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GRUNSKY INEQUALITIES FOR UNIVALENT

FUNCTIONS WITH PRESCRIBED HAYMAN INDEX

P. L. DUREN AND M. M. SCHIFFER

The Grunsky inequalities in their standard formulation are a gener-
alization of the area principle. Our purpose is to apply a variational
method to obtain a stronger system of inequalities which involves both
the logarithmic coefficients and the Hayman index of a univalent func-
tion / in the usual class S. One immediate consequence is the well-known
inequality of Bazilevich on logarithmic coefficients. Another application
gives a sharpened form of the Goluzin inequalities on the values of / at
prescribed points of the disk.

1. Main results. The class S consists of all functions f(z) = z +

a2z
2 + analytic and univalent in the unit disk D. Closely related is

the class Σ of all functions

g{z) = z + b0 + V " 1 + b2z~2+ . . .

analytic and univalent in the exterior Δ = C — D of the disk. Given
g <Ξ Σ we construct the double power series

Then dmn = dnm and the Grunsky inequalities ([6]; see [3], Chapter 4) take
the form

N N

λ,;eC.Σ Σ dnmλnλm

/i = l w = l w = l "

Now let / G 5 and consider the analogous series

(i) iog/ ( z]:{α ) = - Σ Σ w r
for z, f G D. Note that c w w = c/?w and c 0 0 = 0. If f = 0 the series reduces
to

1 O5 z ~ Z^ Cn0Z '

The inversion of / is the function g ^ Σ defined by g(l/z) = l//(z).
Thus

l/z -l/ζ
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Taking logarithms, we find
00 00

— / / a z ζ
Lm d Lmji nm «J

= - Σ Σ cπmz«r.
n—l m=l

This shows that cnm = dnm for n, m > 1, and so the Grunsky inequalities
take the form

(2)
N N

Σ Σ c λ λ
« = 1

If / is chosen to be the Koebe function k(z) = z(l — z) 2, an easy
calculation gives cn0 = -2/n and cnm = (l/n)δnm for n, m > 1, where
δnm is the Kronecker symbol. This shows that the Grunsky inequalilties
are sharp for each N.

In more standard notation, the logarithmic coefficients of a function
/ e S are the numbers yn defined by

Thus 2γM = -cn0?
 a n d γn = 1/n for the Koebe function. A result of

Bazilevich ([1,2]; see [3], §5.6) asserts that the logarithmic coefficients of
each function / ε S satisfy the sharp inequality

(3)

where a = limr_+1(l - r)2\f(r)\ is the Hayman index of /, assumed to be
positive. The Hayman index of a function / e 5 is the number

α = l i m ( l - r ) 2 M 0 0 ( r , / ) ,

where M^r, f) is the maximum of |/(z)| on the circle \z\ = r. It is easily
verified (see [3], §5.5) that 0 < a < 1 and that a = 1 if and only if / is a
rotation of the Koebe function. If α > 0 then / has a unique direction of
maximal growth eιθ defined by the property (1 - r)2\f(reιθ)\ -> a as
r -> 1. In our statement of the Bazilevich inequality (3) we have supposed
that / is rotated so that its direction of maximal growth is eiθ = 1.

Hayman proved ([7,8]; see [3], §5.7) that \an\/n -> a for each fixed
function f & S with index a.
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Under the additional assumption that / has Hayman index α,
0 < a < 1, the Grunsky inequalities can be strengthened. The following
theorem is the main result of this paper.

THEOREM 1. For functions f e S with Hayman index a (0 < a < 1)

and direction of maximal growth eiθ = 1, the inequality

(4) Re £
N

- 4 «4|λ.(τ.-i)
holds for each N and for all λB E C, where cnm are the Grunsky coefficients

and yn are the logarithmic coefficients off. This inequality is sharp for each

choice of N and λn.

The proof is given in §3. It is not clear whether the inequality (4) is
sharp for arbitrary values of α. The method of proof suggests that an
extremal value of a will be determined by the given parameters λn. A
further remark on this question appears in §4, at the end of the paper.

It may be observed that the Bazilevich inequality (3) is an immediate
corollary of the theorem. To see this, apply the Grunsky inequalities (2) to
get

N 1 ί N

Σ^|λJ2<Re Σ
N N

n—\ m—1

1 I Λ . 2

«
- 4 l o g - | ,

which implies

R=
N

Now choose λn = n(yn — l/n) to obtain (3).
Another interesting corollary is found by choosing N = 1 and λx = 1.

In terms of the coefficients of /, this gives the sharp inequality

( 2 - R e { α 2 } ) 2 < l o g i ( l - R e { α 2

2 - f l 3 } ) .

Theorem 1 may also be applied to derive a generalized form of the
Goluzin inequalities ([5]; see [3], §4.4). We have the following result.
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THEOREM 2. For functions f e S with Hayman index a (0 < a < 1)

and direction of maximal growth eιθ = 1, the sharp inequality

(5) £ f
N

^ Σ

-1

holds for N, for all λn e C, and for all systems of points z, e C.

denotes the Koebe function.

Proof. Using the expansion (1), we may express the left-hand side of

the inequality (5) in the form

I NN oo oo \

Σ Σλ,λ,Σ Σc.m*ϊ*n
« = 1 m

oo oo

In view of the inequality (4), this has the upper bound

N

Σλ,z«

oo -t N

= Στl

-4(logi)
-1 oo / N

Re Σ Σ λ,z«
1.

-1

ReΣx.Σ

which is equal to the right-hand side of (5). The estimate is sharp for each

choice of TV, λ,? e C, and zi e D, since it is derived by appeal to the

sharp inequality (4).

The inequality (5) is similar to a version of the Goluzin inequalities

with Hayman index previously obtained by Kamotskiϊ [10], but the two

systems appear to be different. Kamotskiϊ does not discuss the question of

sharpness.

By analogy with our deduction of the Bazilevich inequality from

Theorem 1, we may combine Theorem 2 with the Goluzin inequalities to

obtain

v

a
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In particular,

Γ
(6)

N

Σ log-
N N

This shows that as a tends to 1 the values of / approach those of the
Koebe function.

It seems likely that as a tends to 1 the "sharpening terms" on the
right-hand sides of the inequalities (4) and (5) actually approach zero
uniformly for all / e S with index a and maximal growth direction
eιθ = 1, at least for each given set of complex parameters λ .̂ More
specifically, the uniform estimate (for each fixed n)

(7) = o| log- a 1,

and the uniform estimate (for each fixed z e D)

(8) log
k(z) a 1,

seem quite plausible. If "0" were replaced by " 0 " , the estimate (7) would
follow at once from the Bazilevich inequality (3), while (8) would follow
from (6).

In this connection the example

, , z +(a - l)z2

f{z) = - r—, 0 < a < 1,

is instructive. This function / belongs to S, has Hayman index α, and
maps D onto the complement of a half-line. Its logarithmic coefficients
are

Note that / satisfies (7) and (8) as a tends to 1.

2. Faber polynomials. Before passing to the proof of Theorem 1,
we recall some facts about the Faber polynomials of a function / e S.
These are the monic polynomials Fn(w) = wn + with Fn(0) = 0 de-
termined by the relation

(9) Σβnmz
m = 0

/i = 1 , 2 , . . . .
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We claim that the Faber polynomials are generated by

(10) log[l - wf(z)] = - f \Fa(*)zn.

To prove this, we write

where Pn is a monic polynomial of degree n without constant term. Now

write

/(*)-/(?) /α) ι-f(z)//(s)

and take logarithms to obtain

- Σ Σ cnmz-r
z

oo00 -I OO -|

- - Σ ^B(i//(f))^- + Σ -znvn.
1 " 1 "

n=\ «=1

Comparing coefficients of z'\ we have

00

^(V/(ί)) = Γ" - 2πγ/7 + Ti Σ c^Γ-

Thus Pn has the characteristic property (9) of the Faber polynomial Fn9

and so Pn = Fn. This proves (10).

Differentiation of (10) with respect to w gives

where for convenience we define

3. Boundary variation. The proof of Theorem 1 is based on the

construction of an extremal problem whose associated quadratic differen-

tial is a perfect square. Integration is then a simple matter. This approach
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generalizes the variational proof of the Grunsky inequalities previously

found by one of the authors ([12,4]; see [9], §12).

For fixed N and fixed complex parameters λn, we define the func-

tional

(12) Φ(f)= Σ Σcnmλnλm + λ2

0\oga,
n=0m=0

where / is a function in S with Grunsky coefficients cnm and Hayman

index a. It will be assumed that λ 0 is real. Observe that φ involves the

logarithmic coefficients yn = - \cn0 of /.

Now let / be a function which maximizes Re{ φ} over S. Clearly, the

extremal function must have positive index α. Without loss of generality,

we may assume that / has eiθ = 1 as its direction of maximal growth.

This may be achieved by a rotation, which simply rotates the Grunsky

coefficients.

In order to describe the extremal function /, we construct a boundary

variation

(13) /* = / + ap2 f l + O(p'), p - 0,
< ( / - Wo)

with respect to an omitted point w0 £ /(D). Then / * G S and so

Re{φ(/*)} < Re{φ(/)}. Let c*w denote the Grunsky coefficients of /*.

We begin with the calculation of an asymptotic formula for c*m.

Observe that the variational formula (13) gives

κmy y (c - c* )zn

L-i La \Lnm Lnm)z'
« = 0 m = 0

. lo,/*ω-/*«)

On the other hand, the generating relation (11) gives
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and so
0 0 OO

Σ Σ (cnm-c*Hm)zT

ap"- 1

Wn 0 m = \

Comparison of coefficients gives

(14) C , = cnm + flp2wo 4 β

Λ,m = 1,2,...;

, n = 1,2,....

Next we consider the variation of the Hayman index. Observe first

that the variation (13) preserves the direction of maximal growth. Thus

the index of /* is

- w o

= a

It follows that

(15) logα* = logα + Re{αp2w0-
2} + θ(p 3 ) .

Introducing the variational formulas (14) and (15) into the functional

(12), we obtain

Φ(/*) = Σ Σ C Λ A , + 2λ0 Σ c*nOλn + λ2

0logα*

= φ(f) + ap2

+ 2λoαρ2wo"3 Σ Qn

Σ Σ αi(l>o
n = 1 w = 1

αp2

-αp 2 λ 2

0 w 0 - 2 + λ 2

0 Re{αp 2 n; 0 - 2 } + 6»(p 3).
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Bearing in mind that λ 0 is real, we therefore deduce from the inequality
Re{φ(/*)} <Re{φ(/)}that

(16) Re{ap2s(w0) + O(p3)} < 0,

where
r N 12

(17) s(w)=\ w-2 Σ Qn(l/w)K + λow"1

L π = l J
We now appeal to the basic lemma of the method of boundary

variation ([11]; see [3], §10.3) to conclude from (16) that the extremal
function / maps the disk onto the complement of a system Γ of analytic
arcs which satisfy

(18) s{w)dw2> 0.

Because s(w) is a perfect square, the differential equation (18) is readily
integrated. Taking the square-root, we obtain from (17) and (18) with a
suitable parametrization

(19) L - 2 Σ Qn(l/w)λH + λow-1] ̂  = 1.
w = l J

Recalling the definition Qn(w) = l/nFn'(w) and noting that

we may express (19) in the form

n = l

Thus, on Γ we have
N -.

(20) λ0logw - Σ ~λnFn(l/w) = t + ic,

where c is a real constant.
We now define the function

(21)

where k(z) = z(l - z)~2 is the Koebe function and the branch of the
logarithm is chosen for which
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on \z\ = 1. In view of (20), G(z) is real for \z\ = 1. It therefore follows by
Schwarz reflection that G has a meromorphic continuation to the Rie-
mann sphere with the symmetry property G(l/z) = G(z). On the other
hand, the defining property (9) of the Faber polynomials shows that

is analytic in the closed disk D. Thus

(22) G(z) = - Σ ^ λ n z - - Σ ^ λ > " + Λ,

where A is a real constant. In order to determine A, we let z = r tend to 1
in (22) to get

lira G(r) = -2E

Comparing this with (21) and remembering that Fn(0) = 0, we see that

λolim log(l - rff{r) = A +{c + λoπ)i - 2Ref

In particular,

(23) Λ=λ 0 log« + 2 R e ( Σ ^
n

The next step is to compare coefficients in the two forms (21) and
(22) of G(z). Recall first that the Faber polynomials have the property

Thus (21) takes the form

Comparison with (22) gives
N

(24) 2Σ
«=i

and

(25) 2 λ o | ϊ m - — J ~ L λ/«m = \ m m '
m > N.
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Now multiply (24) by λ 0 and (25) by λm, 1 < m < N, and add the

equations:

N N , Λ v N N

2λ0 ΣΛ,γ,, + 2λ0 ΣK(ym - - - Σ Σ ^ Λ » ,

— \ ( λ \-L\A V ^

Using the relation (23) for A, we conclude that

/ N N

(26) Re Σ Σ cnmλnλm

= Σ ^\K\ + 4λ0Re Σ λ / 7 k - ^ - λ2

0logα

In terms of the functional φ defined by (12), we may write (26) in the

form

N Λ ( N

Re{φ(/)} =

But this equation holds for a function / ε S which maximizes Re{φ}.

Thus for arbitrary functions f ^ S with Hayman index a > 0 and direc-

tion of maximal growth eιθ = 1 we have the sharp inequality

(27) Rej £ Σ>, i m λΛ
N 1 i N ( Λ \ \

^ Σ H λ J + 4 λ 0 R e Σ λ« 7,7 /-λ2ol°g<*

The right-hand side of (27) is a quadratic expression in λ0. Choosing

(28) λ 0 =

to minimize the bound, we obtain the inequality (4). It may be remarked

that the two conditions (23) and (24) for the extremal functions of (27)

can also be combined to give the relation (28).

4. Extremal functions. Having proved the inequality (4), we now

turn to the problem of describing the extremal functions. According to

equation (20), each function / ε S which maximizes Re{ φ} must map the

disk onto the complement of a system of arcs described by a condition of
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the form

ί * 1 \
Im λ0logw - Σ -λnFn(l/w)\ = const.,

I «=i n I

where Fn are the Faber polynomials of /.
Conversely, suppose a function / e S has Hayman index a > 0 and

direction of maximal growth eiθ = 1, and that / maps D onto C — Γ,
where the points I V E Γ satisfy
(29) Im{λ0logw + P(l/w)} = 0

for some λ 0 e R and some polynomial P. In terms of the Faber poly-
nomials Fn of /, we can find a (unique) set of complex constants μ,
λ l 9 . . . , λ^ such that

Thus the condition (29) says that for a suitable real constant C the
function

G(Z) = λ0iog{|4 - Σ -k/ς
κz) n

is real on the unit circle \z\ = 1.
We now conclude as in the proof of Theorem 1 that G has the form

(22) with the constant A given by (23). From this it follows as before that
/ satisfies the equation (26). To summarize, we have shown that if an
admissible function / e S maps the disk onto the complement of a
system of arcs with the property (29) for some polynomial P, then /
maximizes Re{ φ) for some choice of the parameters λn.

One final remark will now be made concerning the sharpness of the
basic inequality (27). As we observed at the end of §3, the extremal
functions for the inequality (27) must satisfy (28). Applying the Cauchy-
Schwarz inequality to (28), we find

N Λ N

Thus the Bazilevich inequality (3) gives
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or

(30) a 2

This shows that the inequality (27) is not sharp if a is chosen smaller than

the lower bound in (30).
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