SHIFTS OF INTEGER INDEX ON THE HYPERFINITE II_{1} FACTOR

Geoffrey L. Price

Abstract

In this paper we consider shifts on the hyperfinite II_{1} factor arising as a generalization of a construction of Powers. We determine the conjugacy classes of certain of these shifts.

1. Introduction. Let R be the hyperfinite II_{1} factor with normalized trace tr. A shift α on R is an identity-preserving *-endomorphism which satisfies $\bigcap_{m \geq 1} \alpha^{m}(R)=\mathbf{C}$. We say that α has shift index n if the subfactor $\alpha(R)$ has the same index $n=[R: \alpha(R)]$ in R as defined by Jones, in [2].

In [3] Powers considered shifts of index 2 on R. These were constructed using functions $\sigma: \mathbf{N} \cup\{0\} \rightarrow\{-1,1\}$ and sequences $\left\{u_{j}: j \in\right.$ $\mathbf{N}\}$ of self-adjoint unitaries satisfying $u_{i} u_{j}=\sigma(|i-j|) u_{j} u_{i}$. If $A(\sigma)$ is the $*$-algebra generated by the $\left\{u_{j}\right\}$ and tr is the normalized trace on $A(\sigma)$ defined by $\operatorname{tr}(w)=0$ for any non-trivial word in the u_{i}, the GNS construction ($\pi_{\mathrm{tr}}, H_{\mathrm{tr}}, \Omega_{\mathrm{tr}}$) gives rise to the von Neumann algebra $M=\pi_{\mathrm{tr}}(A(\sigma))^{\prime \prime}$. Different characterizations were given in [3] and [4] for M to be the hyperfinite factor R. In [4] it was shown this is the case if and only if the sequence $\{\ldots, \sigma(2), \sigma(1), \sigma(0), \sigma(1), \sigma(2), \ldots\}$ is aperiodic. For this case, the shift α on $M=R$ defined by the relations $\alpha\left(\pi_{\mathrm{tr}}\left(u_{i}\right)\right)=\pi_{\mathrm{tr}}\left(u_{i+1}\right)$ has index 2. In [3] it was shown that the σ-sequence above is a complete conjugacy invariant for α. (We say shifts α, β are conjugate if there exists an automorphism γ of R such that $\alpha=\gamma \cdot \beta \cdot \gamma^{-1}$.)
Motivated by [3], Choda in [1] considered shifts of index n, defined on R by $\alpha\left(u_{j}\right)=u_{j+1}$, for a sequence of unitaries $\left\{u_{j}\right\}$ generating R, and satisfying $\left(u_{j}\right)^{n \cdot}=1, u_{1} u_{j+1}=\sigma(j) u_{j+1} u_{1}$, where $\sigma: \mathbf{N} \cup\{0\} \rightarrow$ $\{1, \exp (2 \pi i / n)\}$. In this setting and under the assumption $\alpha(R)^{\prime} \cap R=$ $\mathbf{C} 1$ she characterizes the normalizer $N(\alpha)$ of α (see Definition 3.4) and the unitary α-generators of R.

In this paper we generalize some of the results of $[1,3,4]$. In §2 we consider, for a fixed n, algebras generated by sequences $\left\{u_{j}\right\}$ of unitaries, of order n, and satisfying $u_{1} u_{j+1}=\sigma(j) u_{j+1} u_{1}$ for functions $\sigma: \mathbf{N} \cup\{0\} \rightarrow \Omega_{n}$, the set of nth roots of unity. We determine
necessary and sufficient conditions for these algebras, under the GNS representation for a certain trace, to generate the hyperfinite II_{1} factor R in the weak closure [Theorem 2.6]. If α is the shift determined by the equations $\alpha\left(u_{i}\right)=u_{i+1}$, then $[R: \alpha(R)]=n$. If $n=2$ or 3 it follows from [2] that $\alpha(R)^{\prime} \cap R=\mathbf{C}$. Here we show the somewhat surprising result that $\alpha(R)^{\prime} \cap R=\mathbf{C} 1$ regardless of the index (Theorem 3.2), so that Choda's assumption holds automatically. Finally we use this result to determine $N(\alpha)$ and show how Powers' techniques generalize to characterize the conjugacy classes of shifts of prime index n.
2. Factor condition. We begin by considering in more detail the construction of the last section. Fix an integer $n>1$. Let Ω_{n} be the nth roots of unity, and $\sigma: \mathbf{Z} \rightarrow \Omega_{n}$ a function with $\sigma(0)=1$ and $\sigma(j)^{-1}=\sigma(-j)$. Consider the sequence $\left\{u_{j}: j \in \mathbf{N}\right\}$ of distinct unitary operators, each of order n, and satisfying

$$
\begin{equation*}
u_{i} u_{j}=\sigma(i-j) u_{j} u_{i} . \tag{1}
\end{equation*}
$$

Then the u_{j} generate a $*$-algebra, $A(\sigma)$, consisting of linear combinations of words w of the form $w=u_{1}^{i_{1}} u_{2}^{i_{2}} \cdots u_{m}^{i_{m}}$. From (1) one observes that for words w, w^{\prime} in $A(\sigma)$ there is a $\lambda \in \Omega_{n}$ such that $w w^{\prime}=\lambda w^{\prime} w$.

Define a trace tr on $A(\sigma)$ by setting $\operatorname{tr}(1)=1$ and $\operatorname{tr}(w)=0$ if w is a word not a scalar multiple of the identity. Passing to the GNS construction ($\pi_{\mathrm{tr}}, H_{\mathrm{tr}}, \Omega_{\mathrm{tr}}$) we see that the representation π_{tr} is faithful (note that for distinct words $w_{1}, w_{2}, \ldots, w_{m}$, and $A=\sum_{i=1}^{m} a_{i} w_{i}, a_{i} \in$ C, $\operatorname{tr}\left(A^{*} A\right)=\sum_{i=1}^{m}\left|a_{i}\right|^{2}$) so that we shall identify $A(\sigma)$ with its image $\pi_{\mathrm{tr}}(A(\sigma))$ under π_{tr}. Let $\left\|\|_{2}\right.$ be the trace norm on $A(\sigma)$ given by $\|A\|_{2}^{2}=\operatorname{tr}\left(A^{*} A\right)$. Then we observe that H_{tr} is the space of l^{2}-summable series $\sum_{i=1}^{\infty} a_{i} \delta_{w_{l}}$, where $\left\{w_{i}: i \in \mathbf{N}\right\}$ is a sequence consisting of distinct words in the u_{j}, and $\delta_{w}\left(w^{\prime}\right)=0$ if $w^{*} w^{\prime} \neq \lambda 1, \delta_{w}\left(w^{\prime}\right)=\lambda$ if $w^{*} w^{\prime}=\lambda 1$. Let A lie in the center of $A(\sigma)^{\prime \prime}$, and suppose $A \delta_{1}=\sum a_{i} \delta_{w_{1}}$. Then for all words $w \in A(\sigma)$,

$$
w^{*} A w \delta_{1}=\sum a_{i} \delta_{w^{*} w_{i} w} .
$$

Since δ_{1} is separating for $A(\sigma)^{\prime \prime}$ we have $w_{i} w=w w_{i}$ for all i with $a_{i} \neq 0$. From this relation it follows immediately that $A(\sigma)^{\prime \prime}$ has nontrivial center if and only if there are non-trivial words in the center. We record this in the following (cf. [3, Theorem 3.9], [4, Theorem 3.4]).

Lemma 2.1. Let $A(\sigma)$ and tr be as above. Then $A(\sigma)^{\prime \prime}$ has non-trivial center if and only if there exists a non-trivial word in $A(\sigma)$ such that $w^{\prime} w=w w^{\prime}$ for all words w^{\prime} in $A(\sigma)$.

We may uniquely define a $*$-endomorphism α on $A(\sigma)^{\prime \prime}$ by setting $\alpha\left(u_{i}\right)=u_{i+1}$. To show α is a shift, let $A \in \bigcap \alpha^{m}\left(A(\sigma)^{\prime \prime}\right)$, with $\operatorname{tr}(A)=0$ and $\|A\| \leq 1$. Then given $\varepsilon>0$ there are positive integers $N<M$ and a B in the unit ball of the algebra \mathscr{B} generated by u_{1}, \ldots, u_{N}, (resp., C in the unit ball of the algebra \mathscr{C} generated by $\left.u_{N+1}, \ldots, u_{M}\right)$ such that $\left\|(A-B) \delta_{1}\right\|<\varepsilon$ (resp., $\left.\left\|(A-C) \delta_{1}\right\|<\varepsilon\right)$. Then there are distinct non-trivial words $w_{i} \in \mathscr{B}$ (resp., $w_{j}^{\prime} \in \mathscr{C}$) so that

$$
B=b_{0} 1+\sum_{i=1}^{k} b_{i} w_{i} \quad\left(\text { resp., } C=c_{0} 1+\sum_{j=1}^{1} c_{j} w_{j}^{\prime}\right)
$$

From $|\operatorname{tr}(A-B)| \leq\left\|(A-B) \delta_{1}\right\|<\varepsilon$ we have $\left|b_{0}\right|<\varepsilon$, and similarly, $\left|c_{0}\right|<\varepsilon$. Then

$$
\begin{aligned}
\|A\|_{2}^{2} & =\operatorname{tr}\left(A^{*} A\right)=\left(A \delta_{1}, A \delta_{1}\right) \\
& \leq\left|\left((A-B) \delta_{1}, A \delta_{1}\right)\right|+\left|\left(B \delta_{1},(A-C) \delta_{1}\right)\right|+\left|\left(B \delta_{1}, C \delta_{1}\right)\right| \\
& <\varepsilon+\varepsilon+\left|\operatorname{tr}\left(C^{*} B\right)\right|=2 \varepsilon+\left|\overline{c_{0}} b_{0}\right|<2 \varepsilon+\varepsilon^{2}
\end{aligned}
$$

Since ε is arbitrary, $\|A\|_{2}=0$, so $A=0$. thus $\bigcap \alpha^{m}\left(A(\sigma)^{\prime \prime}\right)$ consists of scalar multiples of the identity, and we have verified the following.

Lemma 2.2. Let α be the $*$-endomorphism defined on $A(\sigma)^{\prime \prime}$ by $\alpha\left(u_{i}\right)$ $=u_{i+1}$. Then α is a shift.

Definition 2.3. Let $w=\lambda u_{j_{1}}^{k_{j_{1}}} \cdots u_{j_{l}}^{k_{l_{l}}}$, with $|\lambda|=1, k_{j_{1}} \neq 0 \bmod n$, $k_{j_{l}} \neq 0 \bmod n$, and $j_{1}<j_{2}<\cdots<j_{l}$. Then the length of w is $j_{l}-j_{1}+1$. If $w=\lambda 1$ then w has length 0 .

Theorem 2.4. Suppose $n=p$ where p is prime. Let $\left\{a_{j}: j \in \mathbf{Z}\right\}$ be a sequence of integers such that $a_{0}=0, a_{-j}=-a_{j}$. Define $\sigma: \mathbf{Z} \rightarrow \Omega_{p}$ by $\sigma(j)=\exp \left(2 \pi i a_{j} / p\right)$. Then $A(\sigma)^{\prime \prime}$ is the hyperfinite II_{1} factor if and only if $\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right)$ is aperiodic when viewed as a sequence over $\mathbf{Z} / p \mathbf{Z}$.

Proof. The proof is similar to that of [4, Theorem 2.3]. If $A(\sigma)^{\prime \prime} \neq R$ there is by Lemma 2.1 a non-trivial word $w=u_{1}^{l_{0}} \cdots u_{m+1}^{l_{m}}$ in its center. If $w=\alpha\left(w^{\prime}\right)$ for some word w^{\prime} it is easy to show w^{\prime} is also central, so we may assume $l_{0} \neq 0 \bmod p$. We may also assume $l_{m} \neq 0(p)$
and that $m+1$ is the minimum length among all central words. If $v=u_{1}^{q_{0}} \cdots u_{m+1}^{q_{m}}$ is another such word it is apparent using (1) that $v=\lambda w^{c}$ for some integer c, some $\lambda \in \mathbf{C}$. For let c satisfy $\mathrm{cl}_{m}=q_{m}(p)$, then by (1) one sees that $w^{c} v^{-1}$ is a central word of shorter length than w, and must therefore be a scalar multiple of 1 .
Now $u_{j} w=w u_{j}$ for all j. Setting $j=1$, and using (1) repeatedly, one has

$$
\begin{aligned}
u_{1} w & =u_{1} u_{1}^{l_{0}} u_{2}^{l_{1}} \cdots u_{m+1}^{l_{m}}=\sigma(0)^{l_{0}} u_{1}^{l_{0}} u_{1} u_{2}^{l_{1}} \cdots u_{m+1}^{l_{m}} \\
& =\sigma(0)^{l_{0}} \sigma(1)^{l_{1}} u_{1}^{l_{0}} u_{2}^{l_{1}} u_{1} u_{3}^{l_{2}} \cdots u_{m+1}^{l_{m}} \\
& =\left[\sigma(0)^{l_{0}} \sigma(1)^{l_{1}} \cdots \sigma(m)^{l_{m}}\right] w u_{1}=\exp \left(2 \pi i\left(\sum_{s=0}^{m} l_{s} a_{s}\right) / p\right) w u_{1},
\end{aligned}
$$

so that $\sum_{s=0}^{m} l_{s} a_{s}=0(p)$. Making similar calculations for $u_{j} w=w u_{j}$ one obtains the following homogeneous system over $\mathbf{Z} / p \mathbf{Z}$:

$$
\begin{align*}
& l_{0} a_{0}+l_{1} a_{1}+l_{2} a_{2}+\cdots+l_{m} a_{m}=0(p) \\
&-l_{0} a_{1}+l_{1} a_{0}+l_{2} a_{1}+\cdots+l_{m} a_{m-1}=0(p) \\
& \vdots \tag{2}\\
&-l_{0} a_{m}-l_{1} a_{m-1}-l_{2} a_{m-2}-\cdots-l_{m} a_{1}=0(p)
\end{align*}
$$

Rewriting one has

$$
\begin{equation*}
A L=[0,0, \ldots]^{T} \bmod p \tag{3}
\end{equation*}
$$

where $L=\left[l_{0}, \ldots, l_{m}\right]^{T}$, and

$$
A=\left[\begin{array}{rrrrr}
a_{0} & a_{1} & a_{2} & \cdots & a_{m} \tag{4}\\
-a_{1} & a_{0} & a_{1} & \cdots & a_{m-1} \\
-a_{2} & -a_{1} & a_{0} & \cdots & a_{m-2}
\end{array}\right] .
$$

Let A_{0}, A_{1}, \ldots be the rows of A. From the symmetry of A it is straightforward to observe that for $q \geq m$,

$$
l_{0} A_{1}+l_{1} A_{q-1}+\cdots+l_{m} A_{q-m}=[0,0, \ldots, 0],
$$

so that the rank of A (over $\mathbf{Z} / p \mathbf{Z}$) coincides with the rank of the matrix A^{\prime} consisting of the first $m+1$ rows of A. By the argument in the previous paragraph, central words of minimal length correspond to solutions K of $A^{\prime} K=[0,0, \ldots, 0]^{T}$, so the only solutions to this equation are of the form $K=c L, c \in \mathbf{Z} / p \mathbf{Z}$. Hence A has a rank m over $\mathbf{Z} / p \mathbf{Z}$.

From the symmetry of A^{\prime} one observes $A^{\prime} \tilde{L}=[0,0, \ldots, 0]^{T}$, where $\tilde{L}=\left[l_{m}, \ldots, l_{0}\right]^{T}$. Hence $\tilde{L}=c L$ for some c in $\mathbf{Z} / p \mathbf{Z}$. Hence if $\left(A_{0}\right)_{j}$ is the row vector obtained from A_{j} by reversing the order of the entries then $\left(A_{0}\right)_{j}$ has inner product 0 with L. This fact, and the property that rows A_{m+1}, A_{m+2}, \ldots are in the span of rows A_{1}, \ldots, A_{m} imply that $B L=[0,0, \ldots, 0]^{T}$, where B is a row consisting of any $m+1$ consecutive entries of the sequence ($\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots$). Therefore, for any $j \in \mathbf{Z}$, if $B_{j}=\left[a_{j}, \ldots, a_{j+m}\right], B_{j+1}^{T}=C\left(B_{j}^{T}\right)$, where

$$
C=\left[\begin{array}{cccccc}
0 & 1 & 0 & & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & & & & & \\
c l_{0} & c l_{1} & & \ldots & & c l_{m-1}
\end{array}\right]
$$

and c is an integer such $c l_{m}=-1(p) . C$ is invertible over $\mathbf{Z} / p \mathbf{Z}$, so $C^{s}=I$ for some s, and therefore $B_{j+s}=B_{j}$, all $j \in \mathbf{Z}$, so that $\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)$ is periodic.

Conversely, suppose the sequence is periodic, with period length m. Consider the homogeneous system $A X=[0,0, \ldots]^{T}$, where $X=$ $\left[x_{0}, x_{1}, \ldots, x_{m}\right]^{T}$ and A is as above. Using the periodicity $a_{j}=a_{j+m}$ one observes that the $(m+j)$ th equation coincides with the j th equation, for all j, so the system $A X=0$ reduces to m equations in $m+1$ unknowns. Let $L=\left[l_{0}, \ldots, l_{m}\right]^{T}$ be a non-trivial solution. Then repeated use of (1) shows that the (non-trivial) word $w=u_{1}^{l_{0}} \cdots u_{m+1}^{l_{m}}$ lies in the center, so that $A(\sigma)^{\prime \prime}$ is not a factor.

Corollary 2.5. Suppose $n=p^{r}$ where p is prime. Let $\left\{a_{j}: j \in \mathbf{Z}\right\}$ be a sequence of integers such that $a_{0}=0, a_{-j}=-a_{j}$ and $\sigma: \mathbf{Z} \rightarrow$ Ω_{n} the function defined by $\sigma(j)=\exp \left(2 \pi i a_{j} / p^{r}\right)$. Then $A(\sigma)^{\prime \prime}$ is the hyperfinite II_{1} factor if and only if $\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right)$ is an aperiodic sequence over $\mathbf{Z} / p \mathbf{Z}$.

Proof. Suppose $A(\sigma)^{\prime \prime}$ has non-trivial center. Then there is a nontrivial word w in the center. Since $w^{p^{r}}=\lambda 1$, some $\lambda \in \mathbf{C}$, we may assume by replacing w with an appropriate power $w^{p^{k}}$ if necessary, that w is a non-trivial word such that $w^{p}=\lambda 1$. As in the proof of the theorem we may assume further that w has minimal length among all such central words and that

$$
w=u_{1}^{k_{0}} \cdots u_{m+1}^{k_{m}},
$$

where $k_{0} \neq 0 \bmod p^{r}$. Moreover, since w^{p} is a scalar it follows from (1) that p^{r-1} divides k_{j}, for all j.

We have $u_{j} w=w u_{j}$ for all $j \in \mathbf{N}$. Calculating as in the preceding proof one derives the system

$$
\begin{gathered}
k_{0} a_{0}+k_{1} a_{1}+\cdots+k_{m} a_{m}=0\left(p^{r}\right) \\
-k_{0} a_{1}+k_{1} a_{0}+\cdots+k_{m} a_{m-1}=0\left(p^{r}\right)
\end{gathered}
$$

Let $l_{j}=k_{j} / p^{r-1}$, then we obtain the same system as in (3), where $L=\left[l_{0}, \ldots, l_{m}\right]^{T}$. Hence the sequence (..., $\left.a_{-1}, a_{0}, a_{1}, \ldots\right)$ is periodic over $\mathbf{Z} / p \mathbf{Z}$, as before.

Conversely, if the sequence is periodic, with period m, we showed there is a non-trivial solution L to the system $A L=0(\bmod p)$. Let $k_{j}=l_{j} p^{r-1}$. Since $l_{0} \neq 0(p), k_{0} \neq 0\left(p^{r}\right)$ so that $K=\left[k_{0}, \ldots, k_{m}\right]^{T}$ is a non-trivial solution to the system $A K=0\left(\bmod p^{r}\right)$. It is then straightforward to show that the corresponding word $w=u_{1}^{k_{0}} \cdots u_{m+1}^{k_{m}}$ commutes with the $\left\{u_{j}\right\}$ so that w is central and $A(\sigma)^{\prime \prime}$ is not a factor.

The corollary allows us to proceed to the general case. Let n have prime factorization $p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$. Let Ω_{n} be the nth roots of unity. Let

$$
\phi: \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / p_{1}^{r_{1}} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / p_{s}^{r_{s}} \mathbf{Z}
$$

be the isomorphism given by $k \rightarrow\left(k n_{1} P_{1}, \ldots, k n_{s} P_{s}\right)$ where $P_{q}=$ $n /\left(p_{q}^{r_{q}}\right)$ and n_{1}, \ldots, n_{s} satisfy $\sum_{q} n_{q} P_{q}=1$. We denote by $\phi(k)_{q}$ the q th entry of $\phi(k), \phi(k)_{q} \in \mathbf{Z} / p_{q}^{r_{q}}$.

As before, let $\left\{u_{j}: j \in \mathbf{N}\right\}$ be unitaries, each of order n, satisfying $u_{i} u_{j}=\sigma(i-j) u_{j} u_{i}$, for some function $\sigma: \mathbf{Z} \rightarrow \Omega_{n}$ satisfying $\sigma(0)=1$ and $\sigma(j)^{-1}=\sigma(-j)$. For fixed $j \in \mathbf{N}$ and $q \in\{1,2, \ldots, s\}$ set $u_{j q}=$ $u_{j}^{n_{q} P_{q}}$. The following properties are easily verified:

$$
\begin{gather*}
u_{j}=\prod_{q=1}^{s} u_{j q} \tag{5.1}\\
\alpha\left(u_{j q}\right)=u_{j+1, q}, \quad j \in \mathbf{N} . \tag{5.2}
\end{gather*}
$$

Also, using (1) we have the properties

$$
\begin{align*}
& u_{i q} u_{j q^{\prime}}=u_{j q^{\prime}} u_{i q} \quad \text { if } q \neq q^{\prime} \tag{5.3}\\
& u_{i q} u_{j q}=\sigma(i-j)^{\left(n_{q} P_{q}\right)^{2}} u_{j q} u_{i q} \tag{5.4}
\end{align*}
$$

Let $A(\sigma)_{q}, \quad 1 \leq q \leq s$ be the subalgebra of $A(\sigma)$ generated by the $\left\{u_{j q}: j \in \mathbf{N}\right\}$.

Theorem 2.6. $A(\sigma)^{\prime \prime}$ is a factor if and only if $A(\sigma)_{q}^{\prime \prime}$ is a factor, for each q.

Proof. Suppose $A \in A(\sigma)_{q_{0}}^{\prime} \cap A(\sigma)_{q_{0}}^{\prime \prime}$. Then $A \in A(\sigma)_{q}^{\prime}$ for all $q \neq q_{0}$, by (5.3). Hence $A \in A(\sigma)^{\prime} \cap A(\sigma)^{\prime \prime}$ since the algebras $A(\sigma)_{q}$ generate $A(\sigma)$. So if A is non-trivial, $A(\sigma)^{\prime \prime}$ cannot be a factor.

Conversely, suppose $A(\sigma)^{\prime \prime}$ is not a factor. Then there is a nontrivial word $w=u_{1}^{l_{1}} \cdots u_{m}^{l_{m}}$ in $A(\sigma)$, by Lemma 2.1. Using (1) and (5) there is a λ of modulus 1 such that

$$
w=\lambda \prod_{q=1}^{s}\left(\prod_{j=1}^{m} u_{j q}^{l_{j}}\right)
$$

Choose q_{0} such that $w_{q_{0}}=\prod_{j=1}^{m} u_{j q_{0}}^{l_{j}}$ is non-trivial. Since $u_{k q} w=w u_{k q}$ for all $k \in \mathbf{N}, q \neq q_{0}$, it follows from (5.3) that $u_{k q_{0}} w_{q_{0}}=w_{q_{0}} u_{k q_{0}}$. Hence $w_{q_{0}}$ is central in $A(\sigma)_{q_{0}}$ and $A(\sigma)_{q_{0}}^{\prime \prime}$ is not a factor.

REMARK. It is straightforward to show that if each $A(\sigma)_{q}^{\prime \prime}$ is a factor then $A(\sigma) \cong \otimes_{q} A(\sigma)_{q}$. We omit the proof since we do not require this result.

Theorem 2.7. Let $\left\{k_{j}: j \in \mathbf{Z}\right\}$ be a sequence in $\mathbf{Z} / n \mathbf{Z}$ such that $k_{-j}=-k_{j}$ and $\sigma: \mathbf{Z} \rightarrow \Omega_{n}$ the function given by $\sigma(j)=\exp \left(2 \pi i k_{j} / n\right)$. Let $\phi: \mathbf{Z} / n \mathbf{Z} \rightarrow \mathbf{Z} / p_{1}^{r_{1}} \mathbf{Z} \oplus \cdots \oplus \mathbf{Z} / p_{s}^{r_{s}} \mathbf{Z}$ be the mapping defined above. Then $A(\sigma)^{\prime \prime}$ is a factor if and only if, for each $q, 1 \leq q \leq s$, the sequence

$$
\left(\ldots, \phi\left(k_{-2}\right)_{q}, \phi\left(k_{-1}\right)_{q}, \phi\left(k_{0}\right)_{q}, \phi\left(k_{1}\right)_{q}, \phi\left(k_{2}\right)_{q}, \ldots\right)
$$

is aperiodic over $\mathbf{Z} / p_{q} \mathbf{Z}$.
Proof. We have, for fixed q,

$$
\begin{aligned}
u_{1 q} u_{j+1, q} & =u_{1}^{n_{q} P_{q}} u_{j+1}^{n_{q} P_{q}}=\sigma(j)^{\left(n_{q} P_{q}\right)^{2}} u_{j+1}^{n_{q} P_{q}} u_{1}^{n_{q} P_{q}} \\
& =\sigma(j)^{\left(n_{q} P_{q}\right)^{2}} u_{j+1, q} u_{1 q}=\exp \left(2 \pi i k_{j} / n\right)^{\left(n_{q} P_{q}\right)^{2}} u_{j+1, q} u_{1 q} \\
& =\left[\prod_{c} \exp \left(2 \pi i\left[k_{j} n_{c} /\left(p_{c}^{r} c\right)\right]\right)\right]^{\left(n_{q} P_{q}\right)^{2}} u_{j+1, q} u_{1 q} \\
& =\exp \left(2 \pi i n_{q} k_{j} /\left(p_{q}^{r_{q}}\right)\right)^{\left(n_{q} P_{q}\right)^{2}} u_{j+1, q} u_{1 q} \\
& =\exp \left(2 \pi i \phi\left(k_{j}\right)_{q} /\left(p_{q}^{r_{q}}\right)\right)^{n_{q}^{2} P_{q}} u_{j+1, q} u_{1 q}
\end{aligned}
$$

By Theorem 2.5, therefore, the von Neumann algebra $A(\sigma)_{q}^{\prime \prime}$ is a factor if and only if the sequence $\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)$ is aperiodic $\bmod p_{q}$, where $a_{j}=\phi\left(k_{j}\right)_{q}\left(n_{q}^{2} P_{q}\right)$. But $n_{q}^{2} P_{q}$ is relatively prime
to p_{q}, so the sequence above is aperiodic over $\mathbf{Z} / p_{q} \mathbf{Z}$ if and only if $\left(\ldots, \phi\left(k_{-1}\right)_{q}, \phi\left(k_{0}\right)_{q}, \phi\left(k_{1}\right)_{q}, \ldots\right)$ is also. The preceding theorem now yields the result.
3. A conjugacy invariant for generalized shifts. In what follows we shall adhere to the following assumptions and notation. Let $n>1$ be a fixed integer, and let $\sigma: \mathbf{N} \cup\{0\} \rightarrow \Omega_{n}$ be a mapping such that under the trace tr, the algebra $A(\sigma)$ generated by the words $u_{j}, j \in \mathbf{N}$, has weak closure $A(\sigma)^{\prime \prime}$ isomorphic to R, the hyperfinite II_{1} factor. As before, α is the shift on R determined by the conditions $\alpha\left(u_{i}\right)=u_{i+1}$.

The following result justifies the terminology shift of index n.
Theorem 3.1. The subfactor $\alpha(R)$ of R has index $[R: \alpha(R)]=n$.
Proof. For $i=0,1, \ldots, n-1$, let V_{i} be the subspace $V_{i}=\overline{\alpha(R) u_{1}^{i}}$ in $L^{2}(R, \operatorname{tr})$. Then the V_{i} span $L^{2}(R, \operatorname{tr})$. Moreover, if w, w^{\prime} are any words in $\alpha(R)$, we have $\operatorname{tr}\left(\left[w u_{1}^{i}\right]^{*}\left[w^{\prime} u_{1}^{j}\right]\right)=0$ for $i \neq j$. Since $\alpha(R)$ is the strong closure of linear combinations of words we see that the V_{i} are orthogonal subspaces. The rest of the argument follows through exactly as in the proof of [2, Example 2.3.2].

Theorem 3.2. Let α be a shift on R constructed as above. Then $\alpha(R)^{\prime} \cap R=\mathbf{C} 1$.

Proof. Let $\left\{w_{i}: i \in \mathbf{N}\right\}$ be a sequence of non-trivial words of $A(\sigma)$ such that $w_{i}^{*} w_{j} \neq \lambda 1$ for any $i \neq j$ and if w is a non-trivial word of $A(\sigma)$ then $w=\lambda w_{i}$ for some i and some λ of modulus 1 .

Suppose $A \in \alpha(R)^{\prime} \cap R$, then we have $A \delta_{1}=a_{0} \delta_{1}+\sum a_{i} \delta_{w_{i}}$, for some $a_{i} \in \mathbf{C}$, as in the discussion preceding Lemma 2.1. Then for $w \in \alpha(R)$,

$$
a_{0} \delta_{w}+\sum a_{i} \delta_{w_{i} w}=A w \delta_{1}=w A \delta_{1}=a_{0} \delta_{w}+\sum a_{i} \delta_{w w_{i}}
$$

Since δ_{1} is separating for R there are non-trivial words in $\alpha(R)^{\prime} \cap R$ if A is non-trivial.

Assuming $\alpha(R)^{\prime} \cap R$ is non-trivial, and arguing as in Corollary 2.5, there exists a non-trivial word $w \in \alpha(R)^{\prime} \cap R$ such that $w^{p}=\lambda 1$ for some prime p dividing [$R: \alpha(R)$]. Since $\alpha(R)$ is a factor, $w \notin \alpha(R)$, so w has the form $u_{1}^{k_{0}} u_{2}^{k_{1}} \cdots u_{m+1}^{k_{m}}$ with $k_{0} \neq 0 \bmod n$. Moreover, we may assume that $m+1$ is the minimal length among all words w in $\alpha(R)^{\prime} \cap R$ such that w^{p} is a scalar multiple of 1 .

Since $w^{p}=\lambda 1$ it follows from (1), then, that n / p divides each k_{j}. Hence w lies in the subalgebra A of $A(\sigma)$ generated by $u_{1}^{\left(n / p^{r}\right)}$ and its
shifts, where p^{r} is the largest power of p dividing n. By Theorem 2.6, $A^{\prime \prime}$ is a subfactor of $A(\sigma)^{\prime \prime}$, and by hypothesis, $w \in \alpha(A)^{\prime} \cap A^{\prime \prime}$. Set $v_{1}=u_{1}^{\left(n / p^{\prime}\right)}$, and $v_{j+1}=\alpha^{j}\left(v_{1}\right)$. From the preceding paragraph, we have $w=v_{1}^{q_{0}} \ldots v_{m+1}^{q_{m}}$, where $q_{j}=k_{j} p^{r} / n$. Let $\sigma^{\prime}: \mathbf{N} \cup\{0\} \rightarrow \Omega_{p^{r}}$ be the function satisfying $v_{i} v_{j}=\sigma^{\prime}(|i-j|) v_{j} v_{i}$, and let $\left\{a_{j}: j \in \mathbf{N} \cup\{0\}\right\}$ be integers such that

$$
\sigma^{\prime}(j)=\exp \left(2 \pi i a_{j} / p^{r}\right)
$$

Since $A^{\prime \prime}$ is a factor, the sequence $\left(\ldots,-a_{2},-a_{1}, a_{0}, a_{1}, a_{2}, \ldots\right)$ is aperiodic $\bmod p$, by Corollary 2.5 .

From $v_{1} w \neq w v_{1}, v_{j} w=w v_{j}, j \geq 2$, we obtain, as in Corollary 2.5, the following system of equations over $\mathbf{Z} / p^{r} \mathbf{Z}$:

$$
\begin{aligned}
q_{0} a_{0}+q_{1} a_{1}+\cdots+q_{m} a_{m} & \neq 0\left(p^{r}\right) \\
-q_{0} a_{1}+q_{1} a_{0}+\cdots+q_{m} a_{m-1} & =0\left(p^{r}\right) \\
-q_{0} a_{2}-q_{1} a_{1}+\cdots+q_{m} a_{m-2} & =0\left(p^{r}\right)
\end{aligned}
$$

Since p^{r-1} divides each q_{j} we obtain the system

$$
\begin{array}{r}
l_{0} a_{0}+l_{1} a_{1}+\cdots+l_{m} a_{m} \neq 0(p) \\
-l_{0} a_{1}+l_{1} a_{0}+\cdots+l_{m} a_{m-1}=0(p) \tag{6}
\end{array}
$$

by setting $l_{j}=q_{j} / p^{r-1}$.
Define a new sequence z_{1}, \ldots of unitaries of order p satisfying $z_{i} z_{j}=\sigma^{\prime \prime}(|i-j|) z_{j} z_{i}$, where $\sigma^{\prime \prime}(j)=\exp \left(2 \pi i a_{j} / p\right)$. From Corollary 2.5 the z_{j} generate a factor M under the usual trace representation, with shift β satisfying $\beta\left(z_{i}\right)=z_{i+1}$ and $[M: \beta(M)]=p$. By $[1$, Theorem 3.7] $\beta(M)^{\prime} \cap M$ is trivial. But (6) implies that $z_{1}^{l_{0}} \cdots z_{m+1}^{l_{m}}$ lies in $\beta(M)^{\prime} \cap M$, a contradiction. Hence (6) cannot hold, and $\alpha(R)^{\prime} \cap R$ is trivial.

Definition 3.3. Let α, β be shifts on R. Then α and β are conjugate if there is a $\gamma \in \operatorname{Aut}(R)$ such that $\alpha=\gamma \cdot \beta \cdot \gamma^{-1}$.

The preceding definition appears in [3], where it is shown, [3, Theorem 3.6], that for shifts of index 2 the corresponding functions $\sigma=$ $\sigma_{\alpha}: \mathbf{N} \cup\{0\} \rightarrow\{-1,1\}$ are a complete conjugacy invariant (cf. also [1]). Using techniques essentially the same as Powers' we prove an analogue for more general shifts.

We need the following definition.
Definition 3.4. Let α be a shift of index n of R. The normalizer $N(\alpha)$ is the subset of unitary elements V of R such that $V \alpha^{k}(R) V^{*}=$ $\alpha^{k}(R)$ for all k.

Theorem 3.5. A unitary $V \in R$ lies in $N(\alpha)$ if and only if V is a scalar multiple of a word in $A(\sigma)$.

Proof. It is obvious that words lie in $N(\alpha)$. Suppose $V \in N(\alpha)$. Let $\theta \in \operatorname{Aut}(R)$ be defined by $\theta\left(u_{1}\right)=\zeta u_{1}$, where $\zeta=\exp (2 \pi i / n)$, and $\theta\left(u_{j}\right)=u_{j}$ for $j>1$ (see [1, Corollary 3.8]). It is straightforward to show that $\alpha(R)$ is the fixed point algebra of θ. We show that $\theta(V)=$ $\zeta^{k} V$ for some k.

Let $W \in \alpha(R)$, then $V^{*} W V \in \alpha(R)$, so $V^{*} W V=\theta\left(V^{*} W V\right)=$ $\theta\left(V^{*}\right) W \theta(V)$. Hence $V \theta\left(V^{*}\right) \in \alpha(R)^{\prime} \cap R$. Therefore $V=\lambda \theta(V)$, by the preceding theorem. Since $\theta^{n}=\mathrm{id}, V=\theta^{n}(V)=\lambda \theta^{n-1}(V)=\cdots=$ $\lambda^{n} V$, so λ is an nth root of unity, i.e., $\theta(V)=\zeta^{k_{1}} V$ for some k_{1}.

Let $Z_{1}=u_{1}^{-k_{1}} V$, then $\theta\left(Z_{1}\right)=Z_{1}$, so $Z_{1} \in \alpha(R)$, and there is a $V_{1} \in R$ such that $\alpha\left(V_{1}\right)=Z_{1}$. Hence $V=u_{1}^{k_{1}} \alpha\left(V_{1}\right)$. Also $V_{1} \in N(\alpha)$, so that for some $k_{2}, \theta\left(V_{1}\right)=\zeta^{k_{2}} V_{1}$. Hence $Z_{2}=u_{1}^{-k_{2}} V_{1}$ lies in $\alpha(R)$. There is then a V_{2} in R such that $\alpha\left(V_{2}\right)=Z_{2}$, and therefore,

$$
V=u_{1}^{k_{1}} Z_{1}=u_{1}^{k_{1}} \alpha\left(V_{1}\right)=u_{1}^{k_{1}} \alpha\left(u_{1}^{k_{2}} Z_{2}\right)=u_{1}^{k_{1}} u_{2}^{k_{2}} \alpha^{2}\left(V_{2}\right)
$$

Continuing in this fashion we find that for any m there are constants k_{j} and a unitary V_{m+1} such that

$$
V=u_{1}^{k_{1}} u_{2}^{k_{2}} \cdots u_{m}^{k_{m}} \alpha^{m+1}\left(V_{m+1}\right)
$$

Let $s=\sup \left\{m: k_{m} \neq 0 \bmod n\right\}$. We shall show that s is finite.
To do so, we make the following observation (cf. [3, Lemma 3.3]). If w is a non-trivial word generated by u_{1}, \ldots, u_{q} and w^{\prime} is any word in R, then $\operatorname{tr}\left(w \alpha^{l}\left(w^{\prime}\right)\right)=0$, for $l \geq q$. Since any $A \in R$ is a strong limit of linear combinations of words in R then $\operatorname{tr}\left(w \alpha^{l}(A)\right)=0$, for $l \geq q$.

Given $\varepsilon>0$ there is a $q \in \mathbf{N}$ and words w_{i} in the algebra generated by u_{1}, \ldots, u_{q} such that $\left\|V-V_{0}\right\|_{2}<\varepsilon$, where $V_{0}=\sum_{i=1}^{c} a_{i} w_{i}$. Let $m>q$ be an integer such that $k_{m} \neq 0 \bmod n$, then

$$
\begin{aligned}
\varepsilon & >\left|\operatorname{tr}\left(V^{*}\left[V-V_{0}\right]\right)\right| \\
& =\left|1-\operatorname{tr}\left(\alpha^{m+1}\left(V_{m+1}^{*}\right) u_{m}^{-k_{m}} \cdots u_{1}^{-k_{1}} V_{0}\right)\right|=1,
\end{aligned}
$$

a contradiction if $\varepsilon<1$. This yields the result.

Using the preceding characterization of the elements of $N(\alpha)$, we may obtain the following results on the conjugacy classes of shifts of prime index.

Corollary 3.6. Let α be a shift of prime index p constructed as above. Let u, v be α-generators of R. Then $u=\mu v^{k}$ for some k relatively prime to p, and some μ in Ω_{p}.

Proof. Since u and v are α-generators, and since each is an element of $N(\alpha)$, then by Theorem 3.5, $u=\mu v^{k_{0}} \alpha\left(u^{k_{1}}\right) \cdots \alpha^{m}\left(v^{k_{m}}\right)$, and $v=\nu u^{t_{0}} \alpha\left(u^{t_{1}}\right) \cdots \alpha^{m}\left(u^{t_{m}}\right)$, for some $m \in \mathbf{N}, \mu, \nu \in \Omega_{p}$, and integers $t_{j}, k_{j}, j=1,2, \ldots, m$. Substituting the latter expression for v into the first equation, we obtain $u=\zeta u^{q_{0}} \alpha\left(u^{q_{1}}\right) \cdots \alpha^{2 m}(u)^{q_{2 m}}$, for some $\zeta \in \Omega_{p}$, where $q_{j}=k_{j} t_{0}+k_{j-1} t_{1}+\cdots+k_{0} t_{j}$ modulo (p). An argument similar to the proof of [3, Theorem 3.4] shows that $q_{j}=0$ modulo (p), for $j>1$. If t_{r} is the last non-zero exponent in the expression for v, then starting with the expression for q_{m+r} and working backwards to q_{r+1}, one observes successively that $k_{m}=k_{m-1}=\cdots=k_{1}=0$. Hence $u=\mu v^{k_{0}}$.

REMARK. The result above does not hold for shifts of general index. Taking $n=4$, for example, one checks that if u is an α-generator, then so is $v=u \alpha\left(u^{2}\right)$, since $u=\mu \nu \alpha\left(v^{2}\right)$, some $\mu \in \Omega_{4}$.

We omit the proof of the following result, which is virtually identical to the proof of [3, Theorem 3.6].

Corollary 3.7. Let α, β be shifts of prime index p on R, constructed as above. Then α and β are conjugate if and only if they correspond to the same σ-function $\sigma: \mathbf{N} \cup\{0\} \rightarrow \Omega_{p}$.

Corollary 3.8. There are an uncountable number of non-conjugate shifts of R of prime index p constructed as above.

Proof. This follows immediately since there are uncountably many functions σ satisfying the statement of Theorem 2.7.

In [3] Powers introduced the notion of outer conjugacy for shifts. We say that shifts α and β are outer conjugate if there are a $\gamma \in \operatorname{Aut}(R)$ and a unitary $U \in R$ such that $\alpha \in \operatorname{Ad}(U)=\gamma \cdot \beta \cdot \gamma^{-1}$. The index of a shift is an outer conjugacy invariant, and so is the first positive
$m\left(m \in\{2,3, \ldots\} \cup\{\infty\}\right.$, by Theorem 3.2) such that $\alpha^{m}(R)$ has nontrivial relative commutant. It is not known if this condition is also sufficient, even in the case of shifts of index 2 (cf. [3]).

Acknowledgments. We are grateful to Professor Robert T. Powers for conversations and we thank Professor Marie Choda for sending us a preprint of [1]. We also thank Professor Hong-sheng Yin for pointing out an error in the original manuscript.

References

[1] M. Choda, Shifts on the hyperfinite II_{1}-factor, J. Operator Theory, 17 (1987), 223-235.
[2] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
[3] R. T. Powers, An index theory for semigroups of $*$-endomorphisms of $B(H)$ and type II_{1} factors, Canad. J. Math., 39 (1987), 492-511.
[4] G. Price, Shifts on type II_{1} factors, Canad. J. Math., 39 (1987), 492-511.

Received October 20, 1986. Supported in part by a grant from the National Science Foundation.

