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MODULES SATISFYING ACC ON A CERTAIN TYPE
OF COLONS

CHIN-PI LU

Let M be a module over a ring R, which satisfies the ascending
chain condition on submodules of the form TV: B c N: B2 c N: B3 c
• for every submodule N of M and every finitely generated ideal B of
R. We investigate the class of such modules M and show that various
important properties of Noetherian modules and rings can be generalized
to modules and rings of this class.

Introduction. Let M be a module over a ring R (commutative with
identity). M is said to satisfy (accr) (resp. (accr*)) if the ascending chain
of residuals of the form N: B c N: B2 c N: B3 c terminates for
every submodule N of M and every finitely generated (resp. principal)
ideal B of R. The class of modules satisfying (accr) is large. It contains
Noetherian modules, modules over Artinian rings, modules having ACC
on colon submodules ([14]), Laskerian modules, modules over perfect
rings, etc. The purpose of this paper is to investigate this class of modules
and show that these modules enjoy various important properties of
Noetherian modules.

In §1, we prove that (accr) and (accr*) are equivalent properties of
modules. We also characterize modules satisfying this property as those
i?-modules M in which every submodule TV can be written in the form
N = (N:Bh) Γ)(N + BhM) for every finitely generated ideal B of R and
for all sufficiently large positive integers h.

Section 2 deals with fundamental properties of modules satisfying
(accr). The main result is that both a weak version of the Artin-Rees
Lemma and the Krull Intersection Theorem for Noetherian modules can
be generated to modules with (accr). We also give an example of a module
in order to show that every Laskerian module satisfies (accr), but a
module satisfying (accr) is not necessarily Laskerian.

In §3, we consider conditions under which modules (resp. quasi-semi-
local rings) satisfying (accr) are Laskerian (resp. Noetherian). Let M be a
module each of whose factor module is finite dimensional [10]. We prove
that such an i?-module M is Laskerian <=> M satisfies (accr) <=» the Artin-
Rees property holds for every submodule N of M and every principal
ideal (r) of i?, that is N Π rhM c rN for all sufficiently large integers h.
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Section 4 is concerned with topological rings satisfying (accr). Apply-

ing some topological observations, we prove that both zero-dimensional

rings and one-dimensional domains satisfy (accr). It is well-known that if

R is a Noetherian ring and R* is the completion of R for the separated

(bl9 b29..., &Λ)-adic topology, then

i ? * = R [ [ x i , x 2 , ••">*„]] A x i ~ h \ i χ 2 ~ b 2 , . . . , x n - b n ) .

We show that this is also the case for rings of dimension zero.

In §5, we emphasize that if M is an i?-module satisfying (accr) and B

is a finitely generated ideal of R contained in the Jacobson radical of R,

then every submodule of M is closed for the B-adic topology. Thus M

behaves like a Noetherian module over a Zariski ring. Our main purpose
in this section is to study topological coherent rings which satisfy (accr).
We find that such rings R are also similar to topological Noetherian rings.
For example, if B = (bv b2,..., bn) is an ideal of i?, then the Hausdorff
completion i?* of R for the 5-adic topology is a flat i?-module and R* is
a faithfully flat i?-module iff B is contained in the Jacobson radical of R;

in the latter case we have that

R * = R[[xi9x2,-'.,xn]]Axi -bl9x2-b29...,xn- b n ) .

Every ring in this paper is a commutative ring with identity and every

module is unitary. For definitions not given in the paper the reader is

referred to [13].

1. Modules satisfying (accr). Let M be a module over a ring i?, N
a submodule of M, and B an ideal of R. The residual N: B of TV by B is
also called a colon submodule [14]. In this section, we consider exclusively
those ascending chains of colon submodules which are of the form
N:B c N:B2 c N:B3 c

LEMMA 1. Let M be an R-module, r G ί , and n e Z + , the set of

positive integers. Then the following statements are equivalent.

(1) The ascending chain of submodules {(0): r k} k € z+ stops at n;
(2 ) (0 ) : r " = (0) : r" + 1;
(3) ((0): rn) Π rnM = (0).

The proof of Lemma 1 is straightforward, hence we omit it.

PROPOSITION 1. Let N be a submodule of an R-module M and r e R.

Then the following statements are equivalent:

(1) The ascending chain of submodules {N': rk) k<ΞZ+ terminates;

(2) There exists an n <E Z+ such that N: rn = N: rn + ι;

(3) There exists an n e Z + such that N = (N: rh) Π (N + rhM) for

every h > n.
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Proof. We apply Lemma 1 to the factor module M/N over R.

We remark that, although the proofs are not trivial, both Lemma 1
and Proposition 1 remain valid if we replace r e R with any finitely
generated ideal of R. We shall prove this statement later in Corollary to
Theorem 1.

If M is a module over R in which (0) is a primary submodule, then
every zero divisor of M is nilpotent modulo Ann M. Therefore, we can see
easily that the ascending chain of submodules {(0): rk}k(ΞZ+ terminates
for every r e R. Applying this to factor modules of M over R, we have

PROPOSITION 2. // N is a primary submodule of an R-module M, then
the ascending chain of submodules {N: rk}kξΞZ+ terminates for every r G i J ,
Consequently, if L is the intersection of a finite number of primary submod-
ules, then the sequence {L: rk}k€ΞZ+ terminates for every r e R.

DEFINITION 1. A module M over a ring R is said to satisfy (accr)
(resp. (accr*)) if for every submodule N oΐ M and every finitely generated
(resp. principal) ideal B of i?, the ascending chain of residuals
{N: Bk}k(ΞZ+ terminates. A ring satisfies (accr) (resp. (accr*)) if it
satisfies (accr) (resp. (accr*)) as a module over itself.

Clearly, a module satisfies (accr*) if it satisfies (accr). We shall see
that these two properties are actually equivalent.

LEMMA 2. Let B = (bv b2,..., bt) be a finitely generated ideal of a ring
R. If k and n are any two positive integers such that n > kt, then
nn / uk uk L&\ Ώn — k

Proof. Put (of, bk,..., bk)Bn~k = A. Then A c Bn and Bn is gener-
ated by

Since n > kt, for each a = b\ιb\2 b}1 e Γ, there exists at least one i
such that \ ι > k. Hence, a = bk(b\ιb22 - bf<~k - b}<) e A for every
a e T as λx + +(λ,. - k) 4- + λ, = n - Jfc, so Bn = A =
( Uk uk Uk\ Ώn — k

(bι,b2,...,bt )B

THEOREM 1. For any R-module M, two properties (accr) and (accr*)
of M are equivalent.

Proof. It is sufficient to show that (accr*) implies (accr). So we
consider the ascending chain of submodules {N: Bk}k€ΞZ+ for any sub-
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module N of M and any finitely generated ideal B = (bl9 b2,..., bt) of R,

Since Af satisfies (accr*), for each bt there exists an ni such that

N: b'l> = TV: b? +J for every 7 > 1. Now, let k = max{«z; i = 1,2,..., f}.

Then

= ΛΓ: (Z>i+->, 6|+Λ . . . , ft*4-') for every 7 > 1.

Now, let n be a positive integer such that « > &/; then by Lemma 2 we

have Bn = (Z>f, Z>^,..., b^)Bn~k. It follows that

N.Bn =

= (TV: (^ + Λ 6*+->,..., b*+j)): 5W~^ for everyj > 1

= N: (bϊ+J\ bk^J,..., b*+j)Bn-k for every; > 1

2 N:Bn+J for every j > 1

2 N\B\

because (6f+>, 6*+^,..., bf+J)B"-k c 5"^' c 5".

COROLLARY. For αwj; R-module M, the following statements are equiva-

lent:

(1) Msatisfies (accr);

(2) Msatisfies (accr*);

(3) i w ύwy submodule N of M and any element r e iί, /Λ r̂̂  exists a

positive integer n such that N = (N: rh) Γ) (N + rhM) for every h > n;

(4) For αwy submodule N of M and any finitely generated ideal B of R,

there exists a positive integer n such that N = (N: Bh) Π (N + BhM) for

every h > n.

Proof, (1) <=> (2) <=> (3) follows from Theorem 1 and Proposition 1.

(4) => (3) is obvious and (1) => (4) can be proved in a way similar to the

proof of [4], p. 178, Lemma 1.

Clearly, every Noetherian module and every module over an Artinian

ring satisfy (accr). Similarly, an i?-module M which has ACC on colon

submodules L: A, where L is any submodule of M and A is any subset of

R, also satisfies (accr) [14]. In [12], a ring R is called an N-ring if, for

every ideal A of i?, there exists a Noetherian ring extension R' of R such

that A is contracted from R\ i.e., AR' Π R = A. Every N-ring is known

to be strongly Laskerian. It is also known that every finitely generated
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module over an TV-ring has ACC on colon submodules ([14], p. 120,

Theorem 2.3 and its Corollary 2.5). So every TV-ring and every finitely

generated module over an TV-ring satisfy (accr). More generally, we have

PROPOSITION 3. Every Laskerian module satisfies (accr).

This is a direct result of Proposition 2.

DEFINITION 2 ([7]). A ring R is called a perfect ring if every flat

i?-module is projective.

Perfect rings can be characterized in various ways. For example, a

ring R is perfect iff R satisfies DCC on principal ideals ([7], p. 466,

Theorem 3.2) iff every i?-module M satisfies ACC on submodules gener-

ated by n elements for each n > 1 ([18], p. 269, Proposition 1.2). There-

fore, every quasi-local ring with nilpotent maximal ideal is perfect. From

these remarks we have

PROPOSITION 4. Every module over a perfect ring satisfies (accr). In

particular, every quasi-local ring with nilpotent maximal ideal satisfies

(accr).

In [12], p. 129, Corollary 2.11, it was proved that a quasi-local ring R

whose maximal ideal has the order of nilpotency n = 2 is an TV-ring. This

result is followed by an example of a quasi-local ring with n = 3, which is

not an TV-ring. Therefore, in view of Proposition 4, the class of TV-ring is

indeed a proper subset of the class of rings which satisfy (accr).

2. Properties of modules satisfying (accr). In this section we con-

sider various properties of modules satisfying (accr), in particular, those

properties which are in common with Noetherian modules.

P R O P O S I T I O N 5. Every irreducible submodule TV of an R-module M

satisfying (accr) is primary.

Proof. Let re e TV, where r e R and e <Ξ M - N. Then N c. N:r so

that TV c TV: rk for every k > 1. By Proposition 1, we have TV = (TV: rh)

Π (TV 4- rhM) for a sufficiently large integer h. Since TV is irreducible,

TV = TV 4- rhM whence rhM c TV. Hence TV is primary.

In [12], p. 130, Example 2.13, it was shown that a ring R is not

necessarily an TV-ring even though R/A is an TV-ring for every nonzero

ideal A of R. In contrast with this, here we have

PROPOSITION 6. An R-module M satisfies (accr) if, and only if, so

does a factor module M/Kfor every non-zero submodule K of M.
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Proof. Let η be the natural homomorphism of M onto M/K. If N is
a submodule of M and B is a finitely generated ideal of R, then
v(N):M/KB = ((N Λ- K):MB)/K. Hence, Af/A" satisfies (accr) if M

does. Conversely, we assume that there exists an ascending chain of
submodules {N: Bk}k^z+ which does not terminate, although M/K

satisfies (accr) for every non-zero submodule K. Then there exists a
positive integer kf such that N c N: Bk. If we let L = N: Bk\ then
L Φ (0) and {L: Bk}kGZ+ does not terminate either, because it consists
of all but the first k' terms of the original chain {N: Bk} k e z +. Therefore,
without loss of generality, we may assume that N Φ (0). By hypothesis,
M/N satisfies (accr) so that {(N: Bk)/N}k€ΞZ+ terminates. Conse-
quently, {N: Bk}k€ΞZ+ terminates, which is a contradiction. Hence, M

satisfies (accr) if so does M/K for every non-zero submodule K.

PROPOSITION 7. // an R-module M satisfies {accr), then so does the

Rm-module Mm for every maximal ideal (or multiplicatively closed set) m.

The converse is true ifR is a quasi-semilocal ring.

Proof. Let TV be a submodule of Mm and B an ideal of Rm finitely
generated by {bλ/sv b2/s2, . . . , bn/sn). Put N = Nc and B =

(bl9 b29..., bn)R. Then N_ = NRm = Nm and B = BRm = Bm. Since B is
finitely generated, N:MmBk = Nm:MmBk = (N:MBk)m for every k e Z\

Hence, if M satisfies (accr), then Mm also satisfies (accr) as an ^ - m o d -
ule. To prove the converse, let ml9 m2,..., mn be the maximal ideals of a
quasi-semilocal ring R and let {N: Bk} k€ΞZ+ be an ascending chain for a
submodule N of M and a finitely generated ideal B of R. Then, for each
i = 1,2,...,«, there exists a fc, e Z + such that (iV: !?*')«, = ( ^ ' Bki+j)mι

for every y > 0. If A = max{fcz; / = 1,2,..., n}9 then 7V:5Λ = N:Bh+J'

for every y > 0 due to [17], p. 164, Corollary to Proposition 18.

DEFINITION 3. Let N be a submodule of an Λ-module M and B an
ideal of R. We say that the Artin-Rees property holds for N and B if
there exists a positive integer n such that N Π BhM Q BN for every
h > n. M is called an Artin-Rees module if the Artin-Rees property holds
for every submodule of M and every ideal of R.

Recall that every finitely generated module M over a Noetherian ring
is an Artin-Rees module. This is due to a weak version of the Artin-Rees
Lemma which is proved usually by applying primary decompositions of
submodules of M. In the following Theorem 2, we generalize the Artin-
Rees Lemma (weak version) to modules which satisfy (accr); we prove it
in the absence of the primary decomposition property of submodules.
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THEOREM 2. If an R-module M satisfies (accr), then the Artin-Rees
property holds for every submodule N of M and every finitely generated ideal
BofR.

Proof. Put L = BN. Then, there exists a positive integer n such that
L = (L:Bh)Π(L + BhM) for every h>nby the Corollary to Theorem
1. Equivalently, (L: Bh) Π BhM c L for every h > n by the Dedekind's
modular law. Clearly, N QL:Bh. So N Π BhM c (L: £*) n ^ Λ M c L
= BN for every h > n.

For any ideal i? of a ring i? and an i?-module M, we always have
(0) c θ s c BΓi™=1 5 W c n^xB

nM9 where 5 = {1 - b\ b ^ B) and
O5 = ( X G M ; 5X = 0 for some s ^ S}. The Krull Intersection Theorem
states that if M is a Noetherian iί-module and B is an ideal of R, then
B Π ^ ! £"M = (\^mmlB

nM. Since Π*.i 5 n M is finitely generated,
Π^_i J?WM = 0s. We shall see that the same result holds for i?-modules M
satisfying (accr) and finitely generated ideals B of R, although (λ^^M
may not be finitely generated.

LEMMA 3. Let B be an ideal of R such that the Artin-Rees property
holds for B and any cyclic submodule of an R-module M. Then 0 s =

Proof. Let x e f)™=1B
nM. Then the cyclic submodule Rx is con-

tained in BnM, so that Rx = Rx Π BnM for every « G z+. By hypothesis,
Rx Π BhM ςz Bx for all sufficiently large positive integers h. Conse-
quently, Rx = Bx whence there exists an element b oί B such that
(1 - b)x = 0, i.e., x e 0s. Hence, 0 s = BΓl™=ι B

nM = (λ™=λB
nM.

Combining Theorem 2 and Lemma 3, we have

THEOREM 3. Let M be an R-module which satisfies (accr). Then
0s = # n ^ = 1 #

n M = Γi™=1B
nM for every finitely generated ideal B of R.

Consequently, if either B is a finitely generated ideal contained in the
Jacobson radical of R or R is an integral domain over which M is torsion
free, then Π~.15

ΛAf = (0).

The following Corollary to Theorem 3 is a slight improvement of [13],
p. 109, Corollary 3.2, which follows from Proposition 3 and Theorem 3.

COROLLARY. // M is a Laskerian R-module and B is a finitely gener-
ated ideal contained in the Jacobson radical of R, then Π^=1J?"M = (0).
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In Proposition 3 we have seen that every Laskerian module satisfies
(accr). It is natural to ask if there exists a module which satisfies (accr),
but is not a Laskerian module. The answer to this question is affirmative
as we shall see in the following example.

EXAMPLE 1. Let M = Σ Θ e AZ/(p) be a module over the ring Z of
integers, where Λ is the set of all prime integers of Z. For each e e M, we
write e = Σp(EAep, where ep = ep + (p) e Z/(p) and ^ e Z. Since the
set of zero divisors of M is identical with Όpf=A(p)9 M is not a
ZZ)-module. Consequently, M is not Laskerian (cf. [13], p. 102). Next, let
iVbea submodule of M. Then it has the form N = Σ @ e Z/(p) for
some S Q A (cf. [10], p. 367, Example 2). Let r e Z a n d ^ e Z + . Then
e = ΣpeAep e JV: r* iff r*e = ΣpeAr

kep e iV iff r*^ = 0 of Z/(/?) for
every /? £ 5 iff ^ | (rkep) for every /? £ 5 iff /> | r or /> j βp for every p £ S
iff /j|rep for every p £ S iff re^ = 0 of Z/(p) for every p <£ S iff
e = Σp(ΞAep ^ N: r. Thus N: r = N: rk for every /: e Z + and so M
satisfies (accr). According to Theorem 2, Λf is an Artin-Rees module. We
note that every submodule N of M is actually a pure submodule, i.e.,
ΪV Π flM = tfiV for every a e Z.

Every module over an Artinian ring satisfies (accr). In the following
Example 2, we show that not every module over a Noetherian ring
satisfies (accr).

EXAMPLE 2. Let V be a countably infinite dimensional vector space
over a field i 7 with a basis Z) = {ϋ1? υ2,..., U/5 . . .}. For each positive
integer /, let Vt be the subspace of V generated by {vv υ29..., V;}. Define
the linear transformation Γon V by T(vx) = 0 and T(vt) = υι__ι for every
i > 2. Let F[T] be the polynomial ring generated by T over F. Then
F[Γ] is a Noetherian ring with identity. Consider V as an F[Γ]-module.
Now, applying the facts that Tk(vj) = vJ_k if j > k and Tk(Vj) = 0
otherwise, and that D is linearly independent over F, we can prove that
(0): v Tk = Vk for every positive integer k. Therefore, the sequence
(0): (T) c (0): (Γ 2) c (0): (Γ3) c does not terminate. Hence, the
F[Γ]-module Fdoes not satisfy (accr) and so it is not a Laskerian module
by Proposition 3. More precisely, (0) has no primary decomposition due
to Proposition 2.

The modules used in the above Example 1 and Example 2 appeared in
[10] and [9], respectively, for other contexts.

3. Some special rings and modules satisfying (accr). In [1], Theo-

rem 4.1 is concerned with quasi-local rings R with finitely generated
maximal ideals. The theorem lists five conditions, each of which is
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equivalent to that R is Noetherian. As remarked in p. 21 of [1], this result
can be generalized to quasi-semilocal rings in which all maximal ideals are
finitely generated. In the next theorem, we improve this theorem further
by adding few more equivalent conditions and give a simple proof using
results of previous sections. The added conditions ((3), (4), (6)) are either
weaker or simpler than those stated in Theorem 4.1 of [1], if R is an
ordinary ring.

THEOREM 4. Let R be a quasi-semilocal ring whose Jacobson radical J is
finitely generated. Then the following statements are equivalent:

(1) R is a Noetherian ring;
(2) Every finitely generated ideal ofR has a primary decomposition;
(3) The ascending chain of ideals {A: rk]k€ΞZ+ terminates for every

r G R and every finitely generated ideal A of R;

(4) For any finitely generated ideal A and r e R, there exists a positive

integer n such that A = (A: rh) Π (A + rhR) for every h > n;

(5) For any two finitely generated ideals A and B of R, there exists a

positive integer n such that A = (A: Bh) Π {A + Bh) for every h > n;

(6) For any two finitely generated ideals A and B of R, there exists a

positive integer n such that A Π Bh c AB for every h > n, i.e., the Artin-

Rees property holds for A and B;

(7) Π™=ιJ"M = (0) for every finitely generated R-module M;

(8) Π™=ι(A +Jn) = Afor every finitely generated ideal A;

(9) For any ideal B and any finitely generated ideal A ofR,B = A+JB

implies A = B.

Proof. (1) =̂> (2) is trivially true and (1) => (7) => (8) is well-known.
(2) => (3) <=> (4) follows from Proposition 2 and Proposition 1, respec-
tively. (4) <=> (5) => (6) can be proved by applying Corollary to Theorem 1
and Theorem 2, respectively, after making suitable modification on finite-
ness of generating sets of submodules in the theorems. To show (6) => (8),
let A be a finitely generated ideal of R and consider R = R/A as an
Λ-module. By (6), we can see easily that the Artin-Rees property also
holds for every finitely generated submodule of R and every finitely
generated ideal of R. Now, applying Lemma 2 and the fact that / is
finitely generated, we have that the i?-module R is a Hausdorff space for
the Λadic topology. Therefore, Π™=ι(A + Jn) = A. As for (8) => (9), we
can see that B = A + JB implies B = A + JnB for every n > 0, hence
B = Π™=1(A + JnB) c Π™=1(A +Jn) = AQB. Since (9) =» (1) was al-
ready proved in [1], the proof of the theorem is completed.
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We remark that among the statements in Theorem 6, we always have

the implications (1) => (2) => (3) <=> (4) <=> (5) => (6) for any ring R which

may not be a quasi-semilocal ring.

COROLLARY. Let R be a ring which satisfies (accr). If every maximal

ideal of R is finitely generated, then R is locally Noetherian, that is, Rm is

Noetherian for every maximal ideal m of R; consequently, R satisfies ACC

for prime ideals.

A module M over an associative ring S (with or without identity) is
said to be finite dimensional over S if there does not exist an infinite
chain of submodules of M of the form M1 c Mx Θ M2 c Mx Θ M2 Θ M3

c , where each Mt is a nonzero submodule of M [10]. It is easy to see
that Noetherian modules and Artinian modules are finite dimensional.
However, a finite dimensional module is not necessarily Noetherian or
Artinian.

Next, we consider any associative (commutative or non-commutative)
ring R with identity which satisfies the ascending chain condition for
ideals. If R is commutative, then clearly it is Laskerian. However, it is
known that in the non-commutative case R may satisfy the ACC for
ideals without being a Laskerian ring. In view of this, P. J. McCarthy [16]
proved that the following conditions are equivalent for any ring R with
identity, which satisfies the ACC for ideals: (i) R is a Laskerian ring; (ii)
R is an Artin-Rees ring; (iii) If A and B are ideals of R, then A =
{A : Bn) Π (A + Bn) for all large integers n, i.e., R satisfies (accr).

Now, we consider a theorem, which is similar to the above mentioned
theorem of McCarthy, for finite dimensional modules.

In the rest of this paper, as we assumed at the beginning, every ring is
a commutative ring with identity.

Let M be an i?-module such that each factor module of M is finite
dimensional. According to Theorem 2.6 of [10], p. 364, a sufficient
condition for this module M to be Laskerian is that M is an Artin-Rees
module. From the proofs of [10], Theorem 2.6 and its Lemmas 2.1 and
2.3, we can see that this condition can be replaced with a weaker
condition (a): the Artin-Rees property holds for every submodule of M
and every principal ideal of R. In the next theorem, we see that (a) is also
a necessary condition for M to be Laskerian.

THEOREM 5. Let M be an R-module such that each factor module of M

is finite dimensional. Then the following statements are equivalent:

(1) M is Laskerian;
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(2) Msatisfies (accr);

(3) The Artin-Rees property holds for every submodule of M and every

principal {or finitely generated) ideal of R.

Proof. Clearly we have that (1) => (2) => (3) by Proposition 3 and

Theorem 2, and (3) => (1) follows from the above remark.

4. Topological rings satisfying (accr). Let / = (al9 a2,..., an) be

an ideal of a ring R such that Π™=ιI
k = (0) and 2?* the completion of R

for the /-adic topology. It is well-known that

** = R [ [ x l 9 . . . 9 x n ] ] / ( x 1 - a l 9 . . . 9 x n - a n ) * 9

where xl9..., xn are indeterminates and (xλ - al9..., xn - an)* is the

closure of the ideal H = (xλ — aγ,..., xn — an) of i?[[x 1 ? . . ., xn]] for the

(al9...9an9xl9...9xn)-adic topology. In particular, if R is Noetherian,

then R* = R[[xv ...,xn]]/(xι - al9...9xn- an). In[2],p. 135, Corollary

1.3, it was pointed out that H* is identical with the closure of H for the

(xl9..., x J-adic topology of R[[xl9..., xn]] for any ring R.

In this section, we study those rings R with (accr) which have the

isomorphism i?* s JR[[X1? . . . , * J ] / ( * i — al9..., xn — an). We focus our

attention on rings of (Krull) dimension < 1. This study will be continued

to the next section for coherent rings.

The following Lemma 4 for Theorem 6 is a combined form of Lemma

3.1 and Theorem 3.3, both of [2].

LEMMA 4. Let a be an element of R such that x — a is regular in R[[x]].

Then the following two statements are equivalent:

(1) The ascending chain of ideals {Armak}kζΞZ+ terminates;

(2) In R[[x]], the ideal (x — a) is a subspace for the (x)-adic topology.

COROLLARY. Let R be a ring satisfying (accr), a an element of R such

that C\f^i(ak) = (0), and R* the completion of R for the (a)-adic topology.

Then the ideal (x — a) ofR[[x]] is closed for the (x)-adic topology. Hence,

Λ* = R[[x]]/(x - a) (cf. [2], p. 143, Theorem 3.5).

THEOREM 6. If R is either a zero-dimensional ring or a one-dimensional

domain, then R satisfies (accr).

Proof. Assume that dimi? = 0. Then, for every a e i?, x — a is

regular in R[[x]] and the ideal (x - a) contains a power of x due to [11],

Proposition 2.1 and [11], Proposition 2.4, respectively. Accordingly,
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(x — a) is a subspace of i?[[*]] for the (x)-adic topology, whence the
ascending chain of ideals [Armak}keZ+ terminates by Lemma 4. Next,
let / be any proper ideal of R. Then R/I is also a zero-dimensional ring.
Applying the first part of this proof, we can see that the ascending chain
of ideals { A n n 5 ^ G Z + of R/I terminates for every a = a + / e R/I.
This means that the ascending chain of ideals {/: ak)k€ΞZ+ of R

terminates, so R satisfies (accr). Finally, we assume that R is a one-di-
mensional domain. Then R/I is a zero-dimensional ring for every non-zero
ideal /, so that R satisfies (accr) as we have seen above.

An integral domain R is called a pseudo-valuation domain (PVD) if
R has a valuation overring V such that Spec(i?) = Spec(K) as sets [8]. It
is known that every PVD is a quasi-local domain and that if a PVD R is
not a valuation domain, then R is coherent iff its unique maximal ideal is
finitely generated.

COROLLARY. Let R be a coherent PVD which is not a valuation domain.

Then R is Noetherian if, and only if, it satisfies {accr). Consequently, every

one-dimensional coherent PVD is either Noetherian or a valuation domain

([8], p. 563, Remark 4.6).

Proof. The corollary follows from Theorem 4 and Theorem 6.

T H E O R E M 7. If R is a zero-dimensional ring and I = (av a2,..., an) is

an ideal of R such that Γ)™=ιI
k = (0), then the completion R* of R for the

I-adic topology is isomorphic to R[[xχ9..., * „ ] ] / ( * ! — av ..., xn — an).

Proof. By [11], Proposition 2.4, the ideal (xt — at) of i?[[xj] contains

a power of xt for every / = 1,2, ...,n. Hence the ideal H =

(xλ - av . . . , xn - an) of R[[xl9..., x J ] contains a power of ( x 1 ? . . . , xn),

so that H is an open and closed ideal for the (xv ..., x J-adic topology.

Therefore, i?* = R[[xv..., xn]]/(xι - aγ,..., xn - an).

5. Topological coherent rings satisfying (accr). We have seen gener-

alizations of both a weak version of the Artin-Rees Lemma and the Krull

Intersection Theorem to modules satisfying (accr) in Theorem 2 and

Theorem 3, respectively. These results imply other Noetherian properties

to this class of modules when they are considered as topological modules.

PROPOSITION 8. // M is an R-module satisfying (accr) and B is a

finitely generated ideal contained in J(R), then every submodule N of M is

closed for the B-adic topology.
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Proof. j>ut M = M/N, Aτm(M/N) = /, and Λ = R/L Then the
jR-module M satisfies (accr) by Proposition 6. Since B = (B + I)/I is a

finitely generated ideal contained in J(R), Π™=1B
nM = (0) by Theorem

3. Thus we have Γ\™=1(N + BnM) = N.

PROPOSITION 9. Let R be a ring satisfying (accr) and B a finitely

generated ideal of R contained in J(R). Then each ideal of R is the

contraction of an ideal of the completion R* of R for the B-adic topology.

Consequently, ifR* is Noetherian, then so is R.

Proof. Apply Proposition 8 and [15], p. 292, Theorem 1.

LEMMA 5. Let M be an R-module satisfying (accr), E an R-module,

and B a finitely generated ideal of R. Then each homomorphism f: E -> M

is a strict morphism for the B-adic topologies.

Proof. Refer to the proof of [6], p. 64, Corollary to Theorem 2 and

apply Theorem 2.

/ g
PROPOSITION 10. Let L -> M -> N be an exact sequence of R-modules,

where M and N satisfy (accr), and let B be a finitely generated ideal of R. If

now the Hausdorff completions are taken with respect to the B-adic topolo-
f* g*

gies, then L* —> M * —> N* is an exact sequence of R*-modules.

Proof. Both / and g are strict morphisms by Lemma 5. Hence, the

proposition follows from [6], p. 50, Lemma 2.

COROLLARY. Let M be an R-module satisfying (accr) and B a finitely
f g

generated ideal of R. Let 0-+L-+M-+N-+0 be an exact sequence of

R-modules. If the Hausdorff completions are taken with respect to the B-adic
g*

topologies, then 0 -> L* -> M* -> iV* -> 0 is an exact sequence of R*-

modules.

Let R be a topological ring with a basis Q of neighborhoods of 0

consisting of ideals and let M be an i?-module equipped with the

(Mopology. We consider the following condition (P): For every finitely

generated submodule N of M, the (Mopology of N is equivalent to the

topology induced on N by the β-topology of M.



316 CHIN-PI LU

DEFINITION 4. A linear topology of a ring R is called an Artin-Rees

topology if every finitely presented Λ-module satisfies condition (P) ([3]).

If R is a ring satisfying (accr) and B is a finitely generated ideal of R,

then clearly the 5-adic topology of the 2?-module R fulfills condition (P)

by Theorem 2.

We remark that if R is a coherent ring equipped with a linear

topology T, then T is an Artin-Rees topology if, and only if, the

i?-module R satisfies condition (P) ([3], p. 1210, Proposition 5). Therefore,

the 2?-adic topology of a coherent ring R which satisfies (accr) is an

Artin-Rees topology for every finitely generated ideal B of R.

N. Radu proved ([19], Propositoin 3) that the completion of a

coherent Laskerian ring R for the ra-adic topology, where m is a finitely

generated ideal of R, is a flat 7?-module. In the next theorem, we

generalize this result by Radu to coherent rings satisfying (accr).

THEOREM 8. Let R be a coherent ring which satisfies {accr), B a finitely

generated ideal of R, and M an R-module. Let i?* and M* be the

Hausdorff completions of R and M for the B-adic topologies, respectively.

(1) If M admits a finite presentation, then R* <8> M = M*,

(2) R* is aflat R-module, and

(3) i?* is a faithfully flat R-module if, and only if, B is contained in

J(R).

Proof. (1): By hypothesis, M admits a finite presentation
/ 8

E -» L -» M -» 0, where E and L are finitely generated free i?-modules.

Since the 5-adic topology of R is an Artin-Rees topology as we remarked
previously, / and g are strict morphisms. Hence, this exact sequence of

/* g*
jR-modules can be transformed to the exact sequence £ ' * - ^ L * - ^ M * - ^ 0
by [6], p. 50, Lemma 2. Now, we can show that i?* 0 M = M* by

applying the same arguments used in the proof of Theorem 3, (ii) in [6], p.

69. Clearly, (2) follows from (1) and (3) follows from (2) and Proposition

9.

By virtue of Theorem 8, now we have the following generalization of

Corollary to Theorem 3 in [6], p. 69.

COROLLARY 1. Let R and B be as in Theorem 8 and M an R-module

with finite presentation. Let E and F be finitely generated submodules of M.

If R, M, E, and F are equipped with the B-adic topologies, respectively,

then

(1) £"* = R*i(E), where i is the canonical map of M to M*,
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(2)(E + F)* = E* + F*,

(3) (EΠ F)* = £ * Π P ,
(4)(£:f)* = £*:F*,

(5) If I and J are finitely generated ideals of R, then (//)* = /*/*,
(6) / / # is α regular element of R, then it is also regular in R*.

COROLLARY 2. Let R and B be as in Theorem 8. // Π^B" = (0),

then

(1) the ascending chain of ideals {IR*: rk}k€ΞZ+ of R* terminates for

every ideal I of R and every element r e R,

(2) the Artin-Rees property holds for finitely generated extended ideals

in R*9 that is, for every pair of finitely generated ideals I and J of R, there

exists ann e Z + such that IR* Π JhR* c (IJ)R* for every h > n,

(3) IR* is a closed ideal ofR* for every finitely generated ideal I of R.

Proof. (1) is true due to the fact that i?* is a flat Λ-module (cf. [5], p.
65, Ex. 22) and (2) is a combined result of Theorem 2 and (3) of Corollary
1 to Theorem 8. Finally, (3) follows from that IR* = / * and that IR* is
a subspace of i?* for the 5-adic topology by (2).

THEOREM 9. Let R be a coherent ring satisfying (accr), B =

(bv b29..., bn) an ideal of R such that Π^xB
k = (0), and Bt = B - {bt}

for every i = 1,2,..., n. Let R* and Rf be, respectively, the completions of

R for the B-adic topology and the Bt -adic topology. Then R* =
i?[[x 1 ? . . . , xn]]/(xι — bv ..., xn — bn) if any of the following two condi-

tions is satisfied:

(i) n ? e l b*Rf = (0) for every i = 1 , 2 , . . . , « ,
(ii) 2?* is closed for the (b^-adic topology of R for every k e Z + and

every i = 1,2,...,«.

ZV00/. According to Corollary 2 to Theorem 8, the ascending chain of
ideals {Ann Λ *6f} Λ e Z + in i?f terminates for every /; furthermore, the
ideal b*R* is closed for the Bt -adic topology of Rf for every k and i.

Now applying Theorem 5.1 of [2], p. 150, we can conclude that R* =
i?[[x 1 ? . . . , XW]]/(JC 1 — bι,...,xn — bn) if condition (i) is satisfied. Simi-
larly, the isomorphism exists if condition (ii) is satisfied because condition
(ii) implies condition (i) by [2], p. 152, Lemma 5.3.

We remark that Theorem 9 is trivially true for n = 1 in view of

Corollary to Lemma 4.
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COROLLARY. Let R be a coherent ring satisfying (accr) and let B =

{bl9 b2, . . . 9 bn} be an ideal contained in J(R). Then R* =

R[[xv . . . , x J

Proof. Since B c J(R), Γ\%=ιB
k = (0) by Theorem 3. Moreover,

condition (ii) of Theorem 9 is fulfilled due to Proposition 8.
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