^{n / e_{j}}$ if f_{j} / r. Since $f_{j} \mid\left(2 s_{j}^{\prime}-1,2 s_{j-1}^{\prime}-1\right)$, we see that for $j \leq t$,

$$
\prod_{s_{j}^{\prime} \leq r<s_{j-1}^{\prime}}\left[H \cap G_{r}: H \cap G_{r+1}\right]=q^{l\left(n / e_{j} f_{j}\right)\left(s_{j-1}^{\prime}-s_{j}^{\prime}\right)}
$$

A similar calculation for $r<s_{t}^{\prime}$ gives

$$
\prod_{1 \leq r<s_{t}^{\prime}}\left[H \cap G_{r}: H \cap G_{r+1}\right]=q^{\left(n / e_{t} f_{t}\right)\left(s_{t-1}^{\prime}-s_{t}^{\prime}\right)}, \quad 2 s_{t}^{\prime}-1=-s_{t}=f_{t}
$$

So

$$
\log _{q}\left[H: H \cap G_{m^{\prime}}\right]=\sum_{j=1}^{t} \frac{n}{n_{j}}\left(s_{j-1}^{\prime}-s_{j}^{\prime}\right), \quad n_{j}=\left[K_{j}: K\right]
$$

Similarly,

$$
\log _{q}\left[G \cap D_{x}: G_{m^{\prime}} \cap D_{x}\right]=\frac{n}{n_{t}}\left(s_{0}^{\prime}-s_{t}^{\prime}\right)
$$

and

$$
\log _{q}\left[H^{\prime}: H^{\prime} \cap G_{m^{\prime}}\right]=\frac{n}{n_{t}}\left(s_{0}^{\prime}-\left(s_{t-1}-s_{0}\right)-s_{t^{\prime}}\right)+\sum_{j=1}^{t-1} \frac{n}{n_{j}}\left(-s_{j}+s_{J-1}\right)
$$

It is now easy to verify that
$2 \log _{q}\left[H: H \cap G_{m^{\prime}}\right]=\log _{q}\left[G \cap D_{x}: G_{m^{\prime}} \cap D^{x}\right]+\log _{q}\left[H^{\prime}: H^{\prime} \cap G_{m^{\prime}}\right]$, which proves (a).

As for the second half of (c), assume that $\chi_{x}\left(y w y^{-1}\right)=\chi_{x}(w)$ for all $w \in H$ such that $y w y^{-1} \in H$, but that $y \notin H$. Since $y \in H^{\prime}$ (from (b)), we may assume (after multiplying by an element of H) that

$$
y=1+\varepsilon \eta_{j}^{r}+\text { higher order terms }
$$

where $1+\varepsilon \eta_{j}^{r} c G_{-s_{j}} \cap D_{j}$ and $1+\varepsilon \eta_{J}^{r} \notin G_{s_{j}^{\prime}} \cap D_{j}$. We have $\varepsilon \eta_{J}^{r} \in P^{\vee f_{j}} \sim$ $P^{r f_{j}-1}$, and we may assume that $\varepsilon \eta_{J}^{r}$ is not congruent mod $P^{r f_{j}+1}$ to an element of D_{J-1}.

Let $w_{\delta}=1+\delta_{0} \delta \eta_{J}^{r^{\prime}}$, where $\left(r+r^{\prime}\right) f_{J}=-s_{J}, \delta \in l_{J}$ is fixed, and δ runs over l_{j}. The w_{δ} are all in D_{J}, and (with $w_{\delta}=1+w_{\delta, 0}$ and $y=1+y_{0}$)

$$
\begin{aligned}
y w_{\delta} y^{-1} w_{\delta}^{-1} \equiv & 1+\sum_{i=1}^{\infty}(-1)^{i-1}\left(y_{0} w_{\delta, 0} y_{0}^{i-1}-w_{\delta, 0} y_{0}^{i}\right) \\
& +\sum_{i=2}^{\infty}(-1)^{i-1}\left(w_{\delta, 0} y_{0} w_{\delta, 0}^{i-1}-y_{0} w_{\delta, 0}^{l}\right) \bmod P^{m+1}
\end{aligned}
$$

Each term in the sums is in $P^{m^{\prime}}$, and each term with an index $i \geq 2$ is in $P^{-s,+1}$. We have

$$
\begin{aligned}
\chi_{x}\left(y w_{\delta} y^{-1} w_{\delta}^{-1}\right)= & \chi_{x}\left(1+y_{0} w_{\delta, 0}-w_{\delta, 0} y_{0}\right) \\
& \cdot \prod_{i=2}^{\infty} x_{x}\left(1+(-1)^{i-1}\left(y_{0} w_{\delta, 0} y_{0}^{i-1}-w_{\delta, 0} y_{0}^{l}\right)\right) \\
& \cdot \prod_{i=2}^{\infty} \chi_{x}\left(1+(-1)^{i-1}\left(w_{\delta, 0} y_{0} w_{\delta, 0}^{t-1}-y_{0} w_{\delta, 0}^{i}\right)\right),
\end{aligned}
$$

and (b) of the proof of Theorem 7.1 shows that every term in the two infinite products is 1 , since we can replace χ_{x} with $\chi_{x_{j}}$. Similarly, $\chi_{x,}\left(1+y_{0} w_{\delta, 0}-w_{\delta, 0} y_{0}\right)=1$, since x_{j} commutes with y and w_{δ}. This implies that

$$
\zeta_{0} \varepsilon^{\sigma^{s} \jmath}-\zeta^{\sigma^{\kappa f}} \varepsilon=0,
$$

since $\zeta_{0}, \varepsilon \in l_{j}$ and $\left[k_{n_{0}}: l_{j}\right]$ is prime to p. But then $\zeta_{0} \eta_{j}^{-\left(r+r^{\prime}\right)}$ and $\varepsilon \eta_{j}^{r}$ commute. As noted in the Remark after Lemma 8.5, this means that $\varepsilon \eta_{j}^{r}$ is congruent $\left(\bmod P^{r F_{r}+1}\right)$ to an element of D_{j+1}, which contradicts our assumption on y. This finishes the proof of Proposition 8.3 and of Theorem 8.4.
9. Extending to D^{\times}; removing hypotheses. In this section, we deal with two issues: extending the representations of G to representations of D^{\times}, and removing the assumption that the s, are odd. The procedures are essentially those of [1], [2] and [6], and our discussion will be brief.

The elements of k_{n}^{\times}that commute with π_{0} (obtained from χ_{x}) are those in D_{x}. Indeed, if $\delta \in k_{n}^{\times} \cap D_{x}$, then δ commutes with χ_{x}, and we could simply extend χ_{x} to $H\left(k_{n}^{\times} \cap D_{x}\right)$. If $\delta \in k_{n}^{\times}$but $\delta \in D_{x}$, then the argument of Theorem 8.4 is easily adapted to show that π and the representation π^{δ} defined by $\pi^{\delta}(y)=\pi\left(\delta y \delta^{-1}\right)$ are disjoint. Hence we can extend π_{0} to $G\left(k_{n} \cap D_{x}\right)$ and induce to get the irreducibles of $G \cdot k_{n}^{\times}$.

The situation for extending to D^{\times}is similar; arguing as in $\S 5$ of [2], one can show that the elements of D^{\times}commuting with a representation π_{σ} of $G \cdot k_{n}^{\times}$that comes from χ_{x} are precisely the elements of $D_{x}^{\times}\left(G \cap k_{n}^{\times}\right)$. Thus we need to extend π_{1} to $G \cdot k_{n}^{\times} \cdot\left\langle\eta_{t}\right\rangle$ (since η_{t} is a prime in D_{x}). Since $\left\langle\eta_{t}\right\rangle \cong Z$, there is no Mackey obstruction; however, we have no good way of describing $\pi_{1}\left(\eta_{t}\right)$. Inducing to D^{\times}then gives an irreducible π.

To see how to deal with even s_{J}, consider the case where m is even. Define m^{\prime} by $2 m^{\prime}=-m$. Now χ_{x} is initially defined on $G_{m^{\prime}+1}$. We want to define an extension of χ_{x} to

$$
H: G_{m^{\prime}}\left(D_{x_{1}} \cap G_{s_{1}^{s_{1}}}\right) \cdots\left(D_{x_{t-1}} \cap G_{s_{t}^{\prime}--1}\right)\left(D_{x_{t}} \cap G\right) .
$$

The argument of $\S 7$ lets us extend χ_{x} to $G_{m^{\prime}+1}\left(D_{x_{1}} \cap G_{s_{1}^{\prime}}\right) \cdots\left(D_{x_{t}} \cap G\right)$ $=H_{0}$. To go to H from H_{0}, note that a set of coset representatives for $G_{m^{\prime}} / G_{m^{\prime}+1}$ consists of the elements $y_{\delta}=1+\delta \eta^{m^{\prime}}, \delta \in k_{n}$. The map μ : $\left(\delta_{1}, \delta_{2}\right) \mapsto \chi_{x}\left(y_{\delta_{1}} y_{\delta_{2}} y_{\delta_{1}}^{-1} y_{\delta_{2}}^{-1}\right)$ is an antisymmetric bilinear form on k_{n}, and δ is in the radial of $\mu \Leftrightarrow y_{\delta} \in H$. There is a unique irreducible projective representation of H / H_{0} with the above form μ as multiplier; when p is odd, it corresponds to a Heisenberg-type representation on the k-vector space $k_{n} / \operatorname{Rad} \mu$. Tensor this representation with χ_{x} to get a representation which might be called χ_{x}^{\prime}; on H_{0}, χ_{x}^{\prime} is a multiple of χ_{x}. The reasoning in $\S 8$ applies to show that $\operatorname{Ind}_{H}^{G} \chi_{x}^{\prime} \otimes \sigma$ is irreducible and that these irreducibles exhaust $\operatorname{Ind}_{G_{m}}^{G} \chi_{x}$; even the changes in the counting arguments are not difficult. If some other s_{J} is even, we again get a Heisenberg-type representation on $G_{s^{\prime}}$, where $2 s_{j}^{\prime}=-s_{j}$; the details are similar to those sketched above. Extending to those elements of k_{n}^{\times}that commute with x now involves the Weil representation; see, e.g., [4].

References

[1] L. Corwin, Representations of division algebras over local fields, Adv. in Math., 10 (1973), 387-394.
[2] _ , Representation of division algebras over local fields: II, Pacific J. Math., 101 (1982), 49-70.
[3] L. Corwin and P. J. Salley, Characters of division algebras and of $\mathrm{G1}_{n}$ for p-adic fields on the elliptic set (tamely ramified case), in preparation.
[4] L. Corwin and R. Howe, Computing characters of tamely ramified p-adic division algebras, Pacific J. Math., 73 (1977), 461-477.
[5] R. Howe, Representation theory for division algebras over local fields (tamely ramified case), Bull. Amer. Math. Soc., 17 (1971), 1063-1066.
[6] , Kirillov theory for compact p-adic groups, Pacific J. Math., 73 (1977), 365-381.
[7] H. Koch, Eisensteinsche Polynomfolgen und Arithmetik in Divisionsalgebren über lokalen Körpern, Math. Nachr., 104 (1981), 229-251.
[8] __ Zur Arithmetik in Divisionsalgebren über lokalen Körpern, Math. Nachr., 104 (1981), 9-19.
[9] G. W. Mackey, On induced representations of groups, Amer. J. Math., 73 (1951), 576-592.
[10] A. Moy, Local constants and the tame Langlands correspondence, Amer. J. Math.
[11] A. Weil, Basic Number Theory, New York, Springer, 1967.

Received June 20, 1986 and in revised form August 17, 1986.

Rutgers University

New Brunswick, NJ 08903

