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Dedicated to Professor Joan S. Birman

As Professor Birman indicated in [Bil] the homological information
about a given Heegaard splitting of genus g is contained in a double
coset in the group of symplectic 2gX2g integer matrices with respect
to a suitable subgroup. She found in [Bil] a determinant invariant of this
double coset and we prove in this paper that that invariant (strengthened
a bit when the first torsion number is even) is complete. We obtain this
result by characterizing the double coset in terms of the linking form of
the manifold lifted to a handlebody of the Heegaard splitting and by
finding complete invariants of this lifted form. Professor Birman has
kindly pointed out to us that the characterization of the double cosets by
means of her invariant is contained in the unpublished manuscript [Bi-J].

1. Introduction. Let F be an orientable, closed surface embedded
in a (closed, orientable) 3-manifold M. The pair (M,F) is said to be a
Heegaard splitting if F separates M in two handlebodies. If the genus of
F is g, then (M,F) is a Heegaard splitting of genus g. Two Heegaard
splittings (M, F) and (AT, F% are equivalent if (M, F) = (AT, F ) , i.e. if
there exists a homeomorphism h: M -> Mf such that h(F) = F'.

Every closed, orientable 3-manifold has Heegaard splittings as was
remarked by Heegaard. A considerable effort has been made in the past to
achieve the classification of Heegaard splittings. Waldhausen [Wa] proved
that any two genus g Heegaard splittings of the 3-sphere S3 are equivalent
(ambient isotopic, indeed). He used the classical result of Reidemester and
Singer that two Heegaard splittings of the same manifold are stably
equivalent, i.e. they are ambient isotopic after adding enough trivial
handles to both Heegaard splittings. Bonahon-Otal [Bo-O] classified the
Heegaard splittings of the lens spaces and they showed that there is
exactly one for each genus. This is not true in general: Engmann [Eng]
gave the first example of a manifold (a connected sum of lenses) with two
inequivalent Heegaard splittings of genus 2 (for a different proof and
generalization see [Bil]). Later Birman-Gonzalez-Montesinos [BGAM]
distinguished two Heegaard splittings of genus two of an irreducible
manifold (a homology sphere), using geometric methods introduced earlier
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by Birman-Hilden [BiH] (see [Mo2]). The first numerical invariants of
Heegaard splittings were introduced by Birman in her 1975 paper [Bil].
Her invariants were used to provide new proofs of Engmann's results and
were useful for finding many examples of inequivalent Heegaard splittings
and of inequivalent plats (see [Mol], [Mo2], for instance).

The starting point of Birman was the observation of the fact that
there is a one to one correspondence between equivalence classes of
(oriented) Heegaard splittings of genus g and double cosets in the
mapping class group of the closed orientable surface Fg with respect to the
subgroup of automoφhisms of Fg extending to a handlebody bounded by
Fg. She then applied the homology functor to this problem and considered
double cosets in the group of symplectic 2 x 2 integer matrices with
respect to a suitable subgroup. All homology information about a given
Heegaard splitting is contained in the corresponding double coset. In-
variants of this double coset are invariants of the Heegaard splitting. She
found easily a determinant invariant, but it seemed hard to prove that this
was a complete invariant of the double coset or to find what was missed
by this determinant. A great deal of work was done in this direction in
[Bil]

On the other hand, we found out that the linking form of the
manifold lifted to one of the handlebodies separated by a Heegaard
surface provides an invariant of the Heegaard splitting in question [S].
Our invariant was also a determinant, and we soon realized that it was
related to Birman's invariant. In this paper, which completes [MS], we
prove that the congruence class of the linking form associated to a
Heegaard splitting and the double coset contain exactly the same informa-
tion. We are very grateful to Joan Birman for pointing out to us that the
lifted linking form and the double coset associated to a Heegaard splitting
were more closely related than we thought, and for informing us that
complete invariants of double cosets were found independently in an
unpublished joint work by her and Dennis Johnson ([Bi-J]), which she
facilitated to us.

For us the lifted linking form associated to a Heegaard splitting,
which is defined on a free abelian group, has been the main object of
attention. Invariants of the congruence class of this linking are invariants
of the Heegaard splitting. We have solved completely the problem of
classifying the congruence classes. This problem reduces to finding com-
plete invariants of a matrix of the linking form of the manifold under
congruence by unimodular matrices of certain type. Our solution is based
on the classification of linking forms on finite abelian groups, done in
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[Se] for groups without 2-torsion, and in [Bu], [W] (see also [K]) for
2-groups. A complete invariant of the congruence class is the determinant
of a matrix obtained from the linking form matrix, mod 7̂  (sometimes
mod2τ l 9 when τλ is even) where τλ is the first torsion coefficient of the
group H^M Z).

We show that our determinant invariant in most cases coincides with
Birman's invariant in [Bil]. Finally, we prove that the lifted linking form,
which depends on the double coset, indeed determines it. Hence, by
means of the linking form, we have found complete invariants of the
double coset. It turns out to be that these invariants coincide with those
found by Birman-Johnson [Bi-J].

Not many new applications can be expected, but we give as a new
result the classification of the Heegaard splittings of the connected sum of
two lens spaces L(p, s), L(p\ s') when p = p'.

Part of this work was contained in the Ph.D. Thesis [S] of the second
author, written under the direction of the first one. We want to thank
Craig Hodgson for very interesting discussions which were very helpful to
bring this paper to an end, and Joan Birman for useful information.

2. Linking form associated to Heegaard splittings. Let M be a
closed, oriented three-manifold and let (M, X) be an oriented Heegaard
splitting (i.e. X and M — X are handlebodies) we say that (M, X) and
(M\ X') are equivalent if there is an (orientation-preserving) homeomor-
phism /: M -> M' mapping X to X'. We are interested in invariants of
the equivalence class of the Heegaard splitting (M9 X). In this paper,
these will be the invariants of the linking form of M lifted to X.

Let T(M) be the torsion subgroup of Hλ(M,Z\ and T(X) the
preimage of T(M) under the inclusion induced homomorphism

We define

X): T{X) XT{X)-> Q/Z,
(x9y)

REMARK 1. The nondegenerate bilinear fo^i associated to ^(M, X)
is the linking form ££> of M. For, let N u l ^ M , X) be the set of
x e T(X) such that «5?(M, X)(χ, y) = 0 for every y e T(X). Since y* is



116 JOSέ MARίA MONTESINOS AND CARMEN SAFONT

onto and Jέ? is nondegenerate, this is equivalent to j*x = 0. Thus

NulJS?(Λf, Jίf) = Ker^* : T(X) -> T(M)).

Assume that τl9τ2,...,τr are the torsion coefficients of H^M Z),

where r j |τ r. Select a basis B = (av ..., as) of Γ(X) such that

is a basis of Kery*. A matrix A(X9 B) of Jέf(M, X) with respect to the

basis B has the form

(1)

0

O j ,
0

0

— r

Denote by A(X9 B) the matrix (atj) defined from A(X, B) only up to

sum of

where Z denotes any r X r integer matrix. Then

1

Λ{X9B)

is a matrix of the linking form ££ of M with respect to the basis

(άl9..., ά r) of Γ(M), where 5Z = Λ(flt), Ϊ = 1,. . . , r.

We say that £?{M, X) and ^ ( M ' , Xf) are congruent if there exists

some isomorphism /z: Γ(X) -> ^(X') such that

7, X')(hx, hy) = oSf (M, JST)(JC, y) for I J G Γ( JSΓ).

It follows from Remark 1 that h projects to an isomorphism Ίi: T{M) ->

T(M') which preserves the linking forms <£?, £ί". Therefore the coordinate
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matrix C e GL(s,Z) of h with respect to bases B, Br selected as above
has the following form since the orders of the torsion elements of T(M)
are preserved by Ji:

(2) Q =

22

The rows of C are the coordinates of the images of the elements of B,
with respect to Br. Moreover, C satisfies

(3) CA(X\ Br)C = A(X, B) on Q/Z.

Let C be the submatrix of C formed by the first r rows and columns.
Then

C

1

A{X\Bf)Ct =

1

A(X,B)

on Q/Z.
Think of A( X, B) as a matrix with entries in the cyclic group of r

elements, which we denote (τr), naturally embedded in Q/Z.
Let SL±(5,(τr)) denote the group of s X s matrices with entries in

(τr) with determinant ± 1 mod τΓ. It is well-known that the natural homo-
morphism

is onto (see [Bass] page 8, Lemma 1.1), so for any matrix

there exists C e GL(.s, Z) such that C = C + τrZ, where Z is an integer
matrix. And C satisfies (2) and (3) if and only if C does. Thus,
congruence of A(X,B) under matrices of GL(s,Z) reduces to congruence
under matrices of SL±(1y, (τr)).

If (M, X) and (M', X') are equivalent oriented Heegaard splittings,
then J^(M, X) and &(M\ X') are congruent. The congruence class of



118 JOSέ MARίA MONTESINOS AND CARMEN SAFONT

o5?(M, X) is associated to the equivalence class of (M, X) and it follows

the

THEOREM 2.1. The congruence class ofA(X, B), thought of as a matrix

with entries in the cyclic group (τ r), under matrices of SL±(^, (τr)) of the

form (2) determines the congruence class of JS?(M, X), and therefore is an

invariant of the equivalence class of (M, X).

3. Classifying the linking «£?(M, X). Our goal is to give a complete

set of invariants of the congruence class of <£?(M, X). The first invariant

is given in the following theorem (remember that r is the number of

torsion coefficients, and that s = genus(X) - rank i /^M; Z)).

3.1. THEOREM. If r = S, ddA(X, B) (mod 7̂ ) is an invariant of the

congruence class of JS?(M, X).

Proof. First of all note that since A(X9 B) is a matrix with entries in

Q/Z, dttA(X, B) is only defined modTp Let C e GL(r,Z) be a matrix

of the form

C =
22

Thus

= CA{X,B)C'= C

We will see that

c
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for a matrix C" with det C = det C. In fact, we have

119

— c12

-22

— c\r

— C2r

1

n

21

τ x τ r

-22

τ 2τ r

-2r

£r2
T 2

-11 -12

'21 C 22

-lr

-2r

Let C = (ί//y) and let C = (J/7) be the matrix on the right in the last
term. Then

v

and clearly det C = detC. Thus A(X\ B') = CA(X, B)C and the theo-
rem follows. D

We will see later that άtiA{X, B) (mod^) is precisely the invariant
found by Joan Birman in [Bil]. We also will see that it is a complete
invariant when τλ is odd, and almost a complete invariant when τλ is even.
To determine the complete invariants we first solve the problem for the
case when τλ is a prime power. In [Se], Seifert proved that the problem of
classifying the linking form JS? of M reduces to classifying the restrictions
of JS? to the ^-primary summands of T(M), since these are direct
summands orthogonal with respect to the linking form JSP.
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Our problem has an extra difficulty. For each prime divisor p of τr9

let Tp(M) be the /^-primary summand of T(M), and let Tp(X) be the

preimage of Tp(M) under j * . Define

The groups Kery* < Tp(X) < T(X) are all of them free abelian of rank

s, hence T( X) is not the direct sum of the subgroups Tp(X).

It is clear that if J§?(M, X) and &(M\ X') are congruent, then

<J^(M, X) and SPp(M'9 X') are congruent too. For an isomorphism h:

T(X) -» T{X') preserving JS?(M, X), £?(M\ X') restricts to an isomor-

phism hp: Tp(X) -> Tp(X') preserving &p{M9 X), &p(M'9 X'). The con-

verse is not so clear, since given a sequence of linking-preserving isomor-

phisms hp: Tp(X) -> Tp(Xf) we cannot, in principle, extend them to an

isomorphism between T(X) and T(Xf). What we will do is, roughly, to

extend each hp and then compose the extensions.

Let B = (al9...,as) be a basis of T(X) chosen as in §2. If τx =

pCιd{,..., T,. = pc>rdr, where 0 < ex < < er and d{ Ψ 0 mod p, then

= (dιal9...9drar9ar+l9...9as)

is a basis of TJX) and

(4)

d1an

pei

dλa2ι

dxarl

Pe'

dralr

••" P"

drarr

p*'

0

0

0

s — r

is a matrix of J ^ ( M , X) with respect to Bp. Let Ap(X9 Bp) = (έ/y α ί 7 ) .

Note that the discussion prior to the statement of Theorem 2.1 applies

to JS^,(M, Jf) as well as to JS?(M, X), and it follows that &p(M9 X) and

J£p(M',X') are congruent if there exists a matrix Cp in GL(s,Z) or,

equivalently, in SL±(s,(p6r)) such that

(5)
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The matrix Cp satisfying (5) has the form

121

(6)

«21

*

C 2 2 ••• Pβr €lC2r

* . . . *

*

*
< *ί

r 5 — r

We first determine a system of generators of the subgroup Gs of
SL^s, (//')) of the form (6) (compare [Se]). Consider matrices of Gs of
the form

k i
1

Γ,(±*,/) =
1

±1

T2{±k,i) =

T3(x,i,k) =
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where x Φ 0 mod/? and xx = ±1 modp€r. This set of matrices generates
Gs. We prove this as in [Se]. Given C G ^ , the first row must contain
cuΦQ mod/?, otherwise detC = 0 mod p. If cn = 0 mod/?, we take
CΓj(l, i). The effect on C of right multiplication by Γx(l, /) is to add the
/th column to the first. Therefore we can assume cn Ψ 0 mod/?. Multiply-
ing to the right by Γ3(cιvl9s) we can assume cu = 1 modp6r. The
element clk is of the form c[kp

ek~eχ. We multiply our matrix to the right
by Γ2(-/c, 1) c[k times. The effect is to subtract the first column multiplied
by c[kp*k~ei from the fcth column. Thus we can assume that cιk = 0
mod pe'9 k > 1. The result of deleting the first row and column of C is a
(s — I) X (s — 1) matrix of Gs_v By induction we can assume that
Cjj = 0 mod pe% for j > /, and that cH = 1 mod p€r. We can use Γ3(-l, s, 1)
to make css = 1 modp6r also. We now multiply C by Γ^-^, s) to the left
cks times, thus killing cks, and continue this way with the remaining rows,
starting from the last, until C is converted in the identity matrix. This
proves our claim.

Assume now that for every prime divisor /? of τr, the forms J£p(M\ X)
and J?p(M\ X') are congruent. For a fixed /?, suppose that Cp is a matrix
of SL±(s,(per)) satisfying (6). Then Cp e Gs and therefore can be ex-
pressed as a product of matrices of type Tλ(±k, /), Γ2(±fc, /), Γ3(x, k, /).
Since τr = pe'dr where dr Ψ 0 mod /?, an equality of the form

1 = pP

e' + ddr

can be found, for some integers /?, d. Then, for y = 1,..., s,

p ' ά f i d )

Let ^ = ddr/dr

To the matrix Tλ(±k, i) we can associate the following matrix

1
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If T1(±k,i) is thought of as the reduction modpβr of the coordinate
matrix of an automoφhism of Tp(X) with respect to the basis Bp =
(dιav...,drar, ar+v..,,as), then Γ\(±k9i) can be thought of as the
reduction mod τr of the coordinate matrix with respect to

5 = (al9...9ar9ar+l9...9as)

of an automoφhism of T(X) which induces the identity on φ φ Tq(M)
and which on Tp(M) induces the same automorphism as Γx( ±k, i).

The matrix associated the same way to Γ2(±k, i) is

1

and the matrix associated to Γ3(JC, k, i) is

1

T3(x,k,i) =

(xdd + pp6-)

' 1 .

/ k
(for JC Ψ 0 mod p, xx = 1 mod pβr).

The matrices Γ/9 / = 1,2,3 so defined have determinant ±lmodτ r .
Replacing the matrix Ti by its associate f7 in the expression of Cp, we get
a matrix Cp with determinant ±lmodτ r , which induces on T(M) an
automoφhism which is the identity on the complement of Tp(M) and
which on Tp(M) induces the same automoφhism as Cp (which preserves
the linking &p =&\Tp(M) X Tp(M)). Finally, the product C of such
matrices Cp9 when p ranges over all the prime divisors of τr is a matrix of
determinant ± 1 mod τr which preserves J5? and thus satisfies (3). Thus we
have the following.
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3.2. THEOREM. Let (M, X), (M\ X') be oriented Heegaard splittings.

Then oS?(M, X) and JS?( M', X') are congruent if and only if for every prime

divisorp of τr ££p(M, X) and S£p(M\ Xr) are congruent.

4. Complete congruence invariants of 3Pp(M, X). In this section we

fix a prime p and investigate invariants of the congruence class of

£fp(M, X), or equivalently, invariants of the matrix Ap(X, Bp) given in §3

under congruence by matrices of the group Gs. We solve the problem,

giving a complete invariant of this congruence class.

First we assume that Tp(M) is isomorphic to

( p e ή m ι θ ••• ® ( p e ' ) m ' , 0 < e λ < ••• < e t

where (pe>)m> is the direct sum of mi copies of the cyclic group of pe'

elements, and take a basis (bv ..., bs) of Tp(X) such that

is a basis of Kery*, where m = mι+ +mr This may require a

reordering in the basis Bp given in §3 and of the matrix Ap(X, Bp) but we

keep denoting the new basis and matrix the same way. In this section we

write the matrix Ap(X, Bp) as follows:

An

peι

A2Ϊ

pei

AΛ

Pe'

0

An

pe>

A22

pei

A,2

pe

0 0

K
pei

A2t

pe2

An

pe

0

0

0

0

0

mΛ

mt

s — m

mΛ mf s — m

where Ai are integer matrices. Then Ap(X9 Bp) = (A^).

4.1. THEOREM. detAp(X, Bp) moάpeι is an invariant of the congruence

class of oS^(M, X) if m = s. If m < s, then any two matrices A (X, Bp)

and Ap(X\ B'p) of S£p(M, X), &p{M\ Xf) are congruent by some C e Gs

provided that Jδ? , JS?r are congruent.
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Proof. The first part of the theorem is a particular case of Theorem
3.1.

For the last part of the theorem, notice that the first m X m blocks of
Ap( X, Bp), Ap( X\ Bp) are congruent via a matrix C such that det C Ψ 0
mod p, because they represent the linking forms J£ ,̂ ££p. If s > m we can
enlarge C to an s X s matrix C having determinant +1 mod pe\ D

4.2. COROLLARY. When r < s, any two forms J?(M, X) and
', X') are congruent, provided that 3? and S£f are congruent.

Proof. It follows from Theorems 4.1 and 3.2. D

REMARK. Remember that s = genus(X) - rank i/^M) and that r is
the number of torsion coefficients. We have genus(X) > rank Hλ(M) + r.
Thus, by Corollary 4.2, if the Heegaard splitting does not have minimum
genus, we cannot obtain any invariant of (M, X) by means of ^ ( M , X).

If the matrix Aιv which is symmetric mod pe\ is normalized so that it
becomes symmetric moάpeι + ι we denote (A^) by As

p{X, Bp).

4.3. THEOREM. If p = 2 and m = s, detAs

p(X,Bp) mod2^1 + 1 is an
invariant of the congruence class [CAp{ X, Bp)C\ C ^ Gs) {and, therefore,
an invariant of J£p(M, X)) if:

(i) the diagonal elements ofAu are = 0 mod 2,
(ii) An has even order.

REMARKS. Property (i) is preserved under congruence (note that Au

gives an even quadratic form). Property (ii) is a consequence of property
(i) (see the proof of Theorem 4.4).

Proof. Under congruence Au remains symmetric. Therefore the proof
of the theorem will be a consequence of that of Theorem 3.1 once we show
that detAs

p(X, Bp) is well defined mod2ei + 1. If we replace the diagonal
element a of Au by a + x2eι we change the determinant of As

p(X9 Bp) by
x2ei(|Adjointα|). But the matrix (Adjoint a) mod 2 has determinant zero.
In fact (Adjoint a) mod 2 is upper-diagonal in blocks and the first block is
An mod 2 in which we have deleted the row and column containing a. But
this deleted Au mod 2 is symplectic of odd order and its determinant must
vanish. If we replace a non-diagonal atj e Au by atj + x2eι we must
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replace its symmetric αy/ = atj by aJi + x2e\ to maintain An symmetric.
The detAs

p(X, Bp) changes by jc2^(|Adjointαί7| + |Adjointαyi| 4- 2). But
mod 2 Adjoint α/y and Adjoint aJi have the same determinant, therefore
det Ap(X, Bp) does not change mod2*1 + 1. If we replace a e Ali9 i > 1, by
a + x2e\ then άeXAs

p(X9Bp) changes by jc2ei(|Adjointα|). But Adjoint
α mod 2 is the result of deleting in an upperdiagonal block matrix a row
and a column passing through different diagonal blocks; the resulting
determinant is zero. D

Suppose that m = s and we are given matrices Ap(X, Bp), Ap(X\ Bp)
corresponding to (M, X)9 (M\ X') such that 3?p and S£p are congruent.
Since Ap(X9Bp) A'p(X'9Bp) represent the linking forms &p9 £ep, it
follows from [Se]? [Bu], [W] (see [K]) that we can find matrices C, C of
the form (6) with det C Ψ 0(p\ det C Φ 0(p) and such that

CAp(X9Bp)C' = N,

where N is a normal form for the linking form of the manifold. The
matrix N is diagonal in blocks of the following type (generating blocks):

Case 1. p odd. The blocks are [l/pk] and [n/pk] where n is a fixed
quadratic non-residue mod p (the smallest one, for instance).

Case 2. p = 2. The blocks are

0 -V

2k

1
2*

0

, AC ̂  1 ,

1

1

2*

1
2*
1 ^

and [5/2A], [-5/2*], A: > 3. The blocks in N are ordered so that the
blocks corresponding to the same power of p go together, and here the
(1 X l)-blocks go first. In our case the first block is one of the above with
k =?= e v

We now take the diagonal matrix Dx = (dtJ) such that dtj = 0, i Φ j \
dti = 1, / > /; and dn = x is such that x detC = 1 mod/?^. Define D'
similarly. Thus we have that DC = C and D'C = C' have determinant 1
mod/Λ and

CAp(X9Bp)C' = S,
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where 5, 5" differ from N in the first block. For S this has one of the
following forms

nx

x2

2*Ί-I

X

X

2€ι

1

o ί-
^ o

-X

^ > 1,

1 - 1

, if ex > 2, or
±5x

if eλ > 3, and similarly for S' replacing x' by x.
Assume det Ap(X,Bp) = dQtA^X^B^modp61. Then, by Theorem

4.1, we obtain det S = detS' modpβl and since the determinants corre-
sponding to the generating blocks are Ψ 0 mod/?, we conclude x2 = x'2

mod pe\ We distinguish two cases

Case 1. p odd. Then S and S' coincide and detAp(X, Bp) determines
the congruence class of Ap(X, Bp) by elements of Gs.

Case 2. p even.

Case 2.1. eλ < 2. In this case x2 = x'2 mod2ei implies x = ±x'
mod2^. If jc = x/mod2"1 then S = S'. If x = -x' mod2ei we take -D
instead of Z>, and we get also 5 = 5". Therefore also in this case
det Ap( X, Bp)isa complete invariant for the congruence class of Ap( X, Bp)
by elements of Gs.

Case 2.2. eλ > 3. In this case x is congruent mod2ei to ±x' or to
±(1 4- 2eι'ι)x. These four cases are reduced to two as in Case 2.1. In this
case if the first block of S is a (1 X l)-block then S = S\ and
det Ap(X9 Bp) determines the congruence class of Ap(X,Bp). If the first
block is a (2 X 2)-block this is not quite so, and there are in general two
congruence classes {Ap(X9 Bp)}, {Ap(X\ Bp)} such that

mod 2*,

as the next example shows.
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EXAMPLE. Consider the matrices

0

1

_£

1 "

8

0

0 I
1 0

then there is no C = [a

c

 h

d] with ad - be = ± l m o d 8 and such that

CAp(X, Bp)C = A'p(X', B'p) in Q/Z. We will distinguish them as follows.

In Case 2.2 the matrices Ap(X, Bp), Ap(X\ Bp) satisfy the conditions

of Theorem 3.2 hence detAs

p(X9Bp), det Ap(X\Bp) mod2' 1 + 1 are con-

gruence-invariants. Assume these two coincide. Then x2 = xrl mod2 e i + 1.

Therefore x = ±x' or ±(1 + 2*ι)x' mod2*1 + 1 which implies x = ±χ'

mod 2e\ Thus we have:

4.4. THEOREM, det Ap(X,Bp) mod2 e i determines completely the con-

gruence class {CAp(X,Bp)C\ C G Gs) if one of the following holds

(i) p odd,

(ii) p = 2, eλ < 2,

(iii) p = 2, ex > 3 and there exists a diagonal element aή of An such

that an Φ 0 mod 2.

Otherwise (i.e. if p = 2, eλ > 3 and au = 0 mod2, for all aH in An)

that congruence class is totally determined by det As( X, B ) mod 2ei + 1. D

4.5. COROLLARY. When r = s (i.e. when the number of torsion coeffi-

cients equals genus(X) - ranki f^M)), the set

{det Ap(X9 Bp) (mod pe(p)) | p is prime and τx = pe(p)dp, dpΦ0 mod p)

is a complete invariant of the congruence class of ££(M, X) unless 8 divides

rλ and a a = 0 mod 2 for all diagonal elements αH in the block An of

A2(X, B2). In this case, the set

{det Ap(X9 Bp) mod pe{p) | p is odd prime and τx = pe(p)dp,

dp Φ 0 mod p}

u{άQtAs

2(X,B2)mod2e+ι, if τλ = 2e d, < / # 0 m o d 2 }

is a complete invariant of the congruence class of S£(M, X).

5. Complete congruence invariants of JS?(M, X). In this section we

gather the results we have obtained through the preceding sections.

Theorem 5.1 gives a complete invariant of the congruence class of
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, X), and therefore it gives all the invariants of the Heegaard
splittings (M, X) that can be obtained using the methods of this paper.

Recall that, if rank i/2(M, Z) = f and T(M) is isomorphic to

( 7 1 ) 0 ( 7 2 ) Θ ••• Θ ( τ Γ )

where η \τi+ι for i = 1,.. ., r - 1 and (η) denotes the cyclic group of
order T, (τ x > 1), then M does not admit any Heegaard splitting of genus
less than / + r.

5.1. THEOREM. Let (M, X) be an oriented Heegaard splitting of genus
g. Then

(1) If g > f + r we cannot obtain any invariant of (M9 X) using

(2) // g = f 4- r and ΊX is the first torsion coefficient ofT(M) then

άttA(X,B) modτ x

is a complete invariant of the congruence class of J?(M, X) unless τx =
2euι, uλ Ψ 0 mod2, e > 3 and whenever r} = 2eun ι/7 Φ 0 mod2, then

aπ = 0 mod 2. In that case

deti5(X,5)mod2τ1

is a complete invariant of ££(M, X), where AS(X, B) is obtained normaliz-
ing A(X,B) so that

^L = ̂ JL m o d 2 for 1 < i9 j < k.

Proof. Part (1) is proved in Corollary 4.2. Part (2) follows from
Corollary 4.5 if one notices that for each prime divisor p of τ l 9

det Ap( X, Bp) = dλ dr d e t i ( X , B), with the notation of §3. This

follows from the form of Ap(X, Bp) in (4). Finally, normalizing Ap(X, Bp)

to As

p(X, Bp) for p = 2 means to take djOί^ = diaJι mod/?€>+1, for 1 < /,
j < k, i.e.

which is equivalent to oLi]/Ίi s αy//τy mod/7 since di Ψ 0 Φ dj mod^. Π



130 JOSέ MARίA MONTESINOS AND CARMEN SAFONT

6. Birman's invariants. Birman approached the geometry of a
Heegaard splitting looking at it as the union of two handlebodies glued
together through a homeomorphism of their boundaries. Let us review her
notation ([Bil], [Bi2]).

Let (M, X) be an oriented Heegaard splitting. Let Xg be an (ori-
ented) standard handlebody of genus g, and let τ be a fixed orientation-
reversing automorphism of Xg. Let u,vτ: Xs -> M be orientation-pre-
serving embeddings of Xg onto X and M - X, respectively. Then

where (Xg)ι and (Xg)2

 a r e copies of Xg, and φ = u~ι - v\ is an orienta-
tion-preserving automorphism of dXg thought of as a homeomorphism
from d(Xg)1 to d(Xg)2. The map φ is called a gluing map for (M, X). If
σ, T are orientation-preserving automorphisms of dXg extending to Xg

thus σφr is also a gluing map for the Heegaard splitting. Actually, as it
was proven by Joan Birman in [Bil], there is a 1-1 correspondence
between equivalence classes of oriented Heegaard splittings and double
cosets in the mapping class group Jί g of dXg modulo the subgroup ^ of
(classes of) automorphisms of dXg which extend to Xg.

Now let

m = {h: H^dX^Z) -> H^dX^Z): h =

Then the double coset «^Iφ*^I is an invariant of the oriented
Heegaard splitting (M, F),

As it was pointed out by Seifert [Se], matrices of the linking form S£
of M can be obtained from any Heegaard diagram of M. By completing a
Heegaard diagram to symplectic bases of the homology group of the
Heegaard surface, the homology gluing map of the Heegaard splitting is
expressed in terms of intersections of the curves of the extended Heegaard
diagram, which suffice to compute ££. In particular it follows that the
equivalence class of the linking form 3?(M, X) defined in §2 depends on
the double coset SΓg^3Γg^ of a gluing map for (M, X). In §8 we will
prove the converse: The congruence class of <£?(M, X) determines the
double coset ^ Φ * ^ It was known to Joan Birman that the linking form
J27 of M determines what she called the stable double coset of any oriented
Heegaard splitting of M (stable double cosets correspond to stable
equivalence of Heegaard splittings. The Reidemeister-Singer Theorem
states that any two Heegaard splittings of a given manifold are stably
equivalent). This result is in unpublished lecture notes for the CBMS
Conference at Blacksburg, Va., 1977 [Bi2].
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Now we show that det A( X, B) mod τλ is precisely Birman's invariant
given in [Bil]. Birman extracted a determinant invariant of the double
coset ^ Φ * ^ , using a coordinate matrix of φ* with respect to some
symplectic matrix of Hλ(dXg). Let ε: H^dXg) -> Hλ{Xg) be the inclusion
induced homomorphism. Starting with a symplectic basis

( c l 9 . . . , c g 9 a l 9 . . . , a g )

such that (cv . . . , cg) is a basis of Ker ε, and (av..., ag), where a{ = εan

i = 1 g, is a basis of Hλ{Xg), with the property that
(τxav τ 2 ά 2 , . . . , τ r5 r, ar+l9..., as) is a basis for K e r ^ X g ) ->
the coordinate matrix of φ* is of the form (notation of [Bil]):

where
P

0

1
J

0

0
0
0

*

Q
* *

*
*
*

P = is an s X s matrix.

1

Birman's invariant is det β mod ^ when r = s. The matrix P~ιQ can
be shown (see [S], for instance) to be a matrix of oS?(M, X) with respect to
the basis B = ( ά 1 ? . . . , as) of T{ X). In our notation,

1

β, and β coincides with A( X, B).

It is well known that an automorphism of H^dX^ Z) belongs to Jίu

if and only if it preserves the intersection form on Hλ(dXg; Z). In other
words, Jί g^ is isomorphic to the symplectic group S^+(2g, Z). The sub-
group SΓg^ is completely described in Lemma 2.2 of [Bil]. In Lemma 6.1
we restate Birman's characterisation of 3Γn in our notation.

6.1. LEMMA. The element σ
σ(Kerε) = Kerε.

belongs to SΓ if and only if
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Proof. See Lemma 2.2. of [Bil]. G

6.2. LEMMA. Given φ*, ψ* e Jί^ they belong to the same double coset
modulo SΓ if and only if there exists σ G ̂  such that

σψ*(Kerε) = φ*(Kerε).

Proof. φ^σψ* G ̂  for some σ e ^ if and only if

φ^1σψ%(Kerε) = Kerε,

σψ^Ker ε) = φ*(Ker ε). D

7. The linking form of M lifted to 3X The aim of this section is to
introduce a new bilinear form associated to an oriented Heegaard splitting
(M, X). It is defined on a subgroup of H^dX) and takes values in the
field of the rationals, Q. It does not provide any other invariant of (M, X)
more than ^(M, X), but will allow us to prove in the next section that
the congruence class of J£?(M, X) determines the double coset associated
to(M, X)'m Jtg+.

Let 7X3^0 be the preimage of T(M) under the homomorphism

induced by the inclusion j : X ^> M.
Given x, y e T(dX), represented by 1-cycles a and /?, respectively,

there exist integers m, n such that ma = 9̂ 4, nβ = dB for some 2-chains
A, B in M. Let us define

where a + denotes the cycle a pushed out of X, and Ik denotes the linking
as defined in [Se-T], p. 288, i.e.

lk(α + ,β) = — A + β = — a + Bv m m
(where the dot denotes algebraic intersection in M, and A + is again the
chain A pushed out of X).

Then,

V{M, X): T{dX) X T{dX) -> Q
defines a non-symmetric bilinear form. For if a — a' = 3C, where C is a
2-chain on F, then <x + - a' + = 3C+ and C+ β = 0. Analogously, if
β - β' = 3A where D is a 2-chain on F, α + Z> = 0. Thus, ^(M, Z) is
well defined and is bilinear. Finally, the property:

(7) V(M, X)(x, y) - V(M, X)(y; x) = x - y



BIRMAN INVARIANTS OF HEEGAARD SPLITTINGS 133

(where the dot denotes the algebraic intersection on dX) generalizes the

corresponding property satisfied by the Seifert form on orientable span-

ning surfaces of links in S3, and is easily proven the same way.

The pairing defined above could be defined for any orientable surface

(with or without boundary) embedded in a 3-manifold. In his thesis, D.

Cooper defined hermitian forms based on these pairings and used their

signatures to get invariant of knot and link cobordism [Co]. However for

Heegaard surfaces these signatures always vanish.

Next we prove some basic lemmas about *&(M9 X) and its relation

with J£?(M, X).

Let

ix: Hλ(dX; Z) -> Hλ(X; Z) and

iM_x: H^dX Z) -^ H^W^X Z)

i d d h h idenote inclusion induced homomorphisms.

Note that T(dX) is a direct summand of H^dX) and there are

symplectic bases ( q , . . . , cg9 al9...9 ag) (cι Cj = 0, at αy = 0, ς a} =

8fJ) such that (cl9..., cg) is a b a s i s f o r K e r ix a n d (cl9 ...,cg9 < z l 9 . . . , as) is

a b a s i s for T(dX). S imi lar ly , t h e r e exis t b a s e s (dl9...9dg9 bv..., bg) s u c h

t h a t drd, = 0, b; bj = 0, dt bj = - δ l 7 for 1 < /, j < g, (dl9...,dg) i s

a basis of Ker iM_x and (dl9..., dg, bv..., bs) is a basis of T(dX). (The

integer g - s is the first Betti number of Hλ(M).)

7.1. LEMMA, (i) The matrix of <β{M9X) with respect to the basis

(cl9..., cg9 al9..., as) has the form

0 E]
0 C\

(ii) The matrix of V(M9 X) with respect to the basis (dv...,dg,

b v . . . , bs) has the form

[0 0
[F D

where C and D are s X s symmetric matrices with rational entries, E = [£

is a g X s matrix, F = [Is0] is an s X g matrix and Is is the s X s identity

matrix.

The classes {C} and {£>} of matrices over Q/Z are coordinate

matrices for <&( M9 X).

Proof. It is straightforward using the property (7)

V(M, X)(x, y) - V(M, X){y, x) = x -y. D
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7.2. LEMMA. Let (M, X), (AT, X') be Heegaardsplittings and

h: Hλ(dX) -> H^dX')

be an isomorphism such that hT(dX) = T(dX'). The following properties

are equivalent:

(1) <g'(hx,hy) = V(x,y) for every x, y e Γ(3X), wΛere if, «" de-

note V(M, X\ V(M\ X'), respectively.

(2) The coordinate matrix of h with respect to the bases ( c 1 ? . . . , c g ,

al9..., ag) and (c[,..., c'g9 a{,..., a'g) is an (integer) matrix of the form

s g - s s g - s

A,

A
Ί

*

*

*

0

0

*

0

0

0

*
where Aλ e G L ( s , Z ) andAΊ = CAλ - (A[)'ιC

(3) The coordinate matrix ofh with respect to the bases

(dl9...9dg9 bl9..., bg) and yd[9 ...,d'g9 b[,..,

has the form

s g - s s g - s

By

0

B
Ί

*

*

0

0

0

0

0

where Bλ e GL(^,Z) and BΊ = DBX - (B[)~ιDf and where the stars de-

note submatrices of H and G, respectively.

Proof. Let

Ay

A
4

A
Ί

A
2

As
A
s

A
3

A
6

A
9

be the submatrix of H consisting on its first g 4- s rows and columns.

Condition (1) is equivalent to

A
4

A
η

A
2

As

As

A,

A
6

A
9

0

0

Js_
0

c

A[

A\

A's

A\

A's

A'e

A'
7

A's

A'
9

=

0

0

0

c
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which gives the equations

(3) (A + A C')A' = / ,

(4) A
6
CΆ'

3
 = 0,

(5) A
6
CΆ'

b
 = 0,

(6) A
6
CΆ'

9
 = 0,

(7) {A
Ί
 + A

9
C')A'

3
 = 0,

(8) (A
7
 + A

9
C')A'

6
 = 0,

(9) (A
Ί
 + A

9
C')A'

9
= C.

From (3), it follows that {Ax + A3C) e GL(s, Q), which together with (1)

and (2) implies that A3 = A6 = 0. Thus, (4), (5), (6), (7) and (8) are

redundant, and AXA'9 = Is. Equation (9) tell us that

The other zero blocks appear since /zΓ(ΘX) = Γ(ΘZr) The form of G is

obtained the same way.

We say that #(M, X) and ^(M\ X') are congruent if there exist /z

as in Lemma 7.2, (1).

7.3. COROLLARY. // #( Af, X) am/ ^(Λf', ^ 0 ar^ congruent by

h: I

such that hT(dX) = T(dX'), then h maps the subgroups Ker/'x and

KeτiM_xto Keτiy, and Ker^^^--, respectively.

Proof. By L e m m a 7.2(2) h m a p s K e r / A - = (cv...,cg) t o K e r / X - =

(c[,...,c'g) a n d b y L e m m a 7.3(3) it s e n d s K e r / W _ x = (dv ...,dg) t o

-A- = < < / ί , . . . , < / ; > . •

7.4. COROLLARY. ^(M, X) and ^(M', X') are congruent if and only

if£?(M, X) and <e(M', X') are. D

7.5. REMARK. If θ denotes the intersection pairing on Hλ(dX), it

follows from the equation %(M, X) - <£(M,M - X) = θ and from

Corollary 7.4 that S£(M, X) and Se{M\ X') are congruent if and only if

- X)and Se(M\M' - X') are.
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8. Linking form and double cosets. In this section we prove the
following

8.1. THEOREM. Let φ, φ' &Jt' g define oriented Heegaard splittings
(M9X) and (M\Xf). Then &(M9X) and &(M',X') are congruent if
and only if φ* and φ* belong to the same double coset in Jί' g^ mod ^ .

Proof. Assume that &(M,X) and Se{M\ X') are congruent. We
want to construct an isomorphism σ of jyi(3Xg) such that σ e &~ and
σφ*(Kerε) = φ*(Kerε). Then, by Lemma 6.2 we will have proved that φ*,
φ* belong to the same double coset in Jί^ mod ^ .

Let w, vτ: Xg -> M be the embeddings of Xg onto X, M — X respec-
tively. Denote ϋ, vτ the homeomorphisms from dXg to dX induced by
the embeddings.

Let (al9..., as) be a basis for T(X) and let C be a symmetric s X s
matrix with rational entries whose class { C) in M(s, Q/Z) is a matrix for
JS?(M, X) with respect to the basis (al9...9 as). Denote with primes the
corresponding concepts associated to (M\ X'). Since J£(MyX) and
J£{M\ X') are congruent, there exists a matrix A e GL(s, Z) such that

AC A1 - C

is an integer matrix. The rows of A are the coordinates of the image of
al9...9as under an isomorphism h: T(X) -> Γ(X') with respect to the
basis (a'l9... 9 a's).

Since Hλ(X)/T(X) is isomorphic to Hλ{M)/T{M) and this is a free
abelian group, it follows that T(X) is a direct summand of HX(X).
Therefore (av . . . , as) can be extended to a basis (tf1?..., as, as+1, ...,ag)
of Hλ(X). The same is true for (M', X'). We extend h to an isomorphism
ext h: HX(X) -> iί^XO by defining

ext^ί^J = a% s < i < g.

Let 0, / G M(g - 5,Z) denote the zero and identity elements, respec-
tively. The coordinate matrix of ext h with respect to the bases (al9...9 ag),
(a'l9... 9 a'g) \s

A=A Θ I.

Consider the matrices

C:= CΘO,

C := C θ 0.

Then, of course ACΆ* — C is an integer matrix.
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Now the bases (al9...9 ag) and (a[,..., ag) lift to symplectic bases
( c 1 ? . . . , cg9 av . . . , ag) and (c'l9..., c'g9 a'l9..., a'g) of Hλ(dX) and H1{^X%
respectively, where (cl9...9cg) is a basis of Keri^ and (c'l9...9c'g) is a
basis of KeτiXu

The (symplectic) matrix

(8)
-AC +

is the coordinate matrix with respect to the bases (cl9...9cg9 al9...9 ag)
and (c[9...9c'g9 a{,..., a'g) of an isomoφhism σ from Hλ(dX) to ^(ΘJί ' ) .
Therefore σ takes Ker/X to Kerix,. We can assume that the matrices C,
C are blocks of matrices of the pairings <#(M9 X) and %>(M\ X') as in
Lemma 7.1. Since the matrix (8) has the form H in Lemma 7.2.(2) it
follows that σ preserves these pairings. Then, by Corollary 7.3, σ takes

Define σ:= ( M * ) " 1 ^ ! * .

Recall that φ = u~ιυ\9 w|+Kerε = Ker/^ and ί;|^Kerε = KeriM_x.
The analogous holds for (M\ X'). Finally,

σ(Kerε) = u^σ(KQτiχ) = iiV^KeriV) = Kerε,

= uϊισu\*(u\ϊιKeriM_x)

Thus by Lemmas 6.1 and 6.2 it follows that φ* and φ* belong to the
same double coset in Jί σ modulo yσ. D

8.2. REMARK. AS a consequence of Theorem 8.1 we see that for any
two φ, φ' e Jίg defining Heegaard splittings of M, M' such that Hλ(M)
= Hλ(M') and g > rank//1(M) + r9 where r is the number of torsion
coefficients of Γ(M), then φ^ and φr* belong to the same double coset
modulo 3~ . This is the case, for instance, when M, M' are homological
spheres, Hλ(M) = Hλ(M') are torsion free or the Heegaard splitting has
not minimal genus.

8.3. REMARK. It follows from the theorem that any invariant of the
double coset ^ Φ * ^ are invariants of the congruence class of JS?(M, X)
and vice versa. Since we have given a complete invariant of oS?(M, X), we
have determined a complete invariant of the double coset.

9. Applications: connected sums of lens spaces. In practice we want
to classify unoriented Heegaard splittings (M,F) as defined in §1. An
unoriented Heegaard splitting defines four oriented ones, namely (M, X),
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(M, 7), (Af, X), (Af, 7) where * , 7 are the handlebodies separated by F.
Therefore a homeomoφhism /: (M, F) -> (M\F') must send each one
of the unordered pairs {(Af, JΓ),(M, 7)}, {(Af, JSQ,(Af, 7)}, to one of the
unordered pairs {{M'9X')\(M'9Y')}9 {(M\ X'),(M',Y')}. Therefore
the unordered pairs

form an invariant of (Af, F). In this way we can use the invariants defined
before to distinguish (Af, F) among unoriented Heegaard splittings.

In this section we apply our invariants to obtain some results on the
classification of Heegaard splittings of connected sums of lens spaces. We
take, for simplicity, the connected sum of two lens spaces.

Let /?, s be positive integers with gcd(p,s) = 1. The lens space
L(p,s) is obtained by -p/s Dehn-surgery on S 3 along the trivial knot.
The boundary of a tubular neighborhood of the trivial knot is a torus F
which gives a Heegaard splitting of L(p,s) of genus 1. We denote by X
and 7 the solid tori separated by F, where 7 contains the core of the
surgery.

Consider a canonical meridian-longitude pair (m, /) on F, oriented so
that m / = +1 on 37. Then x = m and y = -sm + pi are bases for
Hλ(X) and ^ ( 7 ) , respectively, where pp - ss = 1. Moreover, j*(x) and
j*(y) both generate Hλ{L(p,s)), which is isomorphic to (p). Thus

= Hι(X) and T(Y) = Hλ(Y). It is not difficult to check that
, x) = s/p. Therefore, Se(y, y) = &{-sm + pi, -sm + pi) =

(-sm, -sm) = (s2s/p) = s/p. Thus

) - [ ^ ] and

and the unordered pairs ±{smoάp\ Smod/?} form an invariant of the
equivalence class of (L( /?, s), F).

Thus if (L(p,s),F) is equivalent to (L(p,s')9F
f) one of the four

conditions hold:
(i) (L(p, S), X) = (L(p, s')9 X)=*s^s' modp,

(ii) (L(p, s), X) = (L(p, s')9 7) => s = s' modp *> ss'= 1 mod;?,
(iii) (L(p,si X) = (L{p9s')9 X)=*s^ -s' mod/7,
(iv) (L(p9s)9X)s(L(p9s')9Y)=> s= -s' mod p *> ss' = -I

modp.
In each case, the reciprocal assertion is also true. If the conditions on

s9 s' are satisfied, it is easy to construct homeomorphisms between the
pairs of oriented manifolds. Note that in this way the topological classifi-
cation of lens spaces, which was obtained by Brody follows by virtue of
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the Bonahon-Otal Theorem [Bo-O] or by Hodgon's M.Sc. Thesis [H], as it
is well known.

The above classification of Heegaard splittings of lens spaces is in
[Bil]. We add it here since we want to use it when s = s'. If s2 = 1 mod p
then (L(p,s), X) = (L(p,s), Y) and we call this Heegaard splitting
inυertible (by analogy with knot theory).

We now study the connected sum of two lens spaces. Given two
oriented Heegaard splittings (Mv Xx) and (M2, X2) the pair (Mλ # M2,
Xλ t| X2) is well defined [Wa] and it is an oriented Heegaard splitting.

According to a theorem of Haken, any Heegaard splitting of a
connected sum of manifolds Mλ # M2 is equivalent to a connected sum of
a Heegaard splitting of Mλ and a Heegaard splitting of M2. On the other
hand, Bonahon-Otal [Bo-O] proved that any two Heegaard splittings of
genus g > 1 of a lens space L(p,s) are ambient isotopic, and in particu-
lar are ambient isotopic to the stabilization of the canonical Heegaard
splitting of genus one (for lens spaces non-homeomorphic to S3). There-
fore, it follows that the Heegaard genus of the connected sum L(p,s) #
L(p\s') of two lens spaces is two, and that any Heegaard splitting of
genus two is equivalent to a connected sum of the canonical Heegaard
splittings of the lens L{ p, s), L(p\ s') respectively. Thus, any unoriented
Heegaard splitting of genus two of L(p,s) # L(p\s') is equivalent
either to (L(p,s) # L(p',s'),d(X \\ X')) or to (L(p9s) # L(p',s')9

d(X t) F')). It is known that sometimes these Heegaard splittings are
inequivalent [Eng], [Bil], and that any Heegaard splitting of genus > 2 of
L{p,s) # L{p\s') is isotopic to the stabilization of one of these
Heegaard splittings of genus 2.

Consider the bases

of T(X \\ X') and T(Y \\ Y'\ respectively, for (L(p,s) # L(p'9s'), X ^
X'). Consider also the bases

B'{X\\Y')\={x9y')9

B'(Y^X'):={y,x')

of T(X \\ Yr) and T(Y \\ X'\ respectively, for (L(p9s) # L(p'9s')9X
\\Y). Therefore we have the following matrices:

A(xt,x:B)-{
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Let d be the g.c.d. of p and pf. As a corollary of Theorem 5.1 we

have the following.

9.1. PROPOSITION. / /

(l{p,s)#L{p'9s')MX\X')) and

(L(p,s)#L(p',s'),d(X\nY'))

are equivalent, then one of the following holds:

(i) s'2 = l m o d J ,

(ii) s2 = 1 modd.

EXAMPLE. L(5,2) # L(25,4). Here d = 5. L(25,4) satisfies condition

(i) and according to Theorem 4.1 the forms [2/

0

5

 4/?25] and [2/

Q

5

 19°/25] are

congruent (for instance under C = [Ί4

7

6

4

9 24]). However, most likely the

two Heegaard splittings in question are inequivalent.

9.2. COROLLARY. Under the conditions of Proposition 5.1, if p = /?', the

Heegaard splittings are equivalent if and only if one of the following holds:

(i) s/2 = 1 mod/?,

(ii) s2 = 1 mod/?.

Proo/. If (i) or (ii) holds one of L( /?, 5), L( />, s') is invertible. D

9.3. REMARK. This last result can be also obtained using Birman

invariants [Bi] (with the proviso that conditions (32), (33) of [Bi] p. 148 is

unnecessary if the genus is even).

9.4. LEMMA. Let (M, Fg), (M\Fh) be Heegaard splittings with g<h.

After g stabilizations (M # M\d(X \\ X')) and (M # M\d(X \\ 7'))

become ambient isotopic.

Proof. Let V(Fg) be a tubular neighborhood of Fg in M. Then

Hv(Fg)) = FgX {0,1}. Denote by Fg0 the surface Fg with a hole. Note

that (Fg0 X [0,1]) provides a Heegaard splitting (Λf, F2g) of genus 2g of

M, and that F2g separates the handebodies X\ Y and Fg0 X [0,1] (as the

first author learned from L. Siebenmann). Then (M, F2g) is equivalent to

g stabilizations of (M, Fg) as can be easily checked directly (see Figure

5.1).

Fg X 0

F X l

FIGURE 5.1
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Realize the connected sum (M # M\(X \\ Y) \\ X') using a tubular
neighbourhood in M of a disk on Fg0 X {0}. Clearly (M # M\
d((X t| Y) \\ X')) is obtained from (M # M\d(X fc| X')) by g stabiliza-
tions (Figure 5.2).

FIGURE 5.2

Analogously, realize the connected sum (M # M\(X \\ Y) t| X')
using a tubular neighbourhood in M of a disk on F g 0 X {1} (Figure 5.3).
Then (M # M r, 3((X \\ Y) \\ X')) is equivalent to g stabilizations in
(M# M\d(XϊY')). •

FgXl

FIGURE 5.3

9.5. COROLLARY. The Heegaard splittings of genus greater than two of
L(p, s) # L(p\ s') are equivalent.

9.6. COROLLARY. (Classification of the Heegaard splittings of L(p, s)
# L(pys').) The Heegaard splittings of genus greater than two ofL(p,s)
# L(p,s') are equivalent. There is one equivalence class of Heegaard
splittings of genus two if s2 = 1 or s'1 = 1 (mod/?), and two equivalence
classes otherwise.
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