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SEPARATION PROPERTIES AND EXACT
RADON-NIKODYM DERIVATIVES

FOR BOUNDED FINITELY ADDITIVE MEASURES

WAYNE C. BELL AND JOHN W. HAGOOD

Necessary and sufficient conditions for a μ-continuous, bounded
finitely additive measure to have an exact Radon-Nikodym derivative are
obtained in terms of a new separation property intermediate between
disjointness and mutual singularity.

1. Introduction. In the classical Radon-Nikodym theorem, it is
proved that for countably additive real valued measures on a σ-field of sets,
the class of measures that are absolutely continuous with respect to a fixed
measure μ is precisely the set of measures having a representation of the
form Jfdμ for a μ-integrable function /. For bounded finitely additive
measures on a field, these sets do not in general coincide. In this setting
Radon-Nikodym theorems can have one of two goals: to characterize the
absolute continuity class of μ or to provide necessary and sufficient
conditions for a measure to have an exact Radon-Nikodym derivative
with respect to μ. In the history of the Radon-Nikodym theorem for
bounded finitely additive scalar measures, the characterization of absolute
continuity was first to receive attention. Bochner [3] proved that in order
for v to be absolutely continuous with respect to μ, it is necessary and
sufficient that v be the limit in variation norm of a sequence of integrals
of μ-simple functions. Variations of Bochner's theorem, all providing
characterizations of absolute continuity in terms of limits of sequences of
integrals, have been obtained for a variety of settings by Darst and Green
[5], Fefferman [7], and Luxemburg [9], among others. However, none of
these provide an exact Radon-Nikodym derivative.

The first successful characterization of those bounded finitely additive
real valued measures that have an exact Radon-Nikodym derivative with
respect to μ was given by Maynard [10]. In addition to absolute continu-
ity, the necessary and sufficient conditions he obtained require certain
intricate behavior of the average range function AP(E) on the field, where
AP(E) is the set of ratios v{F)/μ{F) for F c £, μ(F) Φ 0, which
involves exhaustions of μ by related classes of sets. Maynard was able to
simplify his conditions for those μ which admit an exhaustive Hahn
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decomposition. He also suggested that the lack of suitable decompositions
of the space was the reason that the classical Radon-Nikodym theorem
did not extend to the finitely additive case.

In this paper, we introduce a separation property intermediate be-
tween disjointness and mutual singularity which generalizes Maynard's
exhaustive Hahn decomposition. The two notions agree in the case where
the measures to be separated are the positive and negative parts of a
measure. This permits us to address the existence of exact Radon-Niko-
dym derivatives using separation properties without reference to the
average range. The measures v which have exact Radon-Nikodym deriva-
tives with respect to a fixed bounded finitely additive real valued measure
μ are characterized in terms of absolute continuity and the separation
property. Finally, using this result, we characterize those μ for which the
classical Radon-Nikodym theorem holds. Subsequently, one of the authors
[8] has shown that these measures also provide a characterization of those
Lp spaces that are complete.

Throughout this paper, Σ is a field of subsets of a nonempty set S
and a measure is a bounded finitely additive function mapping Σ into R.
Notations and definitions concerning the integral considered below follow
Dunford and Schwartz [6, III] except that |μ| denotes the total variation of
the measure μ and |/ | denotes the function |/( )| The notation [/ e A] is
shorthand for {s e S\f(s) e A}. Lattice theoretic properties may be
found in [2], [4], or [12]. The symbol Λ is used for minimum both
pointwise for functions and in the lattice theoretic sense for measures.
More historical background of the problem is given in [10]. Most of the
results of this paper were presented in [1].

2. Separation properties. Recall that measures η and δ are said to
be disjoint if |η| Λ |δ| = 0 and mutually singular if there exists £ G Σ
such that η(E) = 8(S ~ E) = 0. It is well known that a pair of measures
may be disjoint without being mutually singular.

DEFINITION 2.1. Suppose η, δ and v are measures on a field Σ. We
say that η and δ are separated if there exist increasing sequences {Vn}
md{Wn] in Σ such that \imn^Jη\(Vn) = \η\(S)Mmn^j8\(Wn) = |δ|(S),
and \η\(Wn) = |δ|(FJ = 0 for each n. In this case {Vn} and {Wn} is a
separation of η and δ. A separation of v+ and v~ is a Hahn separation of
v.

It is easy to see that the sequences in 2.1 may be chosen so that
VlΊ Π W» = 0 for each n and we will do so without mention.
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It is not difficult to construct proofs and examples showing that
separation is strictly weaker than mutual singularity and strictly stronger
than disjointness.

If Σ is a σ-field, then separation is equivalent to mutual singularity
even if the measures are not countably additive. On the other hand even if
Σ is a σ-field and one of the measures is countably additive, disjointness
does not imply separation.

REMARKS. (1) Separation is a generalization of the notion of an
exhaustive Hahn decomposition due to Maynard [10] which in our
terminology is a Hahn separation.

(2) Rickart [11] has considered a type of one-sided separation relative
to a fixed σ-ideal in a σ-field which produces the Lebesgue decomposition
when the ideal consists of the zero sets of a positive countably additive
measure. This is related to separation in the following way. Given an ideal
/ in a field Σ and a positive measure μ one may define the measure μ7 by
μj{E) = sup{μ(E Π A) \A e /} for E ^ Σ. One may then describe our
separation in terms of ideals: positive measures η and δ are separated if
and only if there are ideals / and / such that J r n / = { 0 } 5 ( τ } + δ) / = η
and (η 4- δ) 7 = δ.

That separation is a useful analogue of mutual singularity in the
present setting is indicated by the theorem below.

THEOREM 2.2. Let f and g be integrable functions with respect to a

measure μ. Then ffdμ and / gdμ define separated measures if and only if

I/I Λ \g\ is a μ-null function.

Proof. It suffices to prove the theorem assuming / and g are non-
negative functions and μ is a positive measure.

(->) Suppose that ffdμ and Jgdμ are separated by {Vn) and {Wn)
respectively. Note that / Λ g is ju-integrable as it is μ-measurable and
bounded by /. Then for each n > 1,

( fAgdμ = ( fΛgdμ+ [ f A gdμ + f f A gdμ

< f gdμ+ f fdμ+ f f+ gdμ< ί fdμ+ f gdμ.

Since

lim f fdμ = lim f gdμ = 0, f f A gdμ = 0.

Hence, / Λ g is a μ-null function.
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(<-) Now assume that / Λ g is a ju-null function. It is no loss of

generality to assume that / Λ g = 0 since (/ — / Λ g ) Λ ( g — / Λ g ) = 0,

I fdμ = / ( / - / Λ g) dμ and /gdμ = /(g - / Λ g) </μ.

Select sequences of μ-integrable simple functions {fn} and {gw}

determining / and g respectively (following [6, IΠ.2.17]) in such a way

that μ*[|/ - /J > 1/2"] < l / 2 " + 1 and μ*[|g - gn\ > 1/2"] < l / 2 " + 1 for

each n. Choose En e Σ SO that μ(S - i s j < 1/2" and S ~ EnΏ

[\f - fn\ > 1/2"] U [\g - gn\ > 1/2"]. Then En c [|/ - /J < 1/2"] n

[|g ~~ g«l < 1/217]. Define, for each /?, the following sets in Σ:

ΛΛ = ^ n [ / w > 1/2"] n [ g r t < 1/2"],

Q = Enn[fn< 1/2"] n[g,

^ = ̂ n [ / w > 1/2"] n[gn> 1/2"].

Now ^ G En Π [/n > 1/2"] implies that f(s) = fn(s) - (fn(s) - f(s))

> 1/2" — 1/2" = 0. A similar statement holds for g and gn replacing /

and /„ respectively. Thus AnQ[f> 0], Bn c [g > 0] and 2)n c [/> 0]

Π [g > 0]. But / Λ g = 0 implies that [/ > 0] Π [g > 0] = 0 so that

Z>/7 = 0 for each rc.

Let Vn = UUxAk and ^ = U ^ = 1 ^ . Then {Vn} and {W;} are

increasing sequences in Σ satisfying Vn Π Ŵ  c [/ > 0] Π [g > 0] = 0 .

Next, for any positive integer n, EnQ VnU ^ U Q so that

S=VnU WnUCnU(S~En)

and

ί fdμ< ί fdμ + f fdμ+ f fdμ+ ί fdμ.
S JVn

 JWn

 J Cn S~En

Now fχWn = 0 so that \wJdμ = 0 and since / χ Q < l/2"~\

f= ° Finally, ffdμ <̂  μ and since μ(S ~En) < 1/2",

rt fdμ = 0. Thus /5/rfμ = l i m _ ^ /,, /dμ.

That Is gdμ = l i m ^ ^ jw gdμ is entirely similar, proving that { Vn)

and {Wn} is a separation for //^μ and j gdμ.

Further properties of separated measures required in the next section

are developed below.

LEMMA 2.3. Let η and δ be a pair of measures separated by {Vn} and

{Wn} respectively. Then

(a) // η' and δ' are measures satisfying v[ <̂c η and δ' <̂ : δ, then ηf

and δf are separated by {Vn} and {Wn} respectively;
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(b) if W = U^Li Wn9 then fχwd(η + δ) exists and is 8. Furthermore,
(τi + δ)*(W) = δ(S).

Proof. The proof of (a) is routine. To prove (b), assume without loss
of generality that η and δ are positive measures.

The functions χWn are (η 4- δ)-integrable simple functions whose
limit in (η 4- δ)-measure is χw since for any n and a > 0

(r? + δ)*[ |χH," Xw) > «] = (η + 8)*(W~ Wn)

<(-η + 8){S~(VnUWn))

<η(S ~ Vn) + δ(S ~ Wn).

Also, for n > m,

d(η + 8) = η(Wn ~ Wm) + 8{Wn ~ Wm)

= 8{Wn ~ Wm) < 8{S ~ Wm).

Thus, χw is (η 4- δ)-integrable.
Now for £ G Σ ,

= lim 8(E Π ίFn) = lim [ χw d(η + δ)

n -* oo « - » o o ^.E1 "

X\γd\t] 4- δ) < lim i x^ f̂/ ί/v1)] 4- δ)

= lim (η + δ)(E ~ Vn)
«—* oo

= lim (η 4- δ ) ( £ Π WK.) 4- lim (η 4- δ ) ( £ - (Fw U Wn

n-~* oo «-* oo

= lim δ(£' Π Wj 4- lim (η 4- δ)(S - (Vn U Wς)) =

Hence, δ = jχwd{r] + δ).
Since

δ) < (n + δ)*(E r)W)<fXs_κd(τi + δ)

for each n, the above argument also proves that (τ? + δ)*(£ 'n W)
+ δ) = 8{E) for £ e Σ.
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3. Freudenthal projections. The manner in which μ will be decom-

posed involves certain lattice theoretic properties of the space ba(Σ)

consisting of bounded finitely additive measures on a field Σ which we

describe briefly below and refer the reader to [2], [4], and [12] for further

details.

Suppose η, λ and μ are positive measures. Then η is a component of

μ if η A (μ — η) = 0. The μ-continuous (ε — 8 definition) part of λ is

given by the projection of λ onto μ: Pμ(λ) = sup{λ Λ kμ\k e N}. The

mapping Pμ can be extended linearly to all of ba(Σ) and Pμ(λ) is a

component of λ.

NOTATION. Let v and μ be a pair of measures on Σ satisfying v <^ μ

and let x be a real number. Then μx+ and μx~ (vx+ and vx~) denote the

measures P ( F . x μ ) + ( μ ) and P ( , _ x μ Γ ( μ ) (P{w-xμy(v) and P ( l,_ J c μ Γ(i')) re-

spectively. Furthermore, define μx and J>* by μx = μ — μx+— μx~ and
p == P — p — p

More precise notation would indicate that the measures defined above

depend on the ordered pair (J>, μ), but since no confusion should result

where the notation is used, this cumbersome detail is omitted.

REMARK. Since μ is a weak order unit in the order complete vector

lattice of μ-continuous elements of ba(Σ), the functions μx~ form a

Freudenthal resolution of the unity (relative to v). Further details may be

found in [2, p. 362]. As a special case of a result given there it follows that

any μ-continuous v may be written as a type of Stieltjes integral relative to

the variable x. Projections of this type were used in [9, Th. 3.3] to obtain a

Bochner type characterization of absolute continuity.

LEMMA 3.1. Suppose that v and μ are positive measures on Σ, v «: μ

and 0 < JC < y. Then

(a) μ - Pv(μ) < μx~< μy~, l i m z _ o μ z - = μ - Pv(μ) and

(b)0 < vx'< vy-y\imz_^ov
z~= 0 and l i m ^ ^ vz~= v\

(c) vx~< xμx~, vx = xμx andxμx+< vx+;

(d) // μy = 0, then μx+- μy+ = μx+ A μy~ and vx+- vy+

= vx+A vv~\

(e) x(μ-v"Λ μx+) < vv~A vx+<y(μy~A μx+);

(f) μz = vz = 0 except for at most a countable set of real numbers z\

and

(g) (v - xμ)+<^ μx+ <£ (v - xμ)+ and (v - xμ)~ <=c μx~ <£:

(v - xμ)~.
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Proof. We prove (e) only, as an illustration, since the other parts

follow from similar properties of projections and ba(Σ). The proof

requires the following property of projections [4, p. 105]: whenever η and

δ are positive measures,

Then

0 < P(v-yμ)-{(v - xμ) + ) = P{9

= P[(v~yμyA(v-χμ)+](V ~ XIX)

= vy~A vx+- x[μy~A μx+]

and therefore x(μy~ A μx+) < vy~ A vx+. The other inequality is obtained

similarly.

4. An exact Radon-Nikodym theorem. We will need the following

technical lemma.

LEMMA 4.1. Let v and μ be positive measures on Σ satisfying

(a) v <̂ c μ and

(b) there is a sequence {xn}™=ι of positive real numbers, such that

v — xnμ has a Hahn separation for each n. Then sequences [Vι

n}ι and

{Wi

n}i separating (v — xnμ)~ and (v - xnμ)+ respectively can be chosen

so that whenever xm < xn9 U?°=i Wt

n c UΓ=i Wt

m.

The sequences can be constructed inductively using elementary set

theoretic operations. The details are left to the reader.

We are now ready to prove the Radon-Nikodym theorem for bounded

finitely additive measures.

THEOREM 4.2. Let v be a measure and μ a positive measure on a field

Σ. Then there exists a μ-integrable function f such that v(E) = jEfdμ for

all E G Σ // and only if

(a) v <c μ and

(b) v — xμ has a Hahn separation for each x Φ 0.

Proof. (—>) Let v = ffdμ for a μ-integrable function /. Then v <^ μ

is a known result [6].
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Now, for x Φ 0, v - xμ = Jfdμ - J xdμ = / ( / - x) dμ. Hence,

{v — xμ)+ = / ( / - x)+ dμ and {v — xμ)~ = / ( / — JC)~ dμ. Since

(/— .x) + Λ(/— x)~ = 0, (*> — xμ)+ and (*> - xμ)~ are separated by The-

orem 2.2.

(<-) Suppose that ^ < μ and v — xμ has a Hahn separation for each

x Φ 0. For the time being, assume that v is positive.

Let {xn}™=ι be a dense sequence in R + for which μXn = vXn = 0 for

every «. As in Lemma 4.1, obtain separations {^"} and {W"} for

(*> - xnμ)~ and (*> - x n μ ) + such that U ^ J*7 c \JfLι Wt

m whenever xm

< xn. Since μx»~<^ (v - xnμ)~ and μ*"+<£ (*> - xnμ)+, {V?} and { WK"}

is a separation for μx»~ and μx«+ respectively by Lemma 2.3. Let x0 = 0,

P^o = S and, for each /i > 1, set Wn = Uj°=1 W?. Then » ; c Wn whenever

xm < xn. Define functions fn for each n > 1 and / hy fn(s) = max{x^|

5 G Wk9 k < n) and / ( i ) = sup{x^ \s E: Wk). Note that fn increases with

n and 0 < fn < f.

fn is μ-integrable and Jfn dμ < v. Fix n > 1 and assume without loss

of generality that xk < xk+ι for k = 1,2,..., n - 1. Then
Λ7 — 1 n - l

k=l k=\

which, being a linear combination of μ-integrable functions (Lemma 2.3)

is itself μ-integrable.

Since jEχWk dμ = μXk+(E) by Lemma 2.3

ndμ= Σ χk(μXk+- μ^ + 1 + ) + ^ μ X w +

k=i

n-l

k = l

f is μ-integrable and jfdμ = v. Since jfndμ < ^ « / ι , the indefinite
integrals //„ dμ are uniformly absolutely continuous with respect to μ and

since μ is bounded, it remains to show that fn -» / in μ-measure to obtain

the μ-integrability of /. The equality Jfdμ = v will then follow once the

convergence f fn dμ -> v in variation is established.

Let ε > 0 and choose JV so that μ^ + (5') < ε and VXN+(S) < ε. Select

M > N such that {xvx2,...,xM} intersects every interval of length ε

contained in [0, JC^]. Let G = {xk \ xk < xN and 0 < k < M). Relabel the

elements of G using { j 0 , yl9...9yp} where x0 = 0 = y0 < yx < < yp

= xN and set Bk = W} if yk = xy. Then

(i) μyp+{S) < ε and vyp+(S) < ε,

(ii) 0 < yk + 1 - yk < ε for k = 0 , 1 , . . . , p - 1, and

(iii) #£ D 5 ^ + 1 for k = 0 , 1 , . . . , p - 1.
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Now let n > M. For any s e j S 0 ~ Bp, there is an i, 0 < i < p, such

that seB,~ B,+v Then y, < fM(s) < fn{s) < f(s) < yi+1; hence 0 <

f(s) -fn{s) < ε. Therefore [ | / - / J > ε] c Bp so that μ*[\f - fn\ > e] <

μ*(Bp) = (μy<>~+ μy»+)*{Bp) = μy'+(S) < ε by Lemma 3.1 and μy" = 0.

Thus /„ -» / in ju-measure, proving the μ-integrability of /.

Again, let n > M in the set-up above. For k = 1,2,... ,p - 1, let
μA = μvA.

 + _ j u Λ + 1 + 5 ^ = y Λ + _ p Λ + 1 + a n d ^ = 5 , - 5 , ^ = 1. By

Lemma 3.1, ykμk < vk < yk+χμk, k = l,2,...,p — l. Note that v —

Σkll vk + vyp + + vΛ~ and similarly for jα. Also,

= f XBk+ι dμ =

Put h = Σp

kJykχAk + ypχBp. Thus h is μ-integrable and 0 < h < fM

< /„. Furthermore, / hdμ = Σp

kl\ykμk + ypμ
y"+. For any £ e Σ ,

0 < v- ί fndμ (S) = v(S) - / fndμ< v{S) - j hdμ

"

p-1

< εμ(S) + ε.

Thus Jfn dμ -> v in variation, completing the proof when v is a positive

measure.

Now let v be a signed measure such that v «: μ and v — xμ has a

Hahn separation for each x Φ 0. For x > 0 fixed, v - xμ = v + —

xμ - p - = ( ^ + - *μ) + - [ O + - xμ)~+ v~]. Since 0 < (v + - xμ) +< v+,

{v + - xμ) + A v~= 0 so that (v+- xμ) + A[(v+- x μ ) " + y"] = 0. By the

uniqueness of the Jordan decomposition, (v — xμ) + = (v + — xμ)+ and

(v — xμ)~= {v+— xμ)~+ v~. These by assumption are separated and

hence (v+— xμ)+ and (v+— xμ)~ are separated. Similarly v + - v~+ xμ

has a Hahn separation for each x > 0 which leads to a separation of

(v~— xμ)+ and (v~— xμ)~. By the proof above, v+ and v~ can be

represented as indefinite integrals with respect to μ whose difference is

then v.
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COROLLARY 4.3. Let v be a measure and μ a positive measure on a
σ-field Σ. Then there exists a μ-integrable function f such that v(E) = jEfdμ
for all E e Σ if and only if

(a) v « μ,
(b) v — xμ has a Hahn decomposition for each x Φ 0.

Thus, in the case of σ-fields, Maynard's suggestion that the classical
Radon-Nikodym fails to hold in the finitely additive case because of the
lack of Hahn decompositions is confirmed.

REMARK. If, in addition to Σ being a σ-field, \v\ < kμ for some
K R , then the representing function / can be obtained as a uniform
limit of simple functions on Σ. This leads to the following observation,
similar to one given in [9, 48]: v may be represented by a uniform limit of
simple functions on Σ if and only if v — xμ has a Hahn decomposition
for each x Φ 0. The following example shows that this does not hold on
arbitrary fields. Let Σ be the field of finite subsets of N and their
complements. Let an be the 0-1 valued measure at n for each n. Let

Then v = /fdμ where f(k) = 14- (-l)k/k for every k, while v - 1 μ
does not have a Hahn decomposition.

The conclusions in Theorem 4.2 remain valid when μ is a signed
measure which has a Hahn separation, but when no such separation exists,
condition (b) is not necessary for the existence of /. Take for example a
signed measure μ which does not have a Hahn separation and let v = μ.
Then p = jldμ, yet v - xμ has no Hahn separation for x Φ 1. The
modification required for the case where μ is a signed measure is con-
tained in the theorem below. This makes use of the signed projection onto
μ: P[μ](λ) = Pμ+(λ) - Pμ-(λ). Note that P[μ](p - xμ) = P[μ](p) - χ\μ\.

THEOREM 4.4. Let p and μ be measures on a field Σ. Then there exists
a μ-integrable function f such that P(E) = jEfdμ for all E e Σ if and only

if
(a) p <$c μ and

(b) Pr j(^ — xμ) has a Hahn separation for each x Φ 0.

Proof. The identities P | μ | = P^μ] and P[μ](jfd\μ\) = /fdμ together
with an application of Theorem 4.2 to P[μ](v) and |μ| produce the
conclusion.
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We can now characterize the measures μ for which v «: μ is equiva-
lent to v = ffdμ for some μ-integrable function /.

COROLLARY 4.5. Let μ be a measure on a field (respectively, σ-field)

Σ. Then a necessary and sufficient condition on μ for every measure v <̂c μ

to take the form v = Jfdμ for some μ-integrable function f is that each pair

of disjoint components of \μ\ be separated (respectively, mutually singular).

Proof. We first prove the theorem assuming μ > 0. Suppose each pair
of disjoint components of μ are separated. Then for v <c μ and x Φ 0,
μx+ and μx~ are disjoint components of μ and therefore are separated. By
Lemmas 2.3 and 3.1g, the associated separation provides a Hahn separa-
tion for v — xμ and Theorem 4.2 applies.

On the other hand, if μ has disjoint components η and δ which are
not separated, then δ and μ - 8 cannot be separated. Set v = μ + 2δ.
Then v <^ μ, yet v - 2μ = δ — (μ — S) does not have a Hahn separation.

For the case where μ is a signed measure, we use the fact that if there
exists a μ-integrable function h such that |μ| = / hdμ, then μ = / hd\μ\
and conversely. If such a function h exists, we may assume it is bounded,
in which case, whenever v <c μ, there exists a μ-integrable function /
such that v = ffdμ if and only if there exists a μ-integrable function g
such that v = Jgd\μ\(g = β).

Thus, it remains to show that either condition implies the existence of
a function h such that /hdμ = |μ| or /hd\μ\ = μ.

Suppose that disjoint components of |μ| can be separated. Then by
the proof above and μ <c |μ|, μ = j h d\μ\ for some μ-integrable function
h.

Next, assume that each measure v «: μ can be expressed as an
indefinite integral with respect to μ. Then \μ\<^i μ so \μ\ = j hdμ for
some μ-integrable function h. This completes the proof.

Finally, we note that the classical Radon-Nikodym theorem for real
valued countably additive measures on a σ-field is an immediate conse-
quence of these results since in that setting all of the measures in question
have Hahn decompositions and hence condition (b) is trivially satisfied.
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