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SUMS OF PRODUCTS OF POWERS
OF GIVEN PRIME NUMBERS

R. TlJDEMAN AND LlANXIANG WANG

We give the complete solutions of the equations 2*3^ + 1 = 2Z +
3W, 2XV + 2Z = 3W + 1 and 2*3' + 3* = 2Z + 1 in integers x, y, z, w.
We use this to prove that every large rational number has at most four
representations of the form 2α3^ + 2γ + 3^. Finally we prove that, for
given integer n and prime numbers p\,..., pt9 every rational number
m has at most C representations of the form Σ" = 1 p\ύ pk

t

u where
ki\,...,kn are integers.

0. D. J. Newman conjectured that if w(n) denotes the number of
solutions of n = 2a + 3b + 2c3d then w(n) is bounded (see Erdόs and
Graham [4] p. 80). Evertse, Gy6ry, Stewart and Tijdeman [6] Theorem
6(a) settled this conjecture. We call two representations X\ H h xn

and x[ + ••• + xf

n distinct, if the unordered tuples (x\,...,xn) and
(x[,...,x'n) are not the same. In §2 we prove that the number of
distinct representations of a rational number m as 2α3^ + 2γ + 3s is
at most four, if m exceeds a certain constant. The number four is the
best possible.

To prove this result we need not only the Main Theorem on *S-Unit
Equations (Lemma 4) as in [6], but also the complete solutions of the
diophantine equations mentioned in th& first paragraph of this paper.
Here we recall the remark of Brenner and Foster ([2] Comment 8.037)
that the class of equations

where p, q are given distinct primes, does not seem to be amenable
by their (congruential) method. We show in § 1 how the more general
equation

1 + pχqy = pz + q»

can be treated by Baker's method for estimating linear forms in the
logarithms of algebraic numbers. The essential tool in § 1 is Lemma
1, due to Ellison [3] and specially made for the primes p — 2, q = 3.
De Weger [10] has proved a corresponding result for all primes p, q
with 2 < p < q < 200 and the method works for any pair of prime
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numbers. Thus the methods in §§1 and 2 extend to any pair of prime
numbers p, q in place of 2, 3. The referee kindly pointed out to the
authors that the methods used in § 1 are quite similar to the following
result, which is Theorem 2.3 in Paul Vojta's thesis [8]. In particular,
Vojta gives an effective procedure for obtaining our Theorems 1-3,
although he does not actually carry out this procedure.

THEOREM {Vojta [8]). Let S be a finite set of places ofZ containing
at most 3 elements. Fix integers a, b, c, d. Then there are only finitely
many solutions to the equation ax + by + cz + d = 0 in S-units x, y, z;
and these solutions can be effectively bounded in terms of a, b, c, d, and
S.

The crucial point is that the set S can contain at most 3 elements.

In a letter to one of us, P. Erdδs asked whether we can prove that
every integer has at most C representations of the form

2*3β5γ + 2*3* + 2^5* + + 3λ + 5".

We prove in §3 the much more general result that for any positive
integer n and any prime numbers p\,...,Pt there exists a number C
such that every rational number m has at most C representations of
the form Σ * = 1 ρ\ιX pf" where fc/i,..., kit are integers. Some weaker
results in this direction are given in [6, §6]. We cannot answer Erdδs'
question in a later letter to find a number C which depends only on
n and / (hence is independent of the primes p\,...,pt)9 since the
corresponding problem for the Main Theorem on S-Unit Equations
has not been solved yet. In Theorem 6 we extend the above mentioned
results to algebraic number fields.

1. The diophantine equations 2 * 3 ' + 1 = 2Z + 3", 2 * 3 ' + 2Z =

3" + 1 and 2*3' + 3" = 2Z + 1. Let Z denote the set of rational
integers, and NQ the set of non-negative rational integers. We call the
solutions (x, y, z, w) = (x, 0, x, 0) and (0, y, 0, y) for the first equation,
= (0, y, 0, y) for the second equation and = (x, 0, x, 0) for the third
equation (where x,yeZ) the trivial solutions. We shall determine all
non-trivial solutions in Z 4 .

THEOREM 1. The equation

(1.1) 2 * 3 ' + 1 = 2^
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has exactly twelve non-trivial solutions (x, y, z, w) e Z 4 :

(1,1,2,1), (1,2,4,1), (2,0,1,1), (2,1,2,2), (3,1,4,2), (3,2, 6,2),

(4,0, 3,2), (4,2, 6,4), (5,1,4,4), (-2,2, -2,1), (2,-1,1,-1),

(6, -2, 3, -2).

THEOREM 2. The equation

(1.2) 2*3*+ 2Z = 3^ + 1

Aαs exactly eight non-trivial solutions (x, y, z, w) e Z 4 :

(1,0,1,1), (1,0, 3,2), (1,1,2,2), (1,2,6,4),

(2,1,4, 3), (3,0,1,2), (3,1,2, 3), (-1,1, -1,0).

THEOREM 3. The equation

(i.3) 2χy + r = 2z + \

has exactly nine non-trivial solutions (x, y, z, w) e Z 4 :

(1,0,2,1), (1,1, 3,1), (1,1, 5, 3), (1, 5, 9, 3), (3,0,4,2)

(3,1,5,2), (4,1,7,4), (4, 3, 9,4), (3 ,-1,1,-1 ) .

The following lemma, proved by Baker's method for estimating lin-
ear forms in logarithms of algebraic numbers, is basic for the proofs.

LEMMA 1. Ifx, y ENQ with x> 10, then

|2*-3'|>exp(jr(log2-0.1))

apart from the exceptional pairs (x, y) = (10,6), (11, 7), (13, 8), (14,9),
(16,10), (19,12), (27,17).

Proof. For x > 27 this was proved by Ellison [3] (cf. de Weger [10],
Theorem 4.3). It is easy to check the remaining range 10 < x < 27. D

The next result is due to L. Hebreus who lived around 1300.

L E M M A 2. The equation 2X + 1 = 3 ^ has exactly two solutions
(JC, y) e Z2, namely (1,1) and (3,2).

The equation V + 1 = 2X has exactly two solutions (x,y) e Z2,
namely (1,0) and {2,1).

Proof. See Alex [1] Lemma 2.1.
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Proof of Theorem 1. First we find all solutions in NQ. It is obvious
from (1.1) that x = 0 if and only if z = 0, and that w = 0 implies
y = 0. In these cases we have trivial solutions only. Further, if z = 1
in (1.1), then y = 0, hence, by Lemma 2, (x, y, z, w) = (2,0,1,1) is the
only non-trivial solution. From now on we assume that x > 1, y > 0,
z > 2 , w> 1.

From (1.1) and min(y, w) > 1, we see that

which implies
2 .

Hence
min(;μ, w) < log z + 0.4.

Similarly, from (1.1) and min(x, z) > 2,

which implies
Therefore

min(x, z) < (Iog2)~! log w + 2.

We distinguish between four cases.

Case 1. 3/ < logz + 0.4 and x < (Iog2)~1 log w + 2.
If z < w, then (1.1) implies

hence
w< 21ogw+ 1.7.

We infer

(1.4) 2 < z < w < 4 .

If z > w, then (1.1) implies

2^-(iog2)~1 iogw-2 ^ 2 Z ~ * < 3^

hence

We infer

(1.5)

z <

1

3.11ogz

< w< z

+ 2.7.

< 9 .
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By (1.4) and (1.5) we find in Case 1:

fl 6) ί y < l o g 9 + 0.4, hence 0 < y < 2,

I x < log 8/log 2 + 2, h e n c e l < x < 4 .

By (1.4), (1.5) and (1.6) all solutions of (1.1) in Case 1 are contained
in the list: (x,y,z,w) = (1,1,2,1), (1,2,4,1), (2,1,2,2), (3,1,4,2),
(3,2,6,2), (4,0,3,2), (4,2,6,4).

Case 2. y < logz + 0.4 and z < (Iog2)~1 logu> + 2.
Clearly, if w = 1, then z = 1, y = 0, x = 2. Thus we may assume

w > 2. We have

y < logz + 0.4 < Iog((log2)~1 log w + 2) + 0.4

< log log w + 2 < 0.1 w + 2.

Since (1.1) implies 2>w~y < 2X, we obtain

0.9w - 2 < w - y < (Iog2/log3)jc,

hence

(1.7) W<0.8JC + 2.3.

If x > 9, then we have by Lemma 1 for non-exceptional pairs

(x, w - y):

exp(x(log2 - 0.1)) < \2X - 3w~y\ < 2Z - 1 < 2(1°g2)"'loεH'+2

and so, by (1.7)

x(log2 - 0.1) < log w + 1.4 < log(0.8x + 2.3) + 1.4.
This implies x < 5 which is a contradiction. For the exceptional pairs
we find 10 < x < 27, 2 < w < 23, 2 < z < 6, 0 < y < 2. The
exceptional pairs (x, w) = (10,6 + y), (11,7 + y), (13,8 + y), (14,9 +
y), (16,10 + y), (19,12 + y), (27,17 + y) with 0 < y < 2 do not yield
new solutions of (1,1). If 1 < x < 9, then 2 < w < 9 by (1.7),
hence 2 < z < 5, 0 < y < 2. In these ranges we find the solutions
(x, y, z, w) = (2,1,2,2), (3,1,4,2), (4,0,3,2), (5,1,4,4).

Case 3. w < logz + 0.4 and x < (Iog2)"' logw + 2.
In this case we have

(1.8) x< 1.51oglogz + 3.

If z - x > 27, then it follows from (1.1) and (1.8) and Lemma 1 that

exp((z- 1.51oglogz-3)(log2-0.1))

< |2*-* - 3η < 372
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Hence
z < 1.91ogx+ 1.51oglogz + 3.4

and therefore z < 8, which yields a contradiction.
If z-x < 27, then 2 < z < 31 by (1.8), hence 1 < w < 3, 1 < x < 3.

By (1.1) we have

+ 33) / log3< 19.6.

Thus 0 < y < 19. By checking the ranges for x, y, z, w we find that
the solutions of (1.1) in Case 3 are contained in the list: (x, y, z, w) =
(1,1,2,1), (1,2,4,1), (2,1,2,2), (3,1,4,2), (3,2, 6,2).

4. w < log z + 0.4 and z < (log 2)"1 log w + 2.
In this case we have

z < (Iog2)"1(log(logz + 0.4)) + 2 < (Iog2)"1 loglogz + 3.

Hence 2 < z < 3, w = 1. By (1.1), 2*3* < 23 + 31 = 11, hence
l < x < 3 , 0 < y < 2 . There is only one solution in these ranges,
(x,y,z,w) = (1,1,2,1). We conclude that equation (1.1) has exactly
nine non-trivial solutions (x, y, z, w) e NQ, namely

(1,1,2,1), (1,2,4,1), (2,0,1,1), (2,1,2,2), (3,1,4,2),
( ' j (3,2,6,2), (4,0,3,2), (4,2,6,4), (5,1,4,4).

Next, we consider the case in which some of x, y, z, w are negative.
It is easy to verify that there are only trivial solutions if x < 0 and
y < 0 and if x < 0 and y < 0. Hence we may assume xy < 0.

Case (i). x < 0 and y > 0.
We have

Thus w > 0 and \x\ + z = 0. Therefore x = z. It follows from (1.9)
that the equation

2W3w + 1=21*1 + 3*

has only one solution (|JC|, w, |x|, y) = (2,1,2,2). Hence (-2,2, -2,1)
is the only non-trivial solution of (1.1) in Case (i).

Case (ii). x > 0 and y < 0.
In this case we have
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Then z > 0 and \y\ + w = 0, hence w = y. From (1.9) we see that the
equation

has exactly two solutions (z, \y\t x, \y\) = (1,1,2,1), (3,2,6,2). There-
fore (2, -1,1, -1) and (6, -2, 3, -2) are the only non-trivial solutions
of (1.1) in case (ii). D

The proofs of Theorems 2 and 3 are somewhat simpler than the
proof of Theorem 1, since we can use the following lemma.

LEMMA 3. (a) If2a \ 3b + 1, then a < 2. (b) 7/3* | 2a + 1, then
b<3.

Proof, (a) The assertion is true for b = 0 and b = 1, and 3^+2 = 3b

(mod 8). (b) The assertion is true for a = 0,1,. . . , 53 and 2"+5 4 = 2a

(mod 81). D

Proof of Theorem 2. First we consider all solutions in NQ. We find
only trivial solutions if z = 0 or w = 0. Thus we may assume that
x>0,y>0,z>l,w>l.By (1.2) and Lemma 3(a),

min(x, z) < 2.

By (1.2) and min(y,w) > 1, we derive from 3min(<y>wϊ | 2Z - 1 that
2.3min(>>,w)-i < whence

min(j;, w) < log z + 0.4.

We again distinguish four cases.

Case 1. 0 < x < 2 and 0 < y < logz + 0.4.

If z > 9 and (z, w) is a non-exceptional pair, then, by Lemma 1,

exp(z(log2 - 0.1)) < \2Z - 3W | < 2*3' < 2 2 3 l o β z + α 4 ,

hence
z < 21ogz + 3.1.

This implies z < 6 which yields a contradiction. For each exceptional
pair (z, w) the number 3W - 2Z + 1 has a prime factor greater than
3, so that there are no solutions of (1.2) in Case 1 with z > 9. If
1 < z < 9, then 0 < y < 2. By (1.2) we have 3" < 2 2 3 2 + 29, hence
1 < w < 5. By simple computations we find that the solutions in Case
2 are contained in the list:

(JC, y, z,w) = (1,0,1,1), (1,0, 3,2), (1,1,2,2), (1,2,6,4), (2,1,4, 3).
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Case 2. 0 < x < 2 and w < log z + 0.4. By (1.2) we have

2Z < 3^ < 3i°εz+0 4

and so z = 1. Hence w = 0. This is impossible.

Case 3. 1 < z < 2 and y < logz + 0.4.
If z = 1, then y = 0 and, by Lemma 2, we find the two solutions

(X,);,Z,H>) = ( 1 , 0 , 1 , 1 ) , ( 3 , 0 , 1 , 2 ) .

If z = 2, then 0 < y < 1. If j ; = 0, then 3" - 2X = 3 which
is impossible. If y = 1, then 3" - 3 2* = 3, hence 3 " " 1 | 2* + 1.
By Lemma 3(b) we have 1 < w < 4. Since 2X < 3W~X, we find
x < 4. Now we obtain the following solutions of (1.2): (JC, y, z, w) =
(1,1,2,2), (3,1,2,3).

Case 4. 1 < z < 2 and w < log z + 0.4.
Thus w = 1. By (1.2) we have V < 2>w. Hence y = 0. This yields

the solution (1,0,1,1).
We conclude that (1.2) has exactly seven non-trivial solutions

(x, y, z, w) e Nβ, namely

(1,0,1,1), (1,0, 3,2), (1,1,2,2), (1,2, 6, 4)
1 ' j (2,1,4, 3), (3,0,1,2), (3,1,2, 3).

The argument for solutions with some negative values is similar to
that in the proof of Theorem 1. Using (1.10) we obtain only one
additional non-trivial solution in Z 4, namely (—1,1, — 1,0). D

Proof of Theorem 3. Without loss of generality we may assume that
x > 1, y > 0, z > 2, w > 1. By (1.3) and Lemma 3(b), we have

min(y, w) < 3.

By (1.3) and min(jc, z) > 2, we derive from 2m i n(*z) | 3W - 1, that

2min(x,z)-2 < w

min(x, z) < (Iog2)"1 log w + 2.

We again distinguish between four cases:

Case 1. 0 < y < 3 and 1 < x < (Iog2)~1 logw + 2.
Since (1.3) implies 3W < 2Z, we have w < 0.63lz and

(1.11) |2Z - 3W | < 2*3* < 2( l os2)~ l l°sw + 233 = lOSw < 69z.
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If z > 11, then, from (1.11) and Lemma 1, we obtain for non-excep-
tional pairs (z, w),

z(log2 - 0.1) < log|2z - 3W\ < logz + 4.3.

Hence z < 11, which yields a contradiction. For each exceptional pair
(z, w) the number 2Z - 3W + 1 has some prime factor greater than 3.
Thus there are no solutions in this case with z > 11.

If 2 < z < 11, then 0 < w < 0.631z < 6.95, hence 1 < x < 4. By
checking these ranges for x, y, z, w we find the solutions: (1,0,2,1),
(1,1, 3,1), (1,1, 5, 3), (3,0,4,2), (3,1, 5,2), (4,1, 7,4), (4, 3, 9,4).

Case 2. 0 < y < 3 and 2 < z < (Iog2)"1 log w + 2.
By (1.3), we have

3 ^ < 2Z < 2^°£^~ lk>£ l v +^

hence w = 1 and therefore z = 1, which is impossible.

Case 3. 1 < w < 3 and 1 < x < (Iog2)~1 log w + 2.
Hence 1 < x < 3. Obviously z >x. It follows from (1.3) that

| 2 z - * - 3 > Ί < | 3 w - l | / 2 < 13.

If z - x > 9, then we obtain from Lemma 1 for non-exceptional pairs
(z - x, y) that (z - 3)(log2 - 0.1) < log 13. This implies z < 7 which
yields a contradiction. It is easy to check that \2Z~X - 3y\ > 13 for
each exceptional pair (z - x, y). Thus each solution of (1.3) in Case
3 satisfies z - x < 9, hence z < 12. If 2 < z < 12, then, by (1.3),
0 < y < 7. We find that all solutions in this case are contained in the
list: (1,0,2,1), (1,1, 3,1), (1,1, 5, 3), (1, 5,9, 3), (3,0,4,2), (3,1, 5,2).

Case 4. 1 < w < 3 and 2 < z < (Iog2)~1 log w + 2.
Hence l < z < 3 , l < x < 3 , 0 < y < 1. These ranges are covered

in Case 1.
We conclude that (1.3) has exactly eight non-trivial solutions

(x, y, z, w) e N^, namely

(1,0,2,1), (1,1, 3,1), (1,1, 5, 3), (1, 5, 9, 3)
1 * j (3,0,4,2), (3,1, 5,2), (4,1, 7,4), (4, 3, 9,4).

The argument for solutions with some negative values is similar to
that in the proof of Theorem 1. Using (1.12) we obtain only one
additional non-trivial solution in Z 4, namely (3, -1,1, -1). D

2. The number of representations of the form 2α3^ + 2γ + 3δ. In this
section we tacitly assume that the numbers α, β> γ, δ in a representation
2α3^ + 2y + 3* are integers.
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THEOREM 4. There exists a real number M such that every rational
number m > M that admits more than three distinct representations
2<*?>β + 2y + 3δ is of the form 2a + 3b. Ifm = 2a + 3b, then the repre-
sentations are given by

2 α-i 3 o + 2 β-i + 36 _ 2Λ~231 + 2a~2 + 3b = 2 1 3*" 1 +2a + 3b~{

The proof of Theorem 4 is based on the following version of the
Main Theorem on S-Unit Equations:

LEMMA 4. Let P\,...,Pt be prime numbers. There are only finitely
many rational numbers x$,x\,...,xn each of the form ±p\ι" p^1

(kι,...,kt e Z ) such that

(2.1) minβ ordPι(xj)\) = 0, (/ = 1,..., /),

(2.2) X0 + X\ + ' + Xn = 0,

but

XiλΛ h Xik ψ 0 for each proper, non-empty subset
( β } {h....,ik} of {0,1,...,n}.

Proof. See van der Poorten and Schlickewei [7] and Evertse [5].
We express (2.3) succinctly by saying that no subsum ofx^ H h xn

vanishes.

We shall further use the following lemma, the proof of which is
based on Lemma 1 like the proofs of Theorems 1-3.

LEMMA 5. The equation 2X + 3y = 2Z + 3" has exactly five solutions
in integers with x> z, y <w, namely

(x, y, z, w) = (2,0,1,1), (3,1,1,2), (4,0, 3,2), (5,1, 3, 3), (8,1,4, 5).

Proof. The case y > 0, z > 0 has been treated by Stroeker and
Tijdeman [9], §10, Ex. 1. There are no solutions with y < 0 or z < 0.
If y = 0 or z = 0, then (x, y, z, w) satisfies 2*3* + 1 = 2Z + 3W or
2X + 3y = 1 + 2Z3VV and the conclusions follow from Theorem 1. D

Proof of Theorem 4. Suppose m has two distinct representations

(2.4) m = 2 α i 3 ^ + 2γ> + 3δ> = 2α23& + 2^ + 3δ\
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By applying Lemma 4 to

(2.5) 2 α i 3 ^ + 2γι + 3δϊ - 2a23β2 - 2n - 2>δl

we find that m < M\ for some absolute constant M\ if (2.5) has no
vanishing subsums. Let m > M\. Since the representations are dis-
tinct, m has exactly two vanishing subsums, which are complementary.
Either both vanishing subsums have three terms or one subsum has
two and the other four.

(a) Both vanishing subsums have three terms. After interchanging
the subscripts, if necessary, we are in one of the following cases:

(al) 2 β ' 3 *
(a2) 2" '3*
(a3) 2 α 3^'
(a4) 2α i3^'

(a5) 2« 3Λ
(a6) 2* +

+ 2γι —,
+ 2Yϊ —
+ 2γι -

2 α 2 3 ^ 2 = 0 , 3dι -2*
2yi = 0, 3δι - 2 a 2 3 &
3^2 = 0 3^' — 2 α 2 3 ^ 2

2 α 2 3 ^ 2 = 0, 2yx -2yi

2yi = 0, 2yι -2OL13βl

lβl = 0, 2aι 3βι - 2yi

- 3 d 2 = 0,
- 3 * = 0,
- 2^2 = 0,
- 3<*2 = o ?

- 3 * = 0,
- 3^2 = 0.

By applying Lemma 4 in Cases (a3), (a5) and (a6), we see that
<xι>βι>Vι>δu<X2>β2>Y2>δ2 a r e aU bounded, whence m is bounded by
M2 say. We assume m> M2. We treat the other cases separately.

Case (al). We have 3* = 2?2 + 3<*2. Hence δx > 0, δ2 = 0. By
Lemma 2, we obtain (δι,γ2,δ2) = (1,1,0) or (2,3,0). Furthermore
2 α i 3 ^ + 2* = 2"23&. Let A = min(αi, yi,α2) (may be negative). At
least two among a\, y\, a2 are equal to A. If a2 = A then /?2 > 0, hence
βι = 0. Thus we have 2yx~A+\ = 3βl or 2 Q ! l -^+l = 3 Λ and, by Lemma
2, j»2 € {1,2}. Otherwise a{ = γx = A. Then 3 Λ + 1 = 2α 2"^3^2, hence
βι e {0,1}, β2 = 0, or βx= β2 = - 1 . We conclude that in Case (al)
m can be written as 2α3* + c with a e Z, 6 e {-1,0,1,2}, c e {3,9}.

(a4). We have 2yi = 2^2 + 3^2, hence, by Lemma 2, (γ{, γ2, δ2) =
(1,0,0) or (2,0,1). Further 2 α ' 3^ + 3* = 2tt23&. By a similar rea-
soning as in Case (al) we find that in Case (a4) the number m can be
written as 2*3* + c with a e {-3,-1,0,1,2}, b e Z, c e {2,4}.

Case (a2). We conclude that m can be written as 2a + 3b with a,b e
Z.

(b) One vanishing subsum has two and the other has four terms.
After interchanging the subscripts and rewriting terms, if necessary,
we are in one of the following cases:

(bl) 2<* 3^ = 2"23&, 2* + 3* = 2^2 + 3<*2, ax φQ9β\Φ 0,
(b2) 2* = Ί*\ 2 α i 3 ^ + 3* =
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(b3) 3* = 3δ

Case (bl). We have a\ = ot2> β\ = p2 Since we started with distinct
representations, we may further assume γ\ > 72, δ\ < δi By Lemma

5,

(7ι, δh γ2, δ2) = (2,0,1,1), (3,1,1,2), (4,0, 3,2), (5,1, 3, 3),

or (8,1,4, 5).

Thus m is of the form 2α3* + c with α, b G Z, c G {5,11,17, 35,259}.

Case (b2). We have 7\ =72- Since the representations are distinct,
we may assume δx < δ2. Put B = min(fii9diffi2). Then 2 α ι 3 ^ ~ 5 +
^SI-B _ 2«23^-5 + 3S2-B N o t e t h a t a t l e a s t t w 0 a m o n g βhδhβ2

equal B. If β = ^ = B, then Theorem 3 implies 2 α i 3^ 1 " 5 + 3^"^ G
{3,5,9,17,33,129,513}. If βx = β2 = 5, then Lemma 5 implies
2*.3^"* + 3*-* G {5,11,17, 35,259}. If δ{=β2 = B, then Theorem
1 implies 2α 3 ^ - * + 3 * - * G {7/3,13/4, 5, 7, 73/9,13,17,19, 25, 73,97,
145}. Factors 3 can be combined with 3^. We conclude that in Case
(b2) m is of the form 2a + 3bc with a,beZ,ce{l, 13/4, 5, 7,11,13,
17,19,25, 35,43,73, 97,145,259}.

Case (b3). We have δ\ = ^ By a similar reasoning as in Case (b2),
but with applying Theorem 2 in place of Theorem 3, we can show that
m is of the form 2ac + 3b with a,beZ,ce{l, 7/3, 5,7, 73/9,11,13,
17,19,25, 35,41,73,97,145,259}.

In each case we have found a representation of m as sum of two
terms, e.g. 2α+3^c in Case (b2). We call the constructed representation
a common pairing of the representation (2.4). The common pairing
is obtained from each of these representations by taking two terms
together. Note that in each case the common pairing consists of two
terms each of which has only prime factors less than 300 and such
that mini<y<2(|ordp(xy)|) is bounded. It now follows from Lemma
4 that for m large, m > Λf3 say, the common pairing of any two
representations (2.4) of m is the same, since a vanishing subsum of
Xo + X\-X2-*3 with positive rational numbers x0,X\,X2>X3 and XQ +
X\ - *2 - χ3 = 0 yields XQ = X2, X\ = X3 or x0 = JC3, X\ = ^2-

For each possible common pairing we shall check the possible split-
tings in representations of the form 2α3^ + 2y + 3s.

Case (bl). m = 2*3* + c with a,beZ\ {0}, c G {5,11,17,35,259}.
Here c has to be split as 2γ + 3*. By Lemma 5 there are at most two
distinct representations 2α3^ + 2γ + 3δ of m.



SUMS OF PRODUCTS 189

Case (a2). m = 2a + 3b with a, b e Z. If a = 0, then b is large and
a splitting 3 ό = 2α3^ + 2Y is impossible by Lemma 2. If & = 0 then a
is large and a splitting 2* = 2α3^ + 3s is impossible, also by Lemma
2. Therefore the splitting is either 2a = 2α3^ + 2? or 3* = 2α'3^' + 3δ>.
By Lemma 2, the first possibility can be achieved in at most two ways,
2α"13° + 2a~ι and 2*~231 + 2α~2, and the second also in at most two
ways, 2 13 b~ ι +3b~ι and 2 33*~ 2+3*~ 2 . They are given in the statement
of Theorem 4.

Case (al). We may assume m = 2a3b + c with a e N, b e {-1,1,2},
c e {3,9}. (The case b = 0 has been treated in the preceding case.)
The only possible splitting of c is 21 + 3° if c = 3 and 2 3 + 3° if c = 9.
By Lemma 2, there is only one splitting, 2 α 3" 1 = 2 α ~ 2 3" 1 + 2*"2 if
b = - 1 , only one splitting, 2a3ι = 2a+ι3° + 2a if b = I, and only one
splitting, 2*32 = 2*+33° + 2a if b = 2. Here we use that the splitting
should be of the form 2α3^ + 2γ. Thus there are at most two distinct
representations 2α3^ + 2γ + 3s of m.

Case (a4). We may assume m = 2Λ3^ + c with a e {-3,-1,1,2},
b eN,c e{2,4}. The only possible splitting of c of the form 2γ + 3s

is 2° + 3° if c = 2 and 2° + 31 if c = 4. Otherwise 2*3* should be split
as 2α3^ + 3^. By Lemma 2 there is only one splitting for each value of
a. Thus there are at most two distinct representations 2α3^ + 2γ + 3^
of m.

Case (b2). We may assume m = 2a + 3bc with α, b e Z, c e
{13/4,5,7,11,13,17,19,25,35,43,73,97,145,259}. Obviously 3bc
should be split. If a < 0, then b is large and a splitting of 3bc
as 2α3^ + 2y is impossible by Lemma 4, for m > M4 say. Thus
3*c = 2*3^ + 3δ. Put B = min(b,β,δ). If b = β = B, then we
have c = 2a + 3δ~B which has at most two solutions, since the values
2X + 3y of the solutions of Lemma 5 are distinct. If b = δ = B, then
c = 2 α 3^~ 5 + 1, which gives at most one solution. If β = δ = B,
then 3*"*c = 2<* + 1. Suppose 3*c = 2α '3 i ? 1 + 3*1 = 2<*23*2 + 3*2 with
Bx < B2. Then 2αi + 1 = 2a23Bl~Bι + 3Bl~Bi. By Theorem 3, there
are at most two possible splittings for any c, since the 3-free parts of
22 + 1,24 + 1,25 + 1,27 + 1,29 + 1 are distinct. Then there are at most
two distinct representations of m.

Case (b3). We may assume m = 2ac + 3b with a, b e Z, c e
{7/3, 5, 7, 73/9,11,13,17,19,25, 35,41, 73,97,145,259}. By a similar
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reasoning as in Case (b2) but applying Theorem 2 instead of Theo-
rem 3, we reach the conclusion that there are at most three distinct
representations of m. π

3. The number of representations of the form Σ"=i p\ix /?f". Let
T = {p\,..., pt} be a finite set of prime numbers. Let S be the set of
integers of the form p\ι /?f' with k\,..., kt e Z.

THEOREM 5. There exists a number C depending only on n and T
such that every rational number has at most C distinct representations
as sum ofn elements from S.

More generally, we consider an algebraic number field K of finite
degree. Let M& be the set of places on K (i.e. equivalence classes
of multiplicative valuations on K). Let SK be a finite subset of Mκ

containing all infinite places. Write

S = {a e K I |α | v = 1 for all v φ Sκ}.

Clearly, S is a multiplicative subgroup of K* (= tf\{0}). Let Pn{S) be
the set of projective points (XQ: X\ : - : xn) where the homogeneous
coordinates are in S and determined up to a multiplicative factor in
S. We shall apply the following generalization of Lemma 4.

LEMMA 6. There are only finitely many projective points (XQ: X\ :
-• :xn)ePn(S) satisfying

Xo + Xi H \-xn = 0

but
xiχ-\ h Xik φ 0 for each proper non-empty subset

Proof. See van der Poorten and Schlickewei [7] and Evertse [5].

We shall prove the following generalization of Theorem 5.

THEOREM 6. For every finite subset W ofK* there exists a number
CQ depending only on n, S and W such that every algebraic number in
K* has at most Q distinct representations of the form

(3.1) wχs\ H h π ^ with wι,...,wn e W sχ,...,sn eS

without vanishing subsums.
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REMARKS. (1) The restriction 'without vanishing subsums' is nec-
essary in view of the following example. Take K = Q and let S
correspond to the ordinary absolute value and the prime numbers 2
and 3. The number a = 1 has infinitely many distinct representations

3.2* - 2k+ι -2k + \ (ke Z).

(2) Obviously, Theorem 5 is a special case of the above theorem

Proof of Theorem 6. We apply induction on n. Clearly, the asser-
tion is true for n = 1. Now suppose that the assertion holds for all
positive integers less than n. We shall show that it also holds for n.
In the proof, C0(Λ,S, W), CX(n,S, W), C2(n,S, W)9... denote positive
numbers which depend only on the indicated parameters. For any fi-
nite subset W of K* there is a finite subset Sχ(W) of Mκ such that
W cS{W), where

S{W) = {a e K I H v = 1 for all v g SK{W)}.

Thus Lemma 6 can be applied to the multiplicative group S(W)S =
{sιs2\sιeS{W),s2eS}.

Let a be a number in K* having two distinct representations of the
form (3.1) each without vanishing subsums,

a = wχsι + •- + wnsn = w[s[ + + WJn.

Then

(3.2) wχsι + + wnsn - w[s[ w'ns'n = 0.

Suppose that there exist r disjoint subsets Iχ,..., Ir in / = {1,..., n}
and corresponding disjoint subsets Jχ,...,Jr such that

(3.3)
l=\ 1=1

ieh jeli

but the left hand side of (3.3) has no vanishing subsums. If r = n then
gι+hι = 2 for all / = 1,..., r, where gh hi denote the cardinal numbers
of // and //, respectively. Therefore the two representations are not
distinct, have vanishing subsums or a is zero. This is a contradiction
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with the hypothesis. Thus we have 1 < r < n-1. Now apply Lemma 6
to each equation in (3.3). Hence there are only finitely many projective
points in p*/+*/-i(S(W)S):

for / = l , . . . , r such that the corresponding equations (3.3) hold.
Hence we have only finitely many points in {1} x (S(W)S)8ι~ι:

for / = 1,..., r such that the corresponding equations (3.3) hold. Put

g ι - l
ui = ι + Σ (̂ /î i/i) * Ί Ά for / = 1,..., r.

A:=2

Since the representations have no vanishing subsums, U\,..., ur are all
non-zero. Clearly they belong to a finite set W of Γ̂* which depends
only on n, S and W. (Since the number of splittings depends only on
n, we can make W independent of r and the particular splitting by
taking the union of elements u\,...,ur over all splittings.) Note that

r r

(3.4) a = Σ (winsin) ^ = Σ iwinul) Sin,
1=1 1=1

where 1 < r < n - 1 and H>Z/1W/ (1 <l <r) belong to a finite set W" of
ΛT* which depends only on n, S and W. Note that the sums in (3.4)
have no vanishing subsums. According to the induction hypothesis we
conclude that there exist numbers Q(r, S, W") such that a has at most

Cι(n,S,W):=ΣCo{r,S,W")
r=\

distinct representations of the form (3.4) with

win uι e W", sin eS for / = 1,..., r.

Because the number of ordered splittings of / in subsets I\,..., Ir as
well as in J\y..., Jr is bounded by a number C2(n), we have that a has
at most

C3(/!,£ W) = Cl{n)Cx{n,S, W)

pairs of distinct representations of the form (3.1). D
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