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APPROXIMATION PROPERTIES
FOR SOME NON-NOETHERIAN LOCAL RINGS

H. SCHOUTENS

In this paper we study Artin approximation in power series rings in
several variables over complete rank-one valuation rings. In particular we
prove that the completion of the algebraic elements has the approxima-
tion property over the ring of algebraic power series.

Moreover, for an important class of complete rank-one valuation
rings, e.g. the ring of complex p-adic integers, we prove that the ring of
algebraic power series is equal to the henselisation of the polynomial ring
and that each algebraic power series has coefficients lying in a finitely
generated /^-algebra, where R is discrete valuation rings.

1.1. Let R c R be a pair of rings (always commutative, with unity).

We'll consider topologies on R which stem from a filtration of ideals

a0 D aλ D a2 D which tends to zero, i.e. C\™=oan = 0. Two examples

we will use are given by

(1) an ideal a of R with Π^ = o a
n = 0 and where an = an\ thus we get

the ^adic topology,

(2) a rank-one valuation on R (i.e. a valuation with value group in the

positive real numbers) and an = [x ^ R\υ(x)> n).

DEFINITION. R/R has A. P. {(Artin)-approximation property) when

the following holds: For every system of polynomial equations / = 0 over

i?, i.e. / = (fv ...,fq) w ^ h fi G R[Yi, > YN] which has a solution y in

RN

9 we can find for each n in N a solution y in RN such that y = y

REMARK. Often, one can express congruence conditions such as

"y = y mod a" appearing in the definition, by polynomial conditions.

More explicitly, let / be a finitely generated ideal of R, such that R is

dense in R with respect to the ZR-adic topology. Let f&R[Y]q, Y =

(Yl9..., YN) and J G ^ S . t. f(y) = 0. We look for a solution y e RN

such that y = y mod / m , for a chosen m e N. Let Im = (qv . . . , qs) with

qf G i?, and since R c R is dense, we can find j> e i?^, άv..., as G i?^

s.t. J = J
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Consider the polynomial system over R given by

in the variables 7, Zλ = ( Z n , . . . , Z l i v ) , . . . , Zs = ( Z s l , . . . , ZsΛΓ) which has

a solution (>>, α 1 ? . . . , as) e jR
ΛΓ(J+1). By A.P. we find a solution

(j>,«!,..., as) e i ? ^ ^ 1 ) , hence .)>=>> + Σ j = 1 ^ α z , S O ^ Ξ J mod 7m, so

y = y mod 7W and f(y) = 0.

1.2. A particularly interesting situation for A.P. is when we take for A

a local ring, R = A[[X]] and R = 4[[ <Y]]A, where X = ( X v . . . , Xn) are

several variables and " λ " denotes the henselisation of A[X]{X) at the

maximal ideal. So, one can ask whether the following holds

(1)

Artin has proven (1) for A a field or an excellent discrete valuation

ring (D.V.R.) [Ar].

But for A a non-Noetherian excellent (or even complete) rank-one

valuation ring the answer is still not known. A typical complete rank-one

valuation ring we will be concerned with is Φc the ring of complex

integers, i.e. the integral elements of Cp, where C^ is the /?-adic closure of

the algebraic closure of the p-adic numbers Q^ (p being a rational prime).

The problem in proving (1) for the non-Noetherian situation is the

absence of a good desingularisation theorem. A consequence of (1) for A a

domain is

(2) A[[X]]h = A[[X]]*

where ^4[[X]]alg is the ring of algebraic power series, i.e. the power series

which are algebraic over Frac A[X]. Property (2) is well-known for A an

excellent domain, but for non-Noetherian rings again this is not known in

general.

We will be able to prove (2) for a special kind of complete rank-one

valuation rings, including the case of Θc, see 4.4.2. At the same time, we

will prove for this kind of rings a generalisation in more variables of a

result of Christol [Chr; Prop. 7.2.]. (See Theorem 4.2.2.) As a result we

obtain for instance

/ x every algebraic power series of 0c [[X]] has coefficients

^ ' lying in a finitely generated Z^-algebra,

where Ίjp is the ring of /7-adic integers in Qp and X = (Xv . . . , Xn) are

several variables, see Thm. 4.4.2.
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1.3. Another interesting case of A.P. arises when one takes a complete
rank-one valuation ring A and for R = ^[[X]]^, the ring of algebraic
power series in X = (Xv..., Xn) and for R the completion of R in
A[[X]] with respect to the valuation. We will denote this by R = ^[[X]]^.
We will prove:

(4) A[[X]]*/A[[X]]** has A.P. in (X)-topology.

Robba has proven the same statement in characteristic zero only, but
with respect to the Gaussnorm [Ro]. (When v is the valuation on A, then
we mean by the Gaussnorm on ^4[[X]]: ϋ(ΣI e N»α J A

r/) = inffi^α,.) |ί e
N"}, X = (Xl9...,Xn).) But by the remark in 1.1 his statement is actually
equivalent with ours, by taking for / = (7r)^4[[X]]alg, with π e A and
υ(π) > 0.

1.4. Because we need several A.P. theorems of the same type (R is the
completion of R with respect to a rank-one valuation, e.g. (4)), we prove
A.P. in a more general situation for systems of subrings of ^4[[X]] and
their completions, called pseudo-power series; this is done in Theorem
2.4.1.

1.5. In the last paragraph we have brought together all Weierstrass
Preparation Theorems (W.P.T.) we will need. For lack of good reference,
we have estimated it opportune to write out these theorems in a rather
detailed way.

1.6. We would like to thank Dr. J. Denef for presenting these
problems and for his suggestion to use 4.3.4 in order to obtain result (2).

2. Approximation property.

2.1.1. DEFINITION. Let A be an arbitrary domain with fraction field
F. We'll say that A is completely integrally closed (C.I.C.) if for x e F
with d e A, d Φ 0 so that V « E N : ώ " G i implies that x e A (also
called completely normal). In [Ma; (17.B)] one proves that when A is
C.I.C, so are A[X] and A[[X]].

2.1.2. THEOREM (Fatou-property) When A is C.I.C, T one variable and
S = 1 + T A[[T]\ thenA[[T]] Π Fmc(A[T]) = S-XA[T].
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Proof. Cf. [Ch; §3]. •

2.2.1. Let A be an arbitrary ring, a an ideal of A, with a c rad^4
(Jacobson radical of A).

We call {A, a) a Henselian pair, if

v / = ( Λ , . . . , / * ) , f,eA[x], x=(x19...9xN)

and x e AN, x = (xv..., xN) such that

/(JC) Ξ 0 mod^

and det(3/y3 Jfy) | x is invertible, then

3x e 4",

such that

/(i:) = 0 and x Ξ= 1 mod^.

This is just a generalisation of Henselian local rings and analogous
properties hold. See [Ra]. Especially we'll use:

2.2.2. LEMMA (Tougeron). Let (A, a) be a Henselian pair, f =
(fι,...,fh),f,eA[Y]9Y=(Y1,...9YN). Let J = (dfι/dXJ) be the
Jacobian and 8 a h X h-minor of J. Suppose there is an x e AN such that
f(x) = Omodδ(x)2^. Then 3x e AN such that

f(x) = 0 and x = xmodδ(x)^.

Proof. See [Ar; II §4.1]. D

2.3.1. Let A be a ring, then we shall mean by a pseudo-power
series-system (PP-system) a system of rings Wn, n = 0,1,2,..., such that

(1) Wo = A,
(2) Wn_λ[Xn]^Wn c Wς_J[XJ]for n = 1,2,...,

( 4 ) I f φ ι , . . . , φ n e ( X l 9 . . . , X n ) A [ X 1 , . . . , X n ] a n d λ ( X l 9 . . . 9 X ) e

Wn then λ ( φ i , . . . , φ r t ) G Wn. Note that then A\XX9...9Xn\<zWnc
A[[Xv ..., XJ]. Clearly the powers series form a PP-system.

2.3.2. In this paragraph we'll work from now on with a valuation ring
0 which is complete with respect to its valuation ord. Let Jί be the
maximal ideal and K = Frac Θ the fraction field. We can extend ord to a
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valuation on 0[[^]] also written ord by setting

w i t h i = ( i v . . . , i n ) , X = ( X v . . . , X n ) a n d X* = X£ -•- X}' -•- X ^ . W e
call / = ΣaiX

i e 0[[-Y]] separable when 31 0: ord(/) = ord(αio), i.e. the
infimum actually is a minimum. E.g. polynomials are separable. Let Wn

be a PP-system over 0 and denote by Wn the completion of Wn in
0[[-Xi,..., -YJ]. Then ΪFΠ also forms a PP-system.

We will call an feΘ[[Xl9...9Xn]] regular of degree k in JΓΛ

when f= X^u moά{Jί,X') with u unit in O[[Xl9...9 Xn]] and X' =

By saying that the PP-system Wn has a Weierstrass preparation
theorem (W.P.T.) we shall mean that for each f E: Wn which is regular in
Xn of degree k and

Vg <=Wn: 3 unique q e Wn9 r ^ Wn_x[Xn]

such that

g = q f+r with deg x (r) < A:.

2.4.1. THEOREM (Approximation property, A.P.). Set X =
(Xl9..., Jfπ). i>/ Ŵ  6e α PP-systern over &, Wn its completion. Suppose
that the following conditions hold Vw:

(a) VTΓ G UT: τrί?[[X]] Π W; = πWn9

(b) W ΛέWΛ^P.Γ.,
(c) V/ e Ŵ  :/ώ separable,
(d) WnisC.I.C,
(e) (Wn, X) is a Henselianpair\
(f) FracW^ ώ separable over FracW^.

ΓΛe« Wn/Wn has the A.P. with respect to polynomial equations, i.e. with
Y=(Y19...,YN)

V c e N 0 and y = (yl9...,yN),

so thatf(X,y) = 0.
Then 3y = (yλ,..., ^ ) , ^ e ^ 5
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Proof. We'll write W for Wn and W for Wn. We will do induction on
n, n = 0 being trivial.

Let ψ: W[Y] -» W: α(7)»-» α(>>) s o / = kerψ is a prime ideal and
we have

^ y ^ Frac W.
\ / /

By (f) L/L is separable, so £/L is.
Call m = trdeg^i? (transcendence degree), and after a transforma-

tion we may suppose that

E is algebraic separable over L(Yl9...9Ym)

where " - " denotes residues mod/.
So, there exist φ,.(Γ) e ^ [ 7 1 ? . . . , 7W][Γ]

T one variable, / = m + 1,..., N, minimal polynomials of the Yt

so that

and

Let δ = ΠIΐ.m+1(3Ai/3y/) «/*, so 8 is a (TV - m) X (iV - w) minor of
theJacobianίdλ/dr,).

Assertion 1. 3Θ e JF[7], ^ ί / so that

We claim that it is sufficient to prove the theorem for the system of
equations hm+ι,...,hN. For let y e WN be a solution with J> =
ymod(X)c and /!,(>>) = 0. Since θ $. ft, we have θ{y) Φ 0, choose c big
enough so that θ(y) £ (X)c, therefore ^(j) £ (Z) c , so ^(j') ¥= 0, but
θfi<=(hm+1,...,hN)byass.lSo(θfi)(y) = 0^fi(y) = 0.

This proves the claim, and we therefore may suppose that we have a
polynomial system of equations Fv...,Fh with δ a (maximal) h X h
minor out of the Jacobian

and h = N-m.
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Suppose

^yf and let ε = oτdδ(y).

3h X h matrix β over W[Y] with det β = δ*" 1 so that

(1) Q J=(δEhK)

where Eh is the identity-matrix and K an Λ X m matrix. Since W is the

completion of W

(2) 3γ,τr e Φ, α e ^ , Z G ^ SO that

y = α 4- 772γz with ord 7Γ = ε and ord γ > 0.

Set Z = ( Z l 9 . . . , ZN) and define, in vector-notation,

π2

,α Λ + 1 + π2Zh+1,...,aN + v2ZN)

i
7Γ 2 7Γ2

1 , . . . ,7rZ Λ ,7Γ 2 Z Λ + 1 , . . . ,7r 2 Z i V ) + μ ( Z )

withμ(Z)in(Z) 2PF[Z].

Since ord(α — y) > 2ε we have

0 = F(y) = F(a) modπ2, soovdF(a) > 2ε

ordδ(y) = ordδ(α) = ε.

So by Property (a), F(α)/ττ2

? δ(α)/ττ e »F and

(3) ord| ^ ) = 0.

So by (1) we get

Let w = (πyzl9..., <nyzh, yzh+l9..., yzN)9 so ordw > 0 and by (2)

G(w) = Q^-F(a + π2yz) = 0.
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Suppose we can solve the theorem for the system G = 0 with solution
w in W, and a h X h minor of the Jacobian in w of G which is equal to
(δ(a)/π)h mod Jί i.e. of valuation equal to zero by (3). Then we can also
solve it for our original system F; indeed, let w be in W so that G(w) = 0
and w = w raoά(X)c, then, if we put y = (^ + πwl9 . . . , α Λ + πwn9

And since detβ(α) = 8(a)h~ι Φ 0, we get F(y) = 0 and clearly is y =
j> mod( X) c and y lies in ίΓ.

So we may suppose that ε = ordδ(y) = 0 from the start. Since
δ( y) G W, by property (c) we know then that δ(y) is separable and that
it is regular in Xn after a transformation of the form Xj •-> Xy + JΓ^,
7 = 1,...,«- 1 and JΓΛ -> Xn (see for instance [Z-S; VII §1]) which
keeps Wn invariant by (4) of PP-systems. Applying the W.P.T. (property
(b)) for g{y)Xc

n = 82{y)Xc

n, which is regular in Xn of, say, degree s9 we
get:

y =

with u^Wn and j G W^.JΛ^] C Wn so

(4) 0 = F(y) s F ( 7 ) m o d g ( j ) ^ ,

so

3λ e » ; :g(y) = g( j ) - λ g ( j ) ^ => (1 + XXc

n)g(P) =

and since (X) c rad M̂, we have that g(y) and g(y) are associated in Wn.
So by (4)

F(y) = 0 modg(y)X<n

so

Call WΠ_! = W -JA'J c Wn, and since j ; e Wn_x also F( j) and

Let S = 1 + Xn ίVn_γ, we have then by property (d) and Theorem
2.1.2 that, since WnaWn_&Xnl

~z = F(y)/g(y)X<n e F r a c ί ^ ^ ) Π ̂ _ x [ [ X j ] = S - 1 ^ ^ .

Set a = g ( r ) J £ Z - F(7) e ί^[y, Z] then
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Assertion 2. Ξj>, z in Wn so that a(y, z) = 0.

Therefore F(y) = g(y)zX% = 82(y)zX^ and, since by property (e)

(Wn9 X) is a Henselian pair, we can apply Tougeron's Lemma (2.2.2) in

order to get x in Wn with F(x) = 0 and y = x modδ(y)Xc

n D

2.4.2. Proof of Assertion 1. Write Em+1 = L(ΫV..., Ύm)\ then Ϋm+1 is

algebraic over Em+ι with minimal polynomial ψm+1(T). Write

w + l ί w\ ~
iΦm + lί-̂ m + J J

call

Tm + l = Ψm + Λ^m + l) = ^w + 1?

Then F m + 2 i s algebraic over Em+2, with minimal polynomial

^ m + 2 l 2 m + 2; - / \ ~ / \
VTm + 2/ W/M + lW/w + 2/

since, by construction γ m + 2 ( F m + 2 ) = 0 in E we have ym+2\Ψm+2(Ym+2)

= hm+2inEm+2[Ym+2],sa

3 δ m + 2 e JF[y] :ym+2 δ w + 2 = Λm + 2 m o d γ m + 1 .

Since .E/L is separable, 7 w + 2 is a simple root of φ m + 2 ; we therefore have

So by induction we find the following data for j = 1,. . ., N - m

so that

(5) E d=F (Ϋ ) = Em+ΛYm+j}
\->) ^m+j + l r'm+j\Jm+j) ~ I \ »

V Im +j )

(6) ym+J • δm+j = hm+j m o d ( γ m + 1 , . . . ,

(7) δ m + ; « Λ

Therefore, by (5),

E = Em+ι(Ϋm+1,...,ΫN) ^ !,(?,,...,?.,)
I m +1 > * * 5
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Now, for j = 1,..., q, fj e ^, so fJ: = 0 in is, so

/• = ym ^iiy
Jj Is β im + i

with atJ^W[Y] and ft, e ^ [7 1 ; . . . , FJ but ^[Γ l 9 . . . , YJ c
L(Yv...,Ym)<zE, so ^ ί ^ . Call finally θ = Π ? = 1 Π ^ m i 8 , Λ + 1 ,
by (7).

But by (6)

SO

ί ( . . ? Λ ; v ) . D

2.4.3. Proof of Assertion 2. Let's rewrite the statement: We know by
induction that Wn_ι has A.P. over Wn_ι

= (Ύl,...,yκ), T=(T1,...,Tλ),

yι(T)eΦ[X][T], X=(Xι,...,Xn),

where S = 1 4- Xn - W λ[Xn\ such that y(u) = 0. We have to find
ΐι = (uv..., uλ), ut e »; so that γ(ώ) = 0.

Since ŵ  e S"^ W^_i[^]) we can write it in the form

y Θ x'W"*= Σ «,*^

k = l,...,λ, with«/Λ,β iA e PF^j.
Set ω = (ω/Λ),fl = (^),Ω = (Ω//fc) and Θ = (Θik); write

Uk(Ω,Θ, Xn) = έ Ω/fc^j/ίl + XH • ί Σ θ f f c ^

Let £/= (l/1,...,ί/λ)andcaU

p = maximum of deg^, for / = 1,..., K.

Finally, for / = 1,..., K, set

β/(Q,θ, x) = I Π(i + *. -(Σ %J
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so that, by choice of p, a, e 0[Ω,Θ, X]. Since uk = Uk(ω,θ,Xn) and
7/(H) = 0 we have α/(to, 0, X) = 0.

Write α, = Σi_ 0 «/**„*> with «/t e ί[O, θ , Γ ] where X' =
(X l 5 . . . , X,,^), so alk{ω,θ, X') = 0 because ω and 0 do not depend on
Xn. By the A.P. of Wn_1/Wn_ι we can find ώj in Wς_1; such that
alk(ώ,&, X') = 0. So a,(ώ, &, X) = 0, and putting

ύk=Uk(ώJ)

and since Wn forms a PP system, ŵ  e ^ n and γ(w) = 0. D

2.5. In this point, we will show that the C.I.C.-condition (condition
(d) of 2A.I.) automatically holds for complete rank-one valuation rings.

2.5.1. PROPOSITION. If R is a valuation ring, then R is C.I.C. <=* R is
rank-one.

Proof. If R is rank-one, i.e. value-group c R, x e Fraci?, d e R so
that d xq G i? for q = 1,2,... then is ord(d) + ^ord(x) > 0, V# e N,
proving that ord(x) > 0.

If R is not rank-one then is the value-group Γ non-archimedian (see
[Ba]). So we can find a.β^R with a = ord(α), b = ord(/?), b > 0, a > 0
and V# e N : ^ > ^ . Set x = 1/β £ R but axq G Λ , V ? E N . D

2.5.2. PROPOSITION. Let Θ be a complete rank-one valuation ring and
Wn a PP-system over Θ. If Wn has properties (a), (b) and (c) of 2.4.1 then
Wn is C.I.C. {i.e. property (d) holds).

Proof. Let x = a/b e Frac W( W = Wn,W = Wn) with fl,f)G^J
¥= 0 and let d <Ξ W such that Vq e N: ώc^ e Ŵ.

Since Ŵ  c 0[[X]] and this is C.I.C. by 2.5.1. and 2.1.1. we have

(1) x^Θ[[X]].

Set ord(6) = ε, by property (a) (which automatically holds also for
Wn) we can find π e Θ and Z> e W so that ord(7r) = ε and b = π b.

Since ord α — ord ό = ord JC > 0 by (1), also ord a > ε, and therefore
3α G W: α = ma and thus Λ: = ά/b with ord 6 = 0.
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By (c) and early remark we may suppose b is regular. Therefore, by
(b), we find unique q G W and r e Wn_1[Xn] so that

a = q b 4- r.

But a = bx and by uniqueness of the W.P.T. in ^[[^]] (see §5), we find
r = 0 and q = x9 so x e W. D

3. Algebraic elements.

3.1.1. We will call a valuation ring A separative when every / e
^[[X]]^8 is separable. For example D.V.R. are separative, and by consid-
ering Newton-polygons one also can prove rank-one valuation rings are,
see for instance [Ro].

3.1.2. Take 0 a complete rank-one valuation ring, with valuation ord,
maximal ideal Jί and fraction field K. Set X = (X v . . . , Xn). Now take
as a PP-system

i.e. the ring of power series in ^[[X]] which are algebraic over K( X) =
Frac(0[X]). It's easy to see it's a PP-system. Call Wn = Φ[[X]]^ = the
closure of ^[[X]]^ in ^[[X]] with respect to the valuation, the ring of
what is called algebraic elements.

Robba proves the A.P. for Wn/Wn under the condition that char^Γ =
0. We will prove it for general characteristic.

Therefore, we have to verify the conditions of Theorem 2.4.1. Prop-
erty (a) holds trivially. In §5 we will show that ^[[X]]^ has a W.P.T.
(5.3.6.) and that therefore also its completion Wn has a W.P.T. (5.5.)
Property (c) holds, since it holds in Wn as stated in 3.1.1. By Proposition
2.5.2. condition (d) automatically holds.

We have that (^[[X]],^)) forms a Henselian pair (because it is
complete), and by using [La; X.§7, Proposition 8] we find property (e).

So the only thing left to do is the case that char K = p Φ 0, and to
prove that Frac W^/Frac Wn is separable. We will prove a stronger result,
namely Frac(β?[[X]]^) c Frac(0[[X]]) is separable.

3.2.1. LEMMA. Let K/k be algebraic, then Kx/^ = K

REMARK. By K1/pC° we mean {a e K\3n:ap" e K) where K is an
algebraic closure of K.
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Proof.

K - k1^

K ^ ^ k1^

Since K/k is algebraic, we have K k1/pCC/k1/p0C is algebraic, but

kι/p°° is perfect, so K k1/pCC is perfect, see for instance [La; VII §7].

Therefore, since K is a subfield, Kι/pCC c iC fc1/;?00, the other inclusion

being trivial. D

3.2.2. PROPOSITION. Let k C K a L be field extensions such that K/k

is algebraic and L/k is separable. Then L/K is separable.

Proof. Let {ua}a(Ξl be a base of k1/pC° over k. Since L/k is

separable, we know by Mac Lane's criterion (cf. [La]) that L and kι/p°°

are linearly disjoint over k, i.e. {ua}a&1 are free over L. By 3.2.1.

[ua)a^i generate Kι/p°° over K, so 3/ c / such that {ua}aGj form a

base of Kι/pC°/K, still free over L, so by Mac Lane's criterion again, we

find L/K is separable. D

3.2.3. COROLLARY. Let A be a domain] then, with X = (Xv ..., Xn),

Fmc(A[[X]])/Fmc(A[[Xψlg) is separable.

Proof. Put K = FracΛ. Then K(X) c # ( ( * ) ) = Frac^[[X]] is sep-

arable and since Frac4[[JT]] c K((X))9 we find FracΛfX] c Frac^[[X]]

is separable. Applying 3.2.2. gives us the desired result. D

We can prove easily full A.P., i.e. for arbitrary equations:

3.3. THEOREM. Let Θ be a complete rank-one valuation ring. And

X={Xι,...,Xn), Y=(Y19...,YN), C G N

and y = ( y v ..., yN\ yt G &[[ Jί]] a l g such that f(y) = 0. Then there exist

y = ( Λ - ^yv) in Θ[[X]]** s.t. f(X,P) = 0 andy ^ ymod(X)c.

Proof. Write/; = ΣJ^JaιJY
J with α / ; G 0 [ [ * ] ] a l g and / a finite set of

multi-indices j = (jv...JN). So there exist γ o (X, TtJ) G <9[X][7;7] for

/ = l , . . . , ? , j G / such that γ/y ( Â  α/ y) = 0. Take c big enough so that

the distinct roots in [̂[-A ]̂] of each γ/y (considered as equation in Ttj) are
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not congruent mod(X) c. Call

F>= Σ TUYJ9 F=(Fl9...9Fq)

and γ = (γ 0 1 i = 1,. . ., q, j e / ) , Γ = (T^ \ i = 1, . . . , q, j e / ) . Consider

the system of polynomial equations (i% γ) in (7, Γ) over 0[X] and

solution {y9atj) in ^[[X]]^8. By the A.P. already proved, there exists

y,άiJ in ^ [ [ X ] ] ^ so that they are roots of (F, γ) and atJ =

άjjmodίXy,)? = ymod(X)c. Since yiJ(άiJ) = 0 we get by choice of c

that actually άtJ = atJ. Therefore

O = F(άiJ,y) = F(aiJ,y)=f(y). D

4. Henselian elements.

4.1.1. Let A be an arbitrary domain, X = (Xl9...,Xn) and Y one

variable. We will define a sort of diagonalisation operator Si by

where for i = (il9...9 in) a multi-index we mean by X1 = X[ι X22 * ' ' ^«"
Clearly <® is A -linear.

4.1.2. THEOREM [Lipshitz, Denef], Let A be an excellent local integral

domain, f e Λ[[X]], then

** 3R eA[[X9Y]] ΓιFτac(A[X,Y])s.t. f=

In words, / is algebraic if and only if it is the diagonal of a rational

power series.

Proof. See [L.D.; Thm. 6.2].

4.2.1. In this paragraph we will restrict ourselves to a special type of

rank-one valuation rings. Start with a complete D.V.R. Φ, with local

parameter T and residue field /c, fraction field K = Frac Θ. Let K be an

algebraic extension of K; then the discrete valuation extends in K

uniquely to a rank-one valuation, ord. Let K be the completion of K with

respect to this valuation and Θ the ring of integers in K. So Θ is a

complete rank-one valuation ring, with valuation ord. Let k be the residue
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field. By the theory of Witt-rings (see [Se]) we know that there is a
complete D.V.R. W{k) in &, which contains S9 so we could have started
with this D.V.R. to obtain 0, and therefore we may suppose as well that
the residue field of 0 is equal to k from the start but we only will need
this in char > 0. We make one final restriction on ί?: we demand that K
be perfect. So, for char K = p, we need that 0 = Θ1/p. Remark that in this
case k also is perfect (this is not necessary though when charl£ = 0). Note
also that the value-group of K is a subgroup of Q, + , so 0 might be
non-Noetherian. Example of a Θ: 0= Θc, the ring of integers in the
/?-adic closure of the algebraic closure of Q^.

4.2.2. THEOREM. Let Θ be as above {the restriction on the perfectness is
not needed) and f "e 0[[X]]^. Then 3/Λ e Θ[[X]]^9 fn integral coeffi-
cients in a finite extension of K such that

Since by 4.1.2 3tn e Φ[[X, Y]] Π Frac0[X, Y] such that /„ = 9{tn),
the above theorem is a generalisation of a result of Christol in one
variable: "/ is a uniform limit of 'functions algebrique regulieres'" see
[Chr].

Proof. Since / is algebraic over Frac0[X] = K(X) we know by
Theorem 4.1.2

3a,β<ΞK[X,Y], θ = a/β e K[[X,Y]]

such that f=Θ(θ).
Since -̂ [[A ]̂] is faithfully flat over K[X](X), we even may suppose

that β(0) = 1.
Let's write Z = (Xv..., Xn, Y) and write

« = Σ a,Z',

is/

Write A = (A, | i e / ) and B = (Bt | iΦOi e /) and

ά(A,Z)= Σ^ .-Z ' ,

iΦO

and Θ(A, B, Z) = ά/β e Z[[y4,5, Z]] since )S(0) = 1.
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Even more, we can write

(1) θ = Σθj(A,B)Z^Z[A
j

, x where ΘJ e Z[A, B] with total degree in A and B less

^ ' than or equal to 1 + ||y||.

Now, write a = {at \ i e /) and Z> = (Z?z | / e /, z # 0) so

ά(a,Z) = α, β(b,Z) = β, 9(a9b,Z) = θ.
By the construction of (9, we can find for each n e N o a field

finite over £ and Vi e /: αz

(λ2), Z>z

(/7) e ^ ( n ) with fe^> = 1, such that

ord(a,. - a\n)), ord(Z>z - b\n)) > n.

Call

..(z)-«(.)•», z), a

So αw -> α, βn -> Ŝ for « -> oo.
Finally, call

/.(Z) = β(Λ<">,6ί->,Z) e JΓ<->[[Z]] = ajβn

so /w is a rational power series and one may check that

(3) /„ - θ.

Let us call /„ = 2{tn), so /„ e K(n)[[X]], and by 4.1.2 we know that
it is algebraic.

Since / = 3>(θ) and (3) we get

/„-/•
So, for « big enough, /„ e ^[[X]] since/ is.

Call 0 ( / I ) the ring of integers in K(n\ This is a D.V.R. and hence
A - ( Λ ) n ί > = Θ(n\ and so

4.2.3. COROLLARY. WTze/? (5^ denotes the ring of integers in Kwe get:

REMARK. We also have proved explicitly that 0 is separative.

4.3.1. Let's write

J / = {A ring | ^ c ^ c ί ? and A finitely generated ^-algebra}.
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We define now

we will mostly abbreviate this as Rn or k. Denote by R^x^ the comple-

tion of R[[X]] in 0[[ X]] with respect to ord.

Again, Rn forms a PP-system. We now verify the conditions of

Theorem 2.4.1 in order to get A.P. Since each A G si is noetherian, each

element of R is separable, and therefore, also of R, which proves (c).

Property (b) will be postponed to §5 (5.4.2.); (d) already is dealt with by

2.5.2. Also, each (yl[[X]],(X)) for A e i is a Henselian pair, and

therefore also the direct limit (A, (X)), proving (e).

4.3.2. LEMMA. VTΓ G Θ, ord(ττ) > 0: πΘ[[X]] Γλ R = πk.

Proof. Choose γ G π0[[ AT]] Π ^ a n d i G j / s.t. γ e 4̂[[AΓ]] and let

( l ) al9...9as b e g e n e r a t o r s o f ^4 o v e r Θ, soA = Φ[al9...,as].

Therefore

Ξc 1 ? . . . , cs G ^ (integers of A")

s.t.

(2) αf = cι + TΓ^.

Let F = ^ ( c 1 ? . . . , cs) c Ĵ Γ, so i 7 is a finite extension of X̂ . Let ©F be

the ring of integers then we have, see [Ma; (31.C)]

0 F i s a D . V . R .
(3)

0 F finite, and therefore free ^-module.

Let el9...,ewbea. basis of ΘF over 0 and set

i = Θ[el9...9ew,dl9...9ds9π]

so ΦF c 4̂ and by (2) also A c X

We claim that γ/τr G -/ί[[X]], so is in R. Indeed, let c be a coefficient

of γ, so c G yl, and c = 0 mod 77 and by (1)

c = μ(αl9...9αs)

By (2) we can write

c = μ(cl9...9cs) + irλ(cl9...9cs,dl9...9ds9π)
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where λ(Yv . . . , Ys, Z 1 ? . . . , Zs, T) e Θ[Y, Z, T] so λ =

\{cλ,...,cs,dv...,ds,IT) e A and

(4) c = μ ( c 1 ) . . . , O + λ e

so μ(cv..., cJ/77 G Θ and μ(c 1 ? . . . , cs) G ί?F, which by (3) is a D.V.R.,

therefore μ(cv . . . , cs)/ττ G ^ F C A and therefore by (4) finally,

c/π e i , D

4.3.3. LEMMA. GJ// L = Frac0[[Z]] and K= FracA ίA«i L/K is

separable.

Proof. Suppose char^Γ = p Φ 0.

We have to prove that L and K1/p are linearly disjoint. Let

{e!,..., eΛ} be free over j£, e, e L. We have to show that they remain free

over Kι/P. So, suppose 3αz G iΓ1//7

(1) Σ «Λ = 0.
/-I

We may assume that e, e ί?[[X]] and α, G A1^. Let p, = af <= R

and ^ e j / s.t. p, e Λ[[X]]. Write out

Let v,j = ρ^p e A1/p and call 5, = Zv^XK So we find that

MX))'- af(X>).

Therefore, δ,(X) = α,(X^) e ^11/;)[[X]].

Assertion. A1/p e j / .

Therefore δ,. = o,( A"̂ ) e A and from (1) we get

(2) Σ β / ( * ) « , ( * ' ) - 0 .

Write out δz in /?-basis, i.e.

where j = (jv ..., jn) varies within the range 0 < jk < p — 1 and the

δί; ^ R since the 8t are.

Substituting this in (2) gives



APPROXIMATION PROPERTIES 349

SO

so

and {et) free over K, so 8^ = 0, hence δz = 0, hence at = 0. D

Proof of the assertion. Since k = A: is perfect, and 0 is complete, we
get by Cohen's structure theorem [Co] that 0 = k[[T]]9 T one variable
(corresponding to the local parameter T); therefore, since (k[[T]])1/p =
k[[T]][Tι/p] since k perfect we find that &1/p = 0[τ1 / ; ?] c 0, since 0
perfect. Let ^ G J / be generated over 0 by w1?..., w5. Then A1/p =
0 [ τ 2 / ^ M}/ ,̂ ...,u\ / p\ c β7 soyί1^ e / •

Since Lemma 4.3.2 is nothing but property (a) of Theorem 2.4.1 and
Lemma 4.3.3 implies property (f), we may conclude:

4.3.4. THEOREM. Let Θ, R and R be as described above, then R has
A. P. over R with respect to polynomial equations.

4.4.1. THEOREM. Let Θ be as before, denote with Θ[[X]]h the henselisa-
tion of Θ[X] in Θ\\X}] with respect to (X). Then we have

Θ[[X]]h =

Proof. O[[X]]h c 0[[JT]]als is clear by an already stated proposition
of Lang ([La; X, §7, Prop. 8]). Let y e Θ[[X]]**; then by Theorem 4.2.2.
y belongs to R = R[[χ^.

Let P(X, T) e Θ[X][T] be a polynomial in one variable such that

Choose c big enough so that the distinct roots of P(X,T) are not
congruent mod(X)c.

Applying the A.P. for R/R we get a y e R s.t.

P(X,j?) = 0 Λy=y m o d ( X ) c .

By the choice of c we need to have y = j>, so actually y e R. Suppose
therefore that y ^ A[[X]] with A^stf, i.e. finitely generated 0-algebra.
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Take A big enough so that P(X, T) G A[X, T]; then y G ̂ [[X]] a l g . Since

0 is excellent, so is A and by a well-known fact for excellent domains

[Ra]:Λ[[JΠ]a l g = A[[X]]h and since by the universal property A[[X]]h c
Λ> we find

y<ΞΘ[[X]]h D

4.4.2. COROLLARY. 0[[X]] a l g c R.

So, each algebraic element has coefficients which lie in a finitely

generated 0-algebra.

5. Weierstrass preparation theorems.

5.1.1. Let A be a ring, a an ideal in A. Assume that A is Hausdorff

in its ^topology, i.e. Γ\™=oa" = 0. We shall in the sequel write X =

( * ! , . . . , Xn) and X' = (XV..., Xn_y). When / G Λ[[X]] we call /^regw-

/αr IΛ Jfn of degree k if there is a term αX^ of / with c a unit mod a and A:

minimal with this property. Or equivalently iί f= v(Xn) - X^ mod(^, X')

with v(Xn) G Λ[[XJ] and a unit mod a, i.e. a unit in (^A)[[ JfJ].

We call P e A[[X']][Xn] a distinguished polynomial (DP) in Xn of

degree k if P is of the form

* = Jζf + Σ Λ Jί
1 = 0

Recall that we shall mean by saying that a PP-system Wn has a

W.P.T. with respect to a if the following holds:

V / e Wn which is ^regular in Xn of degree /: and

Vg G ΪΓΠ there are unique q e Wn9 r G H ^ . J ^ ] s.t.

r < fc.

5.1.2. LEMMA. Suppose f G ^4[[X]] W ^regular in Xn of degree k and

that there are β G i4[[ JΓ]], j8 G i4[[ Jf']] ŵc/i ίΛαί j8/ = ΣfΓo1 j8f Jζj mod( X').

Then βΞ= β. = O

Proof. We can write / = φ + X%υ modίΛΓ') where u G ^ [ [ J Γ Λ ] ] is a

unit mod a and φ ^ A[Xn] with φ Ξ 0 mod a and deg φ < k. So, putting
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X' = 0,

β(0, Xn) -(φ + X » = £ β,(0)Xi, thus
ί = 0

(1)
β(0X)X^υ^ Σ β(0)X'mod, so

but ϋ unit mod *, so /3(0, J Q = 0 mod a.
Substituting in (1) gives

(2) β(0,Xn)Xn

kv^Σβi(0)Xι

n mod*2

which again implies β(0, Xn) = β^O) mod* 2 , and by induction β(0, Xn)9

A(0)en?.0^s0. D

5.2.1. THEOREM. Let A be a ring, a an ideal in A and suppose A is
complete and Hausdorff in its artopology. Then ̂ 4[[X]] has a W.P.T.

Proof. Given / e A[[X]]9 ^regular in Xn of degree k9 g e A[[X]].
Write / = φ + Λ ^ mod X' where φ polynomial in Xn of degree less than
k, coefficients in a and v a unit in Λ[[XJ]. Set E = ̂ 4[[X]]/(/). We will
show that £ is finitely generated as an A[[ JΓ'JJ-module by 1, Xn,..., X^"1.

Set Jf= {a, X'), so A[[X']] is complete and Hausdorff with respect
to jr.

Assertion. E is Hausdorff in the Λ^topology.

Since

E A[[X]\ A[[Xn}} (A/a)[[XH]]

with v unit mod a we find that E/JίE is finitely generated as an A/a
( = ^[[Λr/]]/^Γ)-module by 1, * „ , . . . , Jf^"1. By the generator-lemma (see
[Z-S; VIII Thm. 7, Cor. 2]) E is finitely generated over A[[X']] by
l9Xn,...,Xl;~ι as module. So, we know that Vg <Ξ A[[X]] there exist
f G A[[X]l r e ^[[XΊ][XJ, deg^r < * s.t. g-f.q + r.

We have to show finally that q and r are unique. Suppose we have
also qf and rr s.t. g = f q' + r'. Call a = q - q' and β = r r - r, so

(2) /« = /?= Σ ' / M C ^ . G ^ [ [ ^ ] ] .
Ϊ = 0

By Lemma 5.1.2. we get α, jS = 0 mod JΓr.
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We will prove by induction that α,β = 0 mod(X')', so are zero by

the Hausdorffness.

Let {μJ}j==1 be all monomials in Xf of degree t and suppose α,

β = 0 m o d ( J Π ' , so 3Kj e A[[X]] and 3KiJ e A[[X']] s.t. a = Σ)=ιKjμj

K „ \f _ V V V n \Yι- Y V Y YΛII enKjtij)j ~ 2^ 2^ Kijβj }Xn- L,\L, KijXn My* S O

k-\

vj .Kjf^ Σ KtjX*

and by 5.1.2. again Kp Ktj e (X'), soa,β = 0 mod(X')'+ 1

Proof of the assertion. Let u e Πf=0^VΈ, u e Λ[[X]]. So

For y > / we have (at — oίj)f e Jf\ but one can easily show that / is a

non-zerodivisor mod*/Tz, since / is regular, so at — αy e ^ z . Therefore

the {ai)i form a Cauchy-sequence in the ^topology in yl[[X]]. By

completeness, 3a e ^4[[X]]:α -> α, and since ^ -> 0, we find u = af

(remark that 4̂[[ Z]] is Hausdorff in the Λ^topology, so ' -> ' makes sense)

and so u = 0 in E. D

5.2.2. COROLLARY. With the assumptions and notations of 5.2.1. and

moreover, a c rad^4, /Λew 3 unique Pj and u in A[[X]] s.t.

f=u-Pf

with Pf a DP of degree k in Xn and u a unit in ^4[[X]].

Proof. Apply W.P.T. to X$. D

5.3.1. Let A be a domain, <# an ideal in A, ad τ&άA and suppose

A[[X]] has a W.P.T. with respect to a. We want to study W.P.T. for

,4[[ JT]]alg, extending methods of Coste-Roy [C-R] and Lafon [Laf]. Take P

a DP of degree k in Xn and y ^ F = algebraic closure of Frac^4[[Xr]],

s.t. P(X',y) = 0. By the W.P.T. Vg e A[[X]]:3 unique q e A[[X]]9

reA[[X']][Xn](degxr<k)s.t.

g = qP + r.

Define a A -algebra morphism from 4̂[[ JΓ]] to F by substitution defined

as

( X ' ) ( χ > )
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If moreover, g e ^[[X]]^8 and g(X\ y) = 0 then one checks that y is
algebraic over Yτw,A\X'\ Write P = X* + Σ^Q p^ a n d suppose ΞA e
i4[[AΊ] s.t. ΛP e ^[[X]]^. Then Vi :/>,. e ^[[AΓ']]1*, so A, P e ^[[Z]]^.
This is because each root of P is a root of ΛP, so is algebraic over
FτacA[X']9 but the pi are symmetric functions in the roots. Therefore,
using this on 5.2.2 we get when / G A[[X]]^ of that corollary, then also

5.3.2. Let A be a domain of char̂ 4 = p Φ 0 and Γ be one variable.
When we put ρ / ( ^ N 0 ) w e can expand each / e ^4[[Γ]] in #-base
uniquely as follows

/= Σ/,(^)r
( = 0

Define Δ(/) = ΣafΓ where / = Σα,Γ', so

One easily checks that Δ is an injective ring morphism and that
iff Δ(/) e

5.3.3. PROPOSITION. Let f <= A[[T]]*\ and f=Σf-0

1fi(Tp)Ti. Then
A[[T]\*.

Proof. Call E = FracΛ[Γ]. Then E(f)/E is finite so there exist
a/T)

Set a = -ar; then
s

Call q = pr+1 and multiply (1) by a"-1

(2) ««./ '- Σ α - V '

Let / = Δr+1/, so/« =/(Γ«) and ά = Δr+1α, so α9 = ά(Γ«) and also
fpr = Σ?J0

1fi(T*>)prTirr set /, = Δ'/i, so MT')ϊ = ft(T«). Develop
α9~xα7 = ΣfΓo1 aji(Tq)Ti so substituting this all in (2) we get

p — 1 </— 1 5

ι=0 z=0 J
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By unicity of the expansion we find

V i - 0 , . . . , / > - l : δ ( T 0 /,(Γ«)- Σ aJI

j-r+l

SO,

**./j t-4 J,ιp J

Since / = Ar+1f <Ξ AftX]]^ and ά Φ 0, ά,aji e A[T] we get that /. =
* ' Ώ

5.3.4. Suppose from now on that we have a valuation ord on a field K
with A as its valuation ring and a the maximal ideal. We need not have
that Π JL0 a

n = 0. But this problem can be solved by remarking that, when
/ is ^regular, so / s φ + Xfo mod X' with υ unit and φ = 0 mod a we
always can find an ideal a c a s.t. Γ)an = 0 and φ = 0 mod £, and if A is
complete with the valuation ord, then also in the ̂ -topology. Therefore
when A is complete, we have a W.P.T. We can extend ord to ̂ 4[[ X]] by
letting ordiΣaiX*) = inf{ord(α,)} (Gauss-norm). Recall that Σα,Jf' is
called separable if the infimum actually is reached. Therefore, it / is
separable, we can write it always, after a transformation as

(1) f^π-g withord(τ7) = ord(/).

IT G A and g ^regular (or shortly, regular) in Xn. See for instance [Z-S].
We call A separative when every /£^t[[X]] a l g is separable. E.g.

rank-one valuation rings.

5.3.5. LEMMA. A as above, A separative, P a DP of degree k in Xn,
Suppose P is irreducible in A[[X]]; then it is irreducible in

Proof. Suppose not, so P = a β where a,β e (FTacA[[Xf]]^)[Xn]
and degx α, deg x β < k. (We will write deg for deg^ in the sequel.) So
3c €= AUX']]**, a]β e A[[X')]^[Xn) s.t.

cP = a - β

with degα, deĝ S < k. But A is separative, so by (1) of 5.3.4 we may as
well assume that ά, β are regular in Xn. By the W.P.T. in A[[X]] we get

P = q - a + p

with degp < degά, # e i4[[ΛΓ]], p G ̂ [ [ ^ ' I ^ J ; therefore

cP = cqa 4- cp = αyβ,
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so a I cp but deg p < deg ά so p = 0, so P = q a with deg a < k, which

contradicts the irreducibility of P in Λ[[X]]. D

5.3.6. THEOREM. Let A be a valuation ring, A separative and suppose

A[[X]] has a W.P.T.; then A[[X]]^ also has a W.P.T.

Proof. Take / e ^[[X]]3*8, / regular ( = ^regular) in Xn of degree k.

Let g e A[[XW^. By the W.P.T. of A[[X]]: 3 unique q e Λ[[X]], p, e

yί[[X']], such that

(1) g = « 7 + Σ Λ
i = 0

Since / is regular, we know by the discussion of 5.3.1 that / can be

written in the form / = u Pf where u is a unit in A[[X]]^g and i^ is a

Z>P of degree k in Xrt, Py G AftX]]81*. So we can find a "minimal"

decomposition

(2) /-fi ΠΛ
1 = 1

with ύ unit in ^ [ [ X ] ] ^ and Pt algebraic DP's in Xn such that their

degrees are minimal.

Suppose one of the Pt is not irreducible in y4[[Jf]], so Pi = aβ a,β

non-units in yί[[X]].

One easily sees that α, β need to be regular in Xn, so can be written

as, with ua, uβ units and Pa9 Pβ DP's

a = uaPa and β = uβPβ

so P. = uaUβPaPβ is algebraic. From 5.3.1 we get uauβ, Pa and Pβ are

algebraic, contradicting the minimality of decomposition (2). One checks

that, when we can prove (1) for two DP's, then we also have (1) for their

product.

So it is sufficient to prove (1) for the irreducible P/s so we may

suppose that / is a DP of degree k in Xn and / irreducible in ^4[[X]], so

in (¥mcA[[X'}]^)[Xn] by 5.3.5.
Let yv..., yk e F be the roots of /. Suppose first of all that the y%

are all distinct. This is certainly the case if char^4 = 0 since / is irreduci-

ble over the field FracylftJΠ]315. Substituting in (1) gives us for j =

'>yj)= Σ wj
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Consider this as linear system over F with roots p, and determinant

ΠJ</(yJ - yt) Φ 0 (Vandermonde-type).

So, by Cramer's rule, Pi{Xf) are rational expressions in yj and

g(X\ yj) and since the yj are algebraic over Frac^4[X] (for / is) and also

g is, one easily verifies that g(X'9 yβ are algebraic too, so the ρi are, and

hence also q e A[[X]]^.

Suppose now that char A = p Φ 0 and that / has multiple roots.

Then there exist an h e ,4[[X']][XJ and m e N, so that, where # = /?m,

/ = h(X%) and A is irreducible and has no multiple roots. Since / e
g, hence f e A[[X']]**[Xn] (see 5.3.1), we also get that / I G

CJ Let s = deg^ A, so degXn f=q s. Expand g in g-base

(3) g= Σ ft(^ί)^;

then we know from 5.3.3 that g,(X) e ^[[X]]3 1 8. Apply now the W.P.T.

for the DP h, which has no multiple roots, so 3 unique qt e ^[[X]] 3 1 8 and

p, e A[[X']]^[Xn], deg x P / < s - 1 s.t. g;. = q, h + pt. Using expansion

(3)

g = Σ g,(^)^ = Σ ί,(^)^(^)^ + Σ P,
j=0 i=0 ί=0

Call

p= Σ P,(*

with deg^ p < ^ - 1 + ^(5 - 1) = ^ - 1 = deg/ - 1

f)̂ ) /+p. •

5.4.1. Let's now work in the special type of complete rank-one

valuation-rings, defined in 4.2.1 and the PP-system Rn of 4.3.1. If T is a

finite subset of k, then we denote by

then ( J ^ Γ , c (inclusion)) forms a direct system with lim

\ One checks that, for T a finite subset of R,
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5.4.2. THEOREM. The PP-system R[[X]] = Rn has a W.P.T.

Proof. Suppose / is regular in Xn of degree k, so we can write / as

with φ(Xn) e Θ[Xn], degφ < k and ord(φ) > 0 and v(Xn) unit in
0IΓXJ1; moreover v £ i?Γr*πi

Call E = (Rn/(f)Rn) where i?rt = R[[X]]. Take TΓ G Θ, s.t. ord(ττ) =
ord(φ) > 0. Replacing ^4[[X|] in 5.2.1 by R, which is complete in the
π-topology, we can prove analogously that E is Hausdorff in the π-topol-
ogy. By the remark in 5.3.4. we have a W.P.T. for 0[[X]], which proves
the uniqueness in division by /.

So we need only to prove that E is finitely-generated as a i?w ̂ -mod-
ule by 1, Xn,..., Xn~λ. By the generator-lemma this amounts in proving
the same for E/πE over Rn_ι/πRn_1.

Since R/π = R/π, we can find v,f^R ( δ ε 0[[^J]), with v = v,
f = f mod π (so v still a unit) and / = vX% mod(π, X').

So

A. =

 R» β

 k* =
πE U. f) " (IT. f)

and

πRn-l

So, when we can prove that for A e ^ . , (A/πA)[[X]]/(/) is
finitely generated as a A/πA [[Xr]]-module by 1, JSfπ,..., X% we are done.
But (A/πA) [[X']] is complete and Hausdorff with respect to the (X')-
topology because A is noetherian and (X') c τ&d(A/πA) [[X']]> so
(A/πA) [[X']\ is a Zariski-ring. By applying the generator-lemma once
again we obtain

A Umil.yΛ A [[A.]]

with β unit, and this is a finite ( ^ / ^ ^ [ ^ / ( X ' ) = y4/ττ^-module
generated by 1,..., X%~1. D

5.5. PROPOSITION. Let A be a ring, a an ideal in A, A complete and
Hausdorff in the artopology.
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Let Wn be a PP-system over A and Wn the aradic closure of Wn in

A[[X]].

If Wn has a W.P.T., then also Wn.

Proof. Let / G Wn be ^regular in Xn of degree k, and g ^ Wn. So

there exist fm9 gm G Wn such that

fm-*f a n d 8m-* g

Therefore, for m big enough the /m must be ^regular of degree /: in Xn

too. So, by the W.P.T. in Wn 3 unique qm G JFΛ, p / w G Pf;_1

A : - l

i = 0

Vt: 37V:/ - /m, gm - g5 G a* ύm,s> N, hence in A/*Ά[[X]] we get:

But by the W.P.T. in A/a'A[[X]]9 such an expansion is unique, so

q = q mod a\

Pim = Pis

thus the (ήrm)m and the (pim)m are Cauchy-sequences in A[[X]]. Therefore

3q e Wς, p. e ^ , _ i : ί m -» 9 and p/IB -• p, and so

i = 0

The uniqueness of q and ρt follows from the W.P.T. in Λ[[ Jf]]. π

5.5.2. The same proposition holds for A a complete valuation ring,

since A[[X]] has a W.P.T. by the remark of 5.3.4.
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