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INDECOMPOSABLE SURFACES IN 4-SPACE

CHARLES LIVINGSTON

Knotted surfaces in 4-space are constructed which cannot be de-
composed as the connected sum of knotted surfaces of lower genus.

This paper describes the construction of knotted smooth orientable
surfaces in S4 which cannot be decomposed as the connected sum of
knotted surfaces of lower genus. Examples exist for all genera greater
than 0.

Although it is expected that the knot theory of surfaces in 4-sρace
is much more complicated than that of 2-sρheres, examples of this are
fairly difficult to construct. The first published example of a knotted
torus in S4 which is not the connected sum of a knotted sphere with
an unknotted torus was constructed by Asano [A]. Subsequently other
such examples were constructed by a variety of authors, [BMS], [G],
[L], [Lith] and [M].

The constructions of Brunner, Mayland and Simon and of Maeda
are of particular interest because they introduced the study of group
homology into the study of the knotting of surfaces. (The role of
the second homology of the knot group for 2-sρheres appeared first
in the work of Kervaire [K].) If F is a knotted surface in S4 then
H2(πι{S4 - F)) is a quotient of Z 2 * « H2{S4 - F)9 where g is the
genus of F. In [BMS] and in [M] examples are constructed in which
F is a torus and Hι{n\ {S4 — F)) = %2- This result was followed up by
results of Gordon [G] showing that the Z 2 could be replaced by any
cyclic group. The culmination of this series of results was obtained
by Litherland [Lith], who proved that any quotient of Z2g can occur
as the second homology group of the fundamental group of knotted
genus g surface in 4-sρace.

It is fairly clear that none of the results mentioned above can, on
their own, produce examples of surfaces with the properties we are
aiming for. In fact, in all of these previous works when examples of
genus greater than one were constructed they appeared explicitly as
connected sums. This paper exploits a combination of the previous

371



372 CHARLES LIVINGSTON

constructions as well as some detailed group theory calculations to
arrive at the desired examples.

To conclude this introduction we will give a brief summary of the
techniques that go into the construction. For now we will focus on the
genus 2 case. If a knotted surface decomposes as the connected sum of
other knotted surfaces then the fundamental group decomposes as the
amalgamated free product of other knot groups. The first difficulty
encountered is that one of the groups can conceivably be Z. This
difficulty is resolved by starting with a surface such that the second
homology of its group is Z 4 . In this case we will see that if the surface
decomposes as a connected sum of tori then each knot group will have
second homology Z 2 , and hence cannot be Z.

The second difficulty is in showing that the group does not decom-
pose as an amalgamated free product in which each factor has non-
trivial second homology. This result depends on a careful analysis of
the effect of the various constructions used to build the knotted sur-
face on the structure of the group. It is at this point that some detailed
combinatorial group theory also appears.

The construction of examples of genus greater than 2 is only tech-
nically more involved than the genus 2 case. Hence the paper will de-
velop the genus 2 example completely. The final section summarizes
the changes which are needed to construct higher genus examples.

Before beginning the body of the work, thanks are due to Allan
Edmonds for his helpful comments regarding the material.

1. Basic constructions. There are two basic constructions which can
be performed on a knotted surface. We will now describe these con-
structions and describe how they affect the fundamental group of the
complement of the knotted surface.

The first of these constructions is a generalization of the spinning
construction developed by Artin [Art]. It has been used in many of
the constructions of knotted surfaces in 4-space, [A], [L], and [PR].

Let F be a knotted surface in S4. As the intersection form of
S4 is trivial it follows that the normal bundle to F is trivial. Let
s denote a section of the normal bundle, viewed as a map of the
knotted surface into its complement. The section s is determined
uniquely up to homotopy by the restriction that it induce the 0 map

If a is a simple closed curve on F, a neighborhood of α, N, in S4

is diffeomorphic to Sι x ΰ 3 . The pair (N,NnF) is diffeomorphic to
(S{ x i?3, Sι x A), where A is an unknotted arc in 2?3. A new knotted
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FIGURE 1

surface can be constructed by replacing Sι x A with Sι xJ, where / is
a knotted arc in B3. Denote the new surface constructed in this way
byF'.

An argument using Van Kampen's theorem applies to show that
πχ(S4 - F') is the amalgamated free product of π{(S4 - F) with
π\(B3 — J) x Z, where the amalgamation is along a Z 2 . If s(a) is
of infinite order in πi(iS4 - JF) then the Z 2 injects into each factor.
In particular, the element [s(a)] is identified with the generator of Z
under the amalgamation.

A less obvious observation is that the inclusion map of
Hι(π\(S*-F)) into #2(^1 (S 4 -^')) induced by the inclusion of spaces
S4 - N(F) —> S4 - F1 is surjective. This result follows from the ob-
servation that the inclusion of H2{S4 - N(F)) into H2(S4 - F') is
surjective.

The second construction to be described was discovered by Lither-
land [Lith]. We will only outline that construction here, isolating the
essential results we need to use.

Let K denote the knot in Sι x B2 illustrated in Figure 1 and let
T denote a knotted torus in S4. A regular neighborhood, N9 of
T is diffeomorphic to (Sι x B2) x ί 1 , and any diffeomoφhism of
(Sι x B2) x Sι to N carries K x Sι to a new knotted surface in S4.
This is Litherland's basic construction.
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In [Lith] it is shown that by iterating this construction, picking the
appropriate diffeomorphism at each step, one can construct a knot-
ted torus V for which H2(πx (S4 - V)) = Z 2 . In addition πx {S4 - V)
is the amalgamated free product of πx(Sι x B2 - K) x Z with
πx{S4 - T"), where T" is the torus that results at the next to last
stage. The amalgamation is along a Z 3 , and is induced by the split-
ting of S4 - V along d{(Sι x B2) x Sx). The fact that the Z 3 can be
made to inject into each factor is guaranteed by Lemma 4 of [Lith].
It follows that the section s of the normal bundle of T1 induces an
injection of nx{V) into πx{S4 - V).

Note that H2{πx {Sι x B2 -K) x Z) = Z 3 . This follows from the fact
that H2{(SιxB2-K)xSι) = Z 3 ,andthatS 1 x£ 2 -Λ:isaspherical . In
addition we will need the fact that the inclusion of πx (Sι x B2 - K) x Z
into πx(S4 - T") induces a surjection on the second homology of the
groups. This is a consequence of the observation that for any knotted
surface F, the inclusion of H2{N(F)-F) into H2{S4-F) is surjective.

To summarize the needed observations:

PROPOSITION. There exists a knotted torus T in S4 with πx (S4 - T)
a nontrivial amalgamated free product (π x Z) * Z 3 //, where π =
πx(S{ x B2 - K), and the inclusion ofπxZ into πx(S4 - T) induces
a surjection ofH2{π x Z) onto H2(πx{S4 - T)) = Z 2 .

2. The construction of the genus 2 example. In both of the construc-
tions described in the previous sections a 3-dimensional knot group
appears. In one case nx(B3 - 7), in the other rc^S1 x B2 - K). In
the applications that follow we will need to know that the group does
not split in a nontrivial way over Z, either as an amalgamated free
product or as an HNN construction. Three dimensional techniques al-
low us to rule out both possibilities. The existence of such a splitting
implies the existence of an incompressible, d -incompressible annulus
in the complement of the knot [F]. By ruling out non-prime knots and
cabled knots this requirement can be satisfied. In addition, by ruling
out a few other possibilities we can assure that the group is not a free
product and is not isomorphic to Z. The knot in Figure 1 is an ex-
ample of a knot in Sι x B2 with the desired properties. It was used
in [Lith]. From now on it will be assumed that the knots used in the
constructions satisfy these requirements.
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Let T denote the knotted torus described in the previous propo-
sition, and consider the knotted surface of genus 2, T#T. The fun-
damental group of its complement is given by G *z G, where G =
(π x Z) *Z3 H.

The element g e G which generates the Z factor of π x Z is of the
form [s(a)], where a is a simple closed curve on Γ. Using the inclusion
of G into the first factor of G *z G we get an element, g\. Similarly,
using the second factor produces an element g2. It is important to note
that neither g\ nor g2 is in the amalgamating subgroup. This follows
from the observation that both are trivial in H\(S4 - Γ), while no
nontrivial element of the amalgamating subgroup is trivial in H\.

The element g\g2 is of the form [s(γ)] for simple closed curve on
T#T. It is possible to apply the first of the constructions described in
the previous section along the curve γ. Denote the resulting surface
by F, and denote π\ (S4 — F) by Γ. This is the desired surface of genus
2.

By the previous remarks we have that

Γ = G * Z G * Z 2 (π* x Z)

where π* = π\(B3 - / ) . Finally, note that the inclusion of Z 2 into
G *z G is injective.

3. The indecomposability of F. The proof that F cannot be decom-
posed as the connected sum of knotted tori reduces to the following
statement concerning Γ: if Γ decomposes as an amalgamated free
product, A *z B then either H2(A) = 0 or H2(B) = 0. The reduction
follows immediately from the facts that H2(A *z B) = H2(A) ΘH2(B),
that H2(Γ) = Z 4 , and that the group of a knotted torus cannot have
H2 = Z 4 .

The proof of this algebraic statement consists of two steps. In the
first it is reduced to a statement not involving group homology. The
second step is an argument in combinatorial group theory.

Group homology. Recall first that the inclusion of π x Z into G
induces a surjection of H2(π x Z) onto H2(G). Hence the two images
of H2(π x Z) in H2(G *z G) induced by the natural inclusions will
together generate H2{G *z G). Since the inclusion of G * z G into
Γ also induces a surjection on H2 it follows that the two images of
H2(π x Z) in H2(Γ) that arise from the natural inclusions will also
generate.

Denote the two inclusions of π x Z into Γ by h\ and h2. Let / denote
an isomorphism, / : Γ —• A * z B. If we could show that / o Λ, (π x Z)
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were contained in A for both / = 1 and 2 we would be done. In this
case it would follow that H2{A) = Z 4 , and hence that H2{B) = 0.
Similarly with A and B reversed.

We will show slightly less. In the next step it will be shown that
both foh\(πxZ) and / o Λ2(π x Z) are both contained in conjugates
of A or both are contained in conjugates of B. This suffices to give the
desired result, since conjugation of a group induces the trivial action
on its homology groups. (See [B], Chapter II, Proposition 6.2.)

Combinatorial group theory. It remains to show that / o h\ (π x Z)
is contained in a conjugate of A or of B and that / o h2(π x Z) is
contained in a conjugate of the same subgroup. Good references for
the combinatorial group theory that follows are [MKS] and [SW]. We
begin by quoting directly from [SW].

"We say a group B splits over a subgroup C if G =
A *c or G = A*c B, with A φ C φ B. If G splits
over some subgroup we say G is splittable. Note that
Z is splittable as Z = {l}*{i}.

"COROLLARY 3.8. IfG = A*c or G = A*c B and H is

a finitely generated nonsplittable subgroup of G, the H
lies in a conjugate of A or B."

Note that in the above Corollary it is only necessary to assume that
H is nonsplittable over a subgroup isomorphic to a subgroup of C.

In our case the amalgamating subgroup is Z. Hence the following
lemma will apply.

LEMMA 1. If π is nonsplittable over Z, then π x Z is nonsplittable
over Z.

Proof. Suppose first that / : π x Z —• A *z B is an isomorphism. As
Z c π x Z is central, f(Z) is contained in the amalgamating subgroup.
Since π is nonsplittable over Z, after conjugation f(π) c A (or B). In
this case the map / would not be onto.

The second case to consider is with / : π x Z —• A * z . As above it
follows that after conjugation f(π)cA. The argument is completed
by noting that unless /(π) were contained in the image of Z under the
HNN construction it could not be normal. However, π is not cyclic.

Assuming that Γ = A *z B, apply the above lemma to (π* x Z) c Γ.
It follows that the Z is contained in a conjugate of A or B. Suppose
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it is A. After conjugating we assume that it is contained in A. Denote
the generator of Z by t. From the construction of the surface it follows
that / = g\g2 G (π x Z) *z (π x Z) c G *z G, where g\ is the generator
of the first Z and g2 the second. Applying the lemma above to the
(n x Z) factors we see that each is contained in either a conjugate of
A or a conjugate of B. The proof in the genus two case is completed
by showing that both are contained in conjugates of A. Here is the
necessary lemma.

LEMMA 2. If g\ and g2 are elements of A *χB with g\ in a conjugate
of Ay g2 in a conjugate ofBt and g\ g2 in A it follows that g2 is conjugate
to an element in the amalgamating subgroup.

Proof. The proof is topological. Let X be a space with π\(X) = A
and let Y be a space with πx(Y) = B. The space W = XuSι xIuY
has U\(W) = A*ZB, where the union is formed to correspond to the
amalgamation.

There is a map of the twice punctured disk (that is, a closed disk
with two open disks in its interior removed) into W with the outer
boundary component going to a curve in X representing a homotopy
class conjugate to g\ g2, and with inner boundary curves going to curves
in X and Y representing conjugates of g\ and g2. If that map is made
transverse to Sι x { j} the preimage of Sι x {j} is a collection of circles
on the punctured disk. By the injectivity of the amalgamation, it can
be arranged that none of these circles bound disks on the punctured
disk. (Use an innermost circle argument.) One of the circles must
separate the boundary component which is mapped to Y from the
other boundary components. The innermost such circle containing
the boundary mapped to Y represents an element in the amalgamating
subgroup which is conjugate to g2.

4. Genus greater than two and concluding remarks. The construction
of an example of genus greater than two is essentially the same as the
genus two construction. In this case start with the connected sum of
n copies of Γ, and apply the second construction along a curve rep-
resenting an analogous element, g\g2 gn. The combinatorial group
theory argument that concludes the previous section requires a slightly
more careful innermost circle argument and induction. Those details
are left to the reader.
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