ON THE SATO-SEGAL-WILSON SOLUTIONS OF THE K-dV EQUATION

RUSSELL A. JOHNSON

We discuss the class of solutions of the K-dV equation found by Sato, Segal, and Wilson. We relate this class of solutions to properties of the Weyl m-functions, and of the Floquet exponent for the random Schrödinger equation.

1. Introduction. In a series of recent papers, Date, Jimbo, Kashiwara, and Miwa [5, 6, 7, 8, 9] have developed ideas of M. and Y. Sato [23, 24] for finding solutions of the Kadomtsev-Petviashvili (K-P) hierarchy. The solutions of the K-P hierarchy discussed in these papers are expressed in terms of the so-called τ -function, which can be viewed as a generalization of the Riemann Θ -function.

Even more recently, Segal and Wilson [25] have given a careful formulation of the work of the Kyoto group. A consequence of their analysis is the following. Recall that one equation of the K-P hierarchy is the Korteweg-de Vries (K-dV) equation:

(1)
$$\frac{\partial u}{\partial t} = 6u\frac{\partial u}{\partial x} - \frac{\partial^3 u}{\partial x^3}, \qquad u(0,x) = u_0(x),$$

viewed as an evolution equation with initial data $u_0(x)$. Segal and Wilson produce a class $\mathscr{C}^{(2)}$ of initial conditions (or "potentials") $u_0(x)$ for which (1) admits a solution u(t, x) which is meromorphic in t and x. The class $\mathscr{C}^{(2)}$ contains the solitons (see, e.g., [1]) and the algebro-geometric potentials [11, 18, 21]. We will call the elements of $\mathscr{C}^{(2)}$ Sato-Segal-Wilson potentials.

The purpose of the present note is to describe in some detail a subclass LP (for "limit-point"; see below) of the class $\mathscr{C}^{(2)}$. Namely, consider the Schrödinger equation

(2)
$$L\phi = \left(\frac{-d^2}{dx^2} + u_0(x)\right)\phi = \lambda\phi$$

with potential $u_0(x)$. Define $LP \subset \mathscr{C}^{(2)}$ to be the set of Sato-Segal-Wilson potentials which are real and finite for all real x, and for which L is in the limit-point case $x = \pm \infty$ ([26]; [3, Ch. 9]). Let $m_+(\lambda)$ be the

corresponding Weyl *m*-functions; they are defined and holomorphic for Im $\lambda \neq 0$. Define

$$\mathcal{M}(z) = \begin{cases} m_+(z^2), & \operatorname{Im} z > 0, \operatorname{Re} z \neq 0, \\ m_-(z^2), & \operatorname{Im} z < 0, \operatorname{Re} z \neq 0. \end{cases}$$

We show that, if u_0 is in LP, then there exists r > 0 such that \mathscr{M} extends to a holomorphic function on |z| > r with a simple pole at $z = \infty$. Conversely, if $u_0(x)$ is a locally-integrable, real function of $x \in \mathbf{R}$ such that $L = -d^2/dx^2 + u_0(x)$ is in the limit-point case at $x = \pm \infty$, and if $m_{\pm}(\lambda)$ form branches of a function $\mathscr{M}(z)$ ($z^2 = \lambda$) which is holomorphic for |z| > r, then $u_0 \in LP$.

We use this observation to find $u_0 \in LP$ for which the spectrum Σ of L has a Cantor-like part, i.e. $\Sigma \cap (-\infty, r^2)$ is a Cantor set for some $r \in \mathbf{R}$. We then show how to "explicitly" construct a large subclass of LP. To do so, we use the Floquet exponent $w = w(\lambda)$ (Im $\lambda \ge 0$) introduced by Johnson-Moser [15] and studied by Kotani [16, 17], De Concini-Johnson [10], Giachetti-Johnson [13], and others. The construction goes as follows. Let $h(\lambda)$ be a function holomorphic in the upper half-plane $U = \{\lambda | \text{Im } \lambda > 0\}$ with positive imaginary part and with certain additional properties; in particular it is supposed that the boundary value $\hat{h}(\lambda) = \lim_{\epsilon \to 0^+} \hat{h}(\lambda + i\epsilon)$ ($\lambda \in \mathbf{R}$) satisfies $\operatorname{Re} \hat{h}(\lambda) = 0$ for large real λ . In [17], Kotani shows how to find a stationary stochastic process (Ω, \mathscr{B}, μ) which (with slight abuse of terminology; see §3) has Floquet exponent $w(\lambda) = h(\lambda)$. By Kotani's construction, Ω is a subset of a certain Hilbert space of potentials u_0 . It turns out that μ -a.a. potentials are in LP.

Our results may be summarized as follows. On the one hand, potentials in the class $LP \subset \mathscr{C}^{(2)}$ are quite special: the restriction on the behavior of the *m*-functions is very strong. On the other hand, it will be clear from §3 that LP contains much more than the solitons and the algebro-geometric potentials.

2. The *m*-functions. We begin with a brief outline of the Segal-Wilson construction of the class $\mathscr{C}^{(2)}$. The formulas below differ slightly from those of [25], because we use $L = -d^2/dx^2 + u_0(x)$ instead of $L = +d^2/dx^2 + u_0(x)$.

Let **K** be the unit circle, and let $H_+ \subset L^2(\mathbf{K})$ be the set of boundary values in $L^2(\mathbf{K})$ of holomorphic functions on the unit disc $\{z \mid |z| < 1\}$. Thus $H_+ = \operatorname{cls} \operatorname{span}\{1, z, z^2, ...\}$. One considers subspaces $W \subset L^2(\mathbf{K})$ which are comparable with H_+ in the sense that: (i) the orthogonal projection $\operatorname{pr} = \operatorname{pr}(W): W \to H_+$ is Fredholm of index zero; (ii) the orthogonal projection from W onto $H_{-} = (H_{+})^{\perp} = \text{cls span}\{z^{-1}, z^{-2}, ...\}$ is compact. The group Γ_{+} of exponential power series

$$\exp(xz + t_2 z^2 + t_3 z^3 + \cdots) \qquad (x, t_i \in \mathbf{C})$$

acts on the Grassmannian Gr of all such subspaces W by pointwise multiplication of functions. One constructs a determinant bundle Det over Gr, which in turn can be used to define the determinant of pr(W) when $W \in$ Gr. The τ -function τ_W of W is now defined as follows:

$$\tau_W(x, t_2, t_3, \dots) = \det \operatorname{pr}(W) / \det \operatorname{pr}\left[\exp\left(-xz - t_2 z^2 - \cdots\right) \cdot W\right].$$

Then τ_W is meromorphic in all variables. Moreover if det $pr(W) \neq 0$, then $\tau_W(x, t_2, t_3, ...) = \infty$ exactly when det $pr[exp(-xz - t_2z^2 - \cdots) \cdot W] = 0$, and this occurs exactly when $exp(-xz - t_2z^2 - \cdots) \cdot W$ intersects H_- nontrivially.

One says that a subspace $W \in Gr$ is *transverse* if $W \cap H_{-} = \{0\}$; thus W is transverse iff det $pr(W) \neq 0$. The poles of τ_W are in 1-1 correspondence with non-transverse subspaces $\exp(-xz - t_2z^2 - \cdots) \cdot W$ if W itself is transverse.

Let us now restrict attention to the subset $\operatorname{Gr}^{(2)}$ of Gr consisting of subspaces $W \subset L^2(\mathbf{K})$ which are invariant under $z^2: z^2W \subset W$. The subset $\{\exp \sum_{i=1}^{\infty} t_{2i} z^{2i}\}$ of Γ_+ leaves such a W fixed. Let $\tau_W(x, t_3, t_5, \ldots)$ be the corresponding τ -function. Define

$$u_{W}(x,t) = -2\frac{d^{2}}{dx^{2}}\log \tau_{W}(ix,-it,0,0,...);$$

i.e., $t_3 = it$ and all other t_i s equal zero. Then $u_W(x, t)$ is the solution to the K-dV equation (2) with initial condition $u_0(x) = u_W(x, 0)$.

An important intermediate step in showing that $u_W(x, t)$ solves the K-dV equation is the construction of the Baker function $\psi_W(x, z)$. For our purposes, the following description of ψ_W will suffice; a more general discussion is given in [25, §5].

Let $W \in Gr^{(2)}$ be a transverse space, and suppose that $(\exp-ixz) \cdot W$ is transverse for all real x. Then there is a unique function

$$\psi_W(x,z) = e^{ixz} \left(1 + \sum_{i=1}^{\infty} a_i(x) z^{-i} \right)$$

in the space W; in fact $\exp(-ixz)\psi_W(x, z)$ is the inverse image of 1 under the orthogonal projection of $\exp(-ixz) \cdot W$ onto H_+ . The series in parentheses converges for |z| > 1. Moreover

$$\left(\frac{-d^2}{dx^2}+u_0(x)\right)\psi_W(x,z)=z^2\psi_W(x,z)\qquad (x\in\mathbf{R},|z|>1),$$

where $u_0(x) = -2(d^2/dx^2) \log \tau_W(ix, 0, 0, ...)$. One calls $\psi_W(x, z)$ the *Baker function* of W, or of $u_0(x)$.

Note that any differential operator $L = (-d^2/dx^2) + u_0(x)$ with C^{∞} potential $u_0(x)$ gives rise to a *formal* Baker function

(3)
$$\tilde{\psi}(x,z) = e^{ixz} \left(1 + \sum_{i=1}^{\infty} \tilde{a}_i(x) z^{-i} \right)$$

which formally satisfies (i) $L\tilde{\psi} = z^2\tilde{\psi}$, and (ii) $\tilde{\psi}(0, z) = 1$. In fact, the coefficients $\tilde{a}_i(x)$ are C^{∞} functions which are determined recursively by $a_0 \equiv 1$, $a'_{i+1} = (-i/2)La_i$, $a_i(0) = 0$ ($i \ge 1$). The quantity $e^{-ixz}\tilde{\psi}(x, z)$ is the only element of the ring \mathscr{L} of formal Laurent series $s(x, z) = \sum_{i=1}^{\infty} b_i(x) z^{-i}$ with C^{∞} coefficients $b_i(x)$ such that $e^{ixz}s(x, z)$ satisfies (i) and (ii).

Define $\mathscr{C}^{(2)}$ to be the class of (real or complex) potentials $u_0(x)$ such that, for some complex $\lambda \neq 0$, there exists $W \in \operatorname{Gr}^{(2)}$ such that $\lambda^2 u_0(\lambda x) = -2(d^2/dx^2) \log \tau_W(x, 0, 0, \ldots)$. Thus $\mathscr{C}^{(2)}$ contains those potentials obtained directly from $W \in \operatorname{Gr}^{(2)}$ by differentiating $\log \tau_W$, and also scalings of those potentials. Every $u_0 \in \mathscr{C}^{(2)}$ is a meromorphic function of x [25, §5].

2.1. DEFINITION. Let $LP \subset \mathscr{C}^{(2)}$ be the set of Sato-Segal-Wilson potentials u_0 which satisfy the following additional properties: (i) $u_0(x)$ is real and finite (i.e., no poles) for all real x; (ii) $L = -d^2/dx^2 + u_0(x)$ is in the limit-point case at $x = \pm \infty$.

Fix $u_0 \in LP$, and let $m_{\pm}(\lambda)$ be the corresponding Weyl *m*-functions. Thus

$$m_{\pm}(\lambda) = \phi'_{\pm}(0) / \phi_{\pm}(0) \qquad (\operatorname{Im} \lambda \neq 0),$$

where ϕ_{\pm} are non-zero solutions of $L\phi_{\pm} = \lambda\phi_{\pm}$ which are in $L^2(0, \pm \infty)$. Since these solutions are unique up to constant multiple for Im $\lambda \neq 0$, the *m*-functions are well-defined. They are holomorphic, and satisfy sgn[Im $m_{\pm}(\lambda) \cdot \text{Im } \lambda$] = ± 1 .

Note that, with $\phi_{\pm}(x)$ as above, the quantities $m_{\pm}(s, \lambda) = \phi'_{\pm}(s)/\phi_{\pm}(s)$ are the *m*-functions for the translated potential $x \to u_0(x+s)$ ($s \in \mathbf{R}$).

Define

$$\hat{\psi}(x,z) = \begin{cases} \exp \int_0^x m_+(s,z^2) \, ds, & \text{Im } z > 0, \text{ Re } z \neq 0, \\ \exp \int_0^x m_-(s,z^2) \, ds, & \text{Im } z < 0, \text{ Re } z \neq 0. \end{cases}$$

346

Then $\hat{\psi}$ is defined for all real x and for all $z \in Q = \{z \in \mathbb{C} | \operatorname{Re} z \neq 0,$ Im $z \neq 0\}$. Clearly $L\hat{\psi} = z^2\hat{\psi}$ for all $z \in Q$, and $\hat{\psi}(0, z) = 1$, $\hat{\psi}'(0, z) = m_+(z^2)$ with the appropriate choices of sign.

It is well-known (e.g., [14, Ch. 10]) that $|m_{\pm}(x,\lambda) \pm \sqrt{-\lambda}| = O(|\lambda|^{-1/2})$ as $|\lambda| \to \infty$ in closed subsectors of $\{\lambda \in \mathbb{C} | \operatorname{Im} \lambda \neq 0\}$. Moreover the estimate on the right is uniform (in closed subsectors) if x is restricted to a compact interval. It follows that $\hat{\psi}(x, z) = e^{ixz}(1 + O(|\lambda|^{-1/2}))$ as $|z| \to \infty$ in each closed subsector of Q, if x is in a compact interval.

Now u_0 is C^{∞} , so by, e.g. [20, pp. 37–48], $\hat{\psi}(x, z)$ has an asymptotic expansion

$$\hat{\psi}(x,z) \sim e^{ixz} \left(1 + \frac{\hat{a}_1(x)}{z} + \frac{\hat{a}_2(x)}{z^2} + \cdots \right),$$

valid in Q. Moreover the $\hat{a}_i(x)$ are smooth functions which can be determined recursively by substituting $\hat{\psi}$ into $L\phi = z^2\phi$. Since $\hat{\psi}(0, z) = 1$, we see that $\hat{a}_i(x) = \tilde{a}_i(x)$, where the \tilde{a}_i are the coefficients of the formal Baker function (see (3)).

Since $u_0 \in \mathscr{C}^{(2)}$, there is a true Baker function

 $\psi(x,z) = e^{ixz} (1 + a_1(x)/z + \cdots)$

which converges for large |z|, and which satisfies $L\psi = z^2\psi$. Write

 $\psi(x,z)/\psi(0,z) = e^{ixz}(1+b_1(x)z+\cdots).$

Using the uniqueness of $\tilde{\psi}$ in the ring \mathscr{L} , we see that $b_i(x) = \tilde{a}_i(x) = \hat{a}_i(x)$ for all *i* and *x*. Thus in each sector of *Q*, the asymptotic series $1 + \hat{a}_1(x)/z + \cdots$ coincides with a series which converges for, say, |z| > r. We conclude that $\hat{\psi}(x, z) = \psi(x, z)/\psi(0, z)$ for |z| > r.

2.2. THEOREM. Let $u_0(x)$ be a real, locally-integrable function of $x \in \mathbf{R}$ such that $L = -d^2/dx^2 + u_0(x)$ is in the limit-point case at $x = \pm \infty$. Then $u_0 \in LP$ if and only if the Weyl m-functions $m_{\pm}(\lambda)$ have the property that

(4)
$$\mathcal{M}(z) = \begin{cases} m_+(z^2), & \text{Im } z > 0, \text{Re } z \neq 0, \\ m_-(z^2), & \text{Im } z < 0, \text{Re } z \neq 0 \end{cases}$$

extends holomorphically to the region |z| > r for some r > 0. If $\mathcal{M}(z)$ admits such an extension, then $\mathcal{M}(z)$ has a simple pole at $z = \infty$ with residue i.

Proof. We first complete the proof of the "only if" statement. If $z \in Q$, then $\mathcal{M}(z) = \hat{\psi}'(0, z)$ by definition of $\hat{\psi}$. Since $\hat{\psi}(x, z)$ is holomorphic in |z| > r and smooth in x (because $L\hat{\psi} = z^2\hat{\psi}$), we see that

 $\mathcal{M}(z)$ is holomorphic for |z| > r. Simple division shows that $\mathcal{M}(z) = iz + \cdots$ for large |z|.

Let us consider the "if" statement. Suppose that $\mathcal{M}(z)$ admits an extension as described. Let $m_{\pm}(s, z)$ correspond to $u_0(s + x)$, and let $\mathcal{M}(s, z)$ be defined by (4) with $m_{\pm}(s, z^2)$ in place of $m_{\pm}(z^2)$. Then $\mathcal{M}(s, z)$ is holomorphic in $|z| > r_1$ for each $s \in \mathbf{R}$, and is jointly continuous in $s \in \mathbf{R}$ and $|z| > r_1$. Here $r_1 \ge r$ is independent of s.

We prove the last statement. First recall that $sgn[Im m_{\pm}(s, \lambda) \cdot Im \lambda] = \pm 1$ if $Im \lambda \neq 0$. Note also that $\mathcal{M}(s, z)$ is meromorphic in |z| > r. These facts imply that $\mathcal{M}(s, z)$ takes values in $\mathbf{R} \cup \{\infty\}$ if and only if z is pure imaginary, i.e., if and only if $\lambda = z^2 \leq -r^2$.

Next note that, for fixed s, $m_{-}(s, \lambda)$ increases and $m_{+}(s, \lambda)$ decreases as $\lambda \downarrow -\infty$ (unless λ is a pole, of course). Now, $\mathcal{M}(z)$ has no poles for |z| > r. Thus we can find $r_1 \ge r$ such that, if $\lambda \le -r_1^2$, then $m_{-}(0, \lambda)$ and $m_{+}(0, \lambda)$ are never equal. It follows that, if $s \in \mathbb{R}$ and $\lambda \le -r_1^2$, then $m_{-}(s, \lambda)$ and $m_{+}(s, \lambda)$ are never equal. This implies that $\mathcal{M}(s, z)$ omits some interval of real values on $|z| > r_1$. By the Picard theorem [2], $\mathcal{M}(s, z)$ is meromorphic at $z = \infty$. By the preceding paragraph, $\mathcal{M}(s, z)$ has at most a simple pole at $z = \infty$, and by the relations $|m_{\pm}(s, \lambda) \pm \sqrt{-\lambda}| \to 0$ if $|\lambda| \to \infty$ with $\delta < |\arg \lambda| < \pi - \delta([14])$, we see that $\mathcal{M}(s, z) = iz + \cdots$. It follows from this and the first sentence of the present paragraph that $\mathcal{M}(s, z)$ is holomorphic for $|z| > r_1$. The continuity statement is clear.

Define

$$\hat{\psi}(x,z) = \exp \int_0^x \mathscr{M}(s,z) \, ds \qquad (|z| > r_1).$$

We can write

$$\hat{\psi}(x,z) = e^{ixz} \left(1 + \frac{\hat{a}_1(x)}{z} + \frac{\hat{a}_2(x)}{z^2} + \cdots \right) \qquad (x \in \mathbf{R}),$$

where the series converges for $|z| > r_1$ and the coefficients are continuously differentiable for x. In fact they are obtained by integrating the coefficients of $\mathcal{M}(s, z)$ and combining powers of 1/z in the exponential; this can be proved using the Montel theorem [2].

We now follow Segal-Wilson [25, Prop. 5.22 and the preceding discussion]. First of all, we scale u_0 (i.e., replace u_0 by $\delta^2 u_0(\delta x)$ for sufficiently small $\delta > 0$) so as to make $\mathcal{M}(z)$ holomorphic in $|z| > 1 - \epsilon$ for some $\epsilon > 0$. Consider the closed subspace $W \subset L^2(\mathbf{K})$ which contains $1 = \hat{\psi}(0, z), \ \mathcal{M}(z) = \hat{\psi}'(0, z)$, and is invariant under multiplication by z^2 . Then $W \in \text{Gr}^{(2)}$ [25], and W is transverse by its very definition, i.e.,

contains no function whose Laurent expansion about z = 0 consists entirely of negative powers of z.

Next let $\phi_i(x, z^2)$ be the solutions of $L\phi = z^2\phi$ satisfying $D^j\phi_i(0, z^2) = \delta_{ij}(i, j = 1, 2)$. Then the ϕ_i are entire in z^2 for each $x \in \mathbf{R}$. Also, $\hat{\psi}(x, z)$ and $\phi_1(x, z)\hat{\psi}(0, z) + \phi_2(x, z)\hat{\psi}'(0, z)$ are both solutions of $L\phi = z^2\phi$ with the same initial conditions, hence are equal for all $x \in \mathbf{R}$. Since W is z^2 -invariant, it follows that $\hat{\psi}(x, z) \in W$ for all $x \in \mathbf{R}$. Moreover $\hat{\psi}(x, z) = e^{ixz}(1 + \text{lower order terms in } z)$ for each x. However, these two properties characterize the Baker function $\psi_W(x, z)$, at least if $\exp(-ixz) \cdot W$ is transverse; see the beginning of this section and [25, Prop. 5.1]. Let $u_W(x)$ be the potential in $\mathscr{C}^{(2)}$ defined by W. Then u_W is meromorphic in x [25, §5]. Thus $\exp(-ixz) \cdot W$ is transverse except for isolated points (the poles of u_W), and we conclude that $\hat{\psi}(x, z) = \psi_W(x, z)$ except perhaps at these poles. But since u_0 is locally integrable, there are no poles. Thus $u_0 = u_W \in LP$, which is what we wanted to prove. This completes the proof of Theorem 2.2.

We finish the section by using a simple limit procedure to construct potentials in LP. First consider a quasi-periodic potential u of algebro-geometric type [11, 18, 21]. Thus the spectrum Σ of $L = -d^2/dx^2 + u(x)$ (viewed as a self-adjoint operator on $L^2(-\infty, \infty)$) is a finite union of intervals: $\Sigma = [\lambda_0, \lambda_1] \cup [\lambda_2, \lambda_3] \cup \cdots \cup [\lambda_{2g}, \infty)$. Moreover one has

(5)
$$u(x) = \sum_{i=0}^{2g} \lambda_i - 2 \sum_{j=1}^{g} P_j(x),$$

where $P_j(x) \in [\lambda_{2j-1}, \lambda_{2j}]$ $(1 \le j \le g)$ and the motion of P_j is determined by

(6)
$$P'_{j} = \frac{\pm \sqrt{(\lambda - \lambda_{0})(\lambda - \lambda_{1}) \cdots (\lambda - \lambda_{2g})}}{\prod_{s \neq j} (P_{j} - P_{s})} \bigg|_{\lambda = P_{j}} \qquad (1 \le j \le g).$$

See [18, 21].

Let us now choose a sequence $\{u_n\}_{n=1}^{\infty}$ of such potentials in the following way. Let Σ_n be the spectrum of $L_n = -d^2/dx^2 + u_n(x)$ as a self-adjoint operator on $L^2(-\infty, \infty)$. We suppose that $-r^2 < \lambda_0^{(n)} < \lambda_{2g}^{(n)} = r^2$ for some r > 0 independent of n. Further we suppose that $\Sigma_{n+1} \subset \Sigma_n$, that $C = (-\infty, r^2) \cap \bigcap_{n=1}^{\infty} \Sigma_n$ is a Cantor set, and that $u_n(x)$ converges to a limit function $u_0(x)$, uniformly on compact subsets of **R**. It is clear from (5) and (6) that such a sequence can be found. Note that $|u_n(x)| \le 2r^2 (x \in \mathbf{R}, n = 0, 1, 2, ...)$.

It is easy to check that the spectrum Σ_0 of $L_0 = -d^2/dx^2 + u_0(x)$ equals $C \cup [r^2, \infty)$ (this uses the fact that Σ_n decreases with n). That is, Σ_0 has a "Cantor-like part".

It must be shown that $u_0 \in LP$. Let $m_{\pm}^{(n)}(\lambda)$ be the *m*-functions for L_n , and let $\mathcal{M}_n(z)$ be the function defined by (4) (n = 0, 1, 2, ...). It follows from [11] (see also [10]) that $\mathcal{M}_n(z)$ extends holomorphically to |z| > r $(n \ge 1)$. It can also be shown that there is a fixed interval $I \subset \mathbf{R}$ such that $\{m_{+}^{(n)}(\lambda) | \lambda \le -4r^2\} \cup \{m_{-}^{(n)}(\lambda) | \lambda \le -4r^2\}$ does not intersect I for larger n. This assertion follows from the convergence $u_n \to u_0$ and the bound $||u_n||_{\infty} \le 2r^2$ $(n \ge 0)$; we omit the proof.

We conclude that each $\mathcal{M}_n(z)$ omits the set *I* of values for |z| > 2r(n = 1, 2, ...). By the Montel theorem [2], $\{\mathcal{M}_n\}_{n=1}^{\infty}$ is a normal family of holomorphic functions on $\{z \mid |z| > 2r\}$. One checks that $m_{\pm}^{(n)}(\lambda) \rightarrow m_{\pm}^{(0)}(\lambda)$ if $\text{Im } \lambda \neq 0$. Hence $\tilde{\mathcal{M}}_0(z) = \lim_{n \to \infty} \mathcal{M}_n(z)$ is well-defined and equals $\mathcal{M}_0(z)$ for $z \in Q$, |z| > 2r. By Theorem 2.2, $u_0 \in \text{LP}$.

2.3. REMARKS (a). It seems unlikely that the above procedure will always produce an almost periodic u_0 . However, using the more detailed construction of Chulaevsky [4] one can obtain limit-periodic potentials which are in LP.

(b) Neither the construction above nor that of [4] make it clear that the resulting potential is meromorphic in the complex x-plane. This is a remarkable consequence of the Segal-Wilson theory.

3. The Floquet exponent. In this section we will describe a method for finding potentials in the class LP which generalizes the one given at the end of §2. We will use the Floquet exponent $w = w(\lambda)$ of $-d^2/dx^2 + u_0(x)$ [10, 15, 16]. This quantity is defined with respect to a "stationary ergodic process" of potentials, and not just with respect to a single u_0 . For our purposes, it is convenient to adopt the following definitions [17].

3.1. DEFINITIONS. Let $\Omega = L^2_{real}(\mathbf{R}, (1 + |x|^3)^{-1} dx)$ with the Borel field \mathscr{B} defined by the weak topology. Let $\{\tau_s | s \in \mathbf{R}\}$ be the shift operators defined by $(\tau_s u)(x) = u(s + x)$ $(u \in \Omega, s \in \mathbf{R})$. Let μ be a probability measure on (Ω, \mathscr{B}) such that μ restricted to each ball $\{u | ||u||_{\Omega} \leq R\}$ is Radon, and such that

(i) $\mu(\tau_x(A)) = \mu(A)$ for all $x \in \mathbf{R}, A \in \mathscr{B}$;

(ii)
$$\int_{\Omega} \left(\int_{0}^{1} |u(s)|^{2} ds \right) d\mu(u) < \infty$$

Then $(\Omega, \mathcal{B}, \mu)$ is a stationary stochastic process, and μ is invariant. If in addition:

(iii)
$$\mu(\tau_x(A)\Delta A) = 0$$
 for all $x \in \mathbf{R} \to \mu(A) = 0$ or 1

for each $A \in \mathscr{B}$, then $(\Omega, \mathscr{B}, \mu)$ is a stationary ergodic process, and μ is ergodic.

Kotani [17] shows that any $u \in \Omega$ is in the limit-point case at $x = \pm \infty$. Let $m_{\pm}(\lambda) \equiv m_{\pm}(u, \lambda)$ be the Weyl *m*-functions; they are holomorphic in λ for Im $\lambda \neq 0$, and jointly continuous in (u, λ) when Ω has the weak topology.

Let $(\Omega, \mathcal{B}, \mu)$ be a stationary stochastic process. Define

$$w(\lambda) = w_{\mu}(\lambda) = \int_{\Omega} m_{+}(u,\lambda) d\mu(u)$$

Since $u \to m_+(u, \lambda)$ is μ -integrable [17], this definition makes sense. One can show that $w(\lambda)$ is holomorphic in the upper half-plane $U = \{\lambda \in \mathbb{C} | \operatorname{Im} \lambda > 0\}$. Moreover $\operatorname{Im} w > 0$, $\operatorname{Re} w < 0$, and $\operatorname{Im} \frac{dw}{d\lambda} > 0$ for $\lambda \in U$. If μ is ergodic, then w has additional properties which justify the name "Floquet exponent". Especially, the boundary value

$$\hat{w}(\lambda) = \beta(\lambda) + i\alpha(\lambda) = \lim_{\varepsilon \to 0^+} w(\lambda + i\varepsilon) \qquad (\lambda \in \mathbf{R})$$

satisfies the following conditions. (i) The rotation number $\lambda \to \alpha(\lambda) = \lim_{x \to \infty} 1/x \arg(\phi'(x) + i\phi(x))$ is continuous, monotone increasing, and increases exactly on the spectrum Σ_u of $L_u = -d^2/dx^2 + u(x)$ for μ – a.a. u ([15]; see also [16]). (ii) The Lyapunov number $\beta(\lambda) = \lim_{x \to \infty} (1/2x) \ln[\phi^2(x) + {\phi'}^2(x)]$ determines the absolutely continuous spectrum Σ_u^{ac} of L_u for μ – a.e. u; in fact the essential support of Σ_u^{ac} is $\{\lambda \in \mathbf{R} | \beta(\lambda) = 0\}$ [16].

Kotani proves the following result [17].

3.2. THEOREM. Suppose $w = w(\lambda)$ is a holomorphic function on U such that $\operatorname{Im} w > 0$, $\operatorname{Re} w < 0$, and $\operatorname{Im} (dw/d\lambda) > 0$ for $\lambda \in U$. Suppose in addition that $\lim_{\lambda \to -\infty} w(\lambda)/\sqrt{-\lambda} = 1$, and that there exists $r^2 > 0$ such that $\beta(\lambda) < 0$ for $\lambda \leq 0$ and $\beta(\lambda) = 0$ for $\lambda \geq r^2$. Then there is a stationary stochastic process $(\Omega, \mathcal{B}, \mu)$ such that: (i) $w = w_{\mu}$; (ii) $\mu \{ u \in \Omega | \langle L_u \phi, \psi \rangle$ is non-negative definite as a bilinear form on $C^{\infty}_{\text{compact}}(\mathbf{R}) \} = 1$.

We will also use the following theorem of De Concini-Johnson [10]. Though their result is stated for a slightly different space Ω , the proof works in the case at hand.

3.3. THEOREM. Let $(\Omega, \mathcal{B}, \mu)$ be a stationary ergodic process such that Ω is (weakly) compact, and such that the topological support of μ equals Ω . Let $w = w_{\mu}$ be the corresponding Floquet exponent. (a) Suppose that $\beta(\lambda) = 0$ for a.a. λ in an open interval $I \subset \mathbf{R}$. Then for each $u \in \Omega$: the function $\lambda \to m_+(u, \lambda)$ extends holomorphically from U through I, and the extended function equals $m_-(u, \lambda)$ for $\operatorname{Im} \lambda < 0$. The same statement holds with + and - interchanged.

(b) Suppose the spectrum $\Sigma = \Sigma_u$ of L_u is a finite union of intervals for μ -a.a. $u \in \Omega$, and that $\beta(\lambda) = 0$ for a.a. $\lambda \in \Sigma$. Then each $u \in \Omega$ is an algebro-geometric potential (see §2).

We now turn to the main result of this section.

3.4. THEOREM. Let $w = w(\lambda)$ satisfy the conditions of Theorem 3.2. Then there is a stationary ergodic process $(\Omega, \mathcal{B}, \mu)$ which satisfies (i) and (ii) of 3.2 such that $u \in LP$ for μ -a.a. $u \in \Omega$.

Our proof of 3.4 repeats a good share of Kotani's proof of 3.2.

Proof. Following Kotani, we construct potentials u_k $(k \ge 1)$ with the following properties. (i) The function $u_k(x)$ is T_k -periodic and belongs to Ω (i.e., is in $L^2[0, T_k]$). (ii) The Floquet exponent w_k (defined by normalized Haar measure μ_k on the circle $C_k = \{\tau_s u_k | 0 \le s \le T_k\} \subset \Omega$) satisfies $\beta_k(\lambda) = \operatorname{Re} w_k(\lambda) = 0$ for $\lambda \ge r_k^2$, where $r_k \to r$ as $k \to \infty$. (iii) $\beta_k(\lambda) > 0$ for $\lambda \le 0$. (iv) $w_k(\lambda) \to w(\lambda)$, uniformly on compact subsets of U.

Condition (ii) implies that the spectrum Σ_k of $L_k = -d^2/dx^2 + u_k(x)$ contains $[r_k^2, \infty)$; also, (iii) implies that $\Sigma_k \subset (0, \infty)$, since u_k is periodic (see, e.g., Moser [19, Ch. 3]). Again by periodicity of u_i , Σ_k is a finite union of intervals, and $\beta_k(\lambda) = 0$ for all $\lambda \in \Sigma_k$. By Theorem 3.3, $u_k(x)$ is an algebro-geometric potential. Thus from (5) in §2,

$$u_{k}(x) = \sum_{i=0}^{2g_{k}} \lambda_{i}^{(k)} - 2 \sum_{j=1}^{g_{k}} P_{j}^{(k)}(x),$$

where

$$P_{j}^{(k)}(x) \in \left[\lambda_{2j-1}^{(k)}, \lambda_{2j}^{(k)}\right]$$
 and $0 < \lambda_{0}^{(k)} < \cdots < \lambda_{2g_{k}}^{(k)} \le r_{k}^{2}$.

We conclude that $|u_k(x)| \le 2r_k^2 < 2(r^2 + 1)$ for all large k.

The circles C_k are thus all contained in the weakly compact and translation-invariant subset $\Omega_1 = \operatorname{cls}\{u \mid ||u||_{\infty} \leq 2(r^2 + 1)\} \subset \Omega$. The measures μ_k define Radon measures on Ω_1 , hence there is a weak limit point μ of $\{\mu_k\}_{k=1}^{\infty}$. The topological support Ω_{μ} of μ is contained in Ω_1 . Since the translations $\{\tau_x \mid x \in \mathbf{R}\}$ are weakly continuous on Ω_1 , μ is invariant. Also $w = w_{\mu}$ by weak continuity of $u \to m_+(u, \lambda)$.

Next introduce an ergodic decomposition [22] { $\mu_{\gamma} | \gamma \in \Gamma$ } of μ . Thus Γ is a measure space with probability measure σ , each μ_{γ} is an ergodic measure on $\Omega_{\mu} \subset \Omega$, and for all continuous functions $h: \Omega \to \mathbf{R}$ one has

$$\int_{\Omega} h \, d\mu = \int_{\Gamma} \left(\int_{\Omega} h \, d\mu_{\gamma} \right) d\sigma(\gamma).$$

In particular, letting $w_{\gamma}(\lambda)$ be the Floquet exponent with respect to μ_{γ} , one has

(7)
$$w_{\mu}(\lambda) = \int_{\Gamma} w_{\gamma}(\lambda) \, d\sigma(\gamma) \qquad (\operatorname{Im} \lambda > 0).$$

Let $K \subset U$ be precompact in cls U (i.e., K is a bounded subset of U). Then there is a constant c_K depending only on K such that $|\text{Re } w_{\gamma}(\lambda)| \leq c_K$ for all $\gamma \in \Gamma$ and $\lambda \in K$. This follows from the description of $\beta_{\gamma}(\lambda)$ as a Lyapunov number, together with the estimates of [17, Lemma 2.8]. Let $R = r^2$, and let $n \geq 2$. By bounded convergence we have

$$0 = \int_{R}^{nR} \operatorname{Re} w_{\mu}(\lambda) \, d\lambda = \lim_{\varepsilon \to 0^{+}} \int_{R}^{nR} \operatorname{Re} w_{\mu}(\lambda + i\varepsilon) \, d\lambda$$
$$= \lim_{\varepsilon \to 0^{+}} \int_{R}^{nR} \int_{\Gamma} \operatorname{Re} w_{\gamma}(\lambda + i\varepsilon) \, d\sigma(\gamma) \, d\lambda$$
$$= \int_{\Gamma} \lim_{\varepsilon \to 0^{+}} \int_{R}^{nR} \operatorname{Re} w_{\gamma}(\lambda + i\varepsilon) \, d\lambda.$$

We conclude that, for σ -a.a. γ , $\beta_{\gamma}(\lambda) = \operatorname{Re} w_{\gamma}(\lambda) = 0$ for a.a. $\lambda \ge R = r^2$.

Now use Theorem 3.3(a): for each u in the support of μ_{γ} , $\lambda \rightarrow m_{\pm}(u,\lambda)$ extends holomorphically from the upper half-plane U through (r^2,∞) , and the extension equals $m_{\pm}(u,\lambda)$ in the lower half-plane.

Next consider $L_u = -d^2/dx^2 + u(x)$ with domain $\mathcal{D} = C_{\text{compact}}^{\infty}(\mathbf{R}) \subset L^2(\mathbf{R})$. Since L_u is in the limit-point case at $x = \pm \infty$, it has deficiency indices zero, hence has a unique self-adjoint extension (its closure), which moreover is associated to the non-negative bilinear form $\langle L_u \phi, \psi \rangle$ on \mathcal{D} [12]. Therefore this self-adjoint extension has no spectrum in $(-\infty, 0)$. One now proves in a standard way that $m_{\pm}(u, \lambda)$ are meromorphic on Re $\lambda < 0$, and that $m_{-}(u, \lambda) \neq m_{+}(u, \lambda)$ there. Since $m_{+}(u, \lambda)$ decreases and $m_{-}(u, \lambda)$ increases as $\lambda \downarrow -\infty$, we can find $r_1 \ge r$ such that $\mathcal{M}(z) = \mathcal{M}(u, z)$ has no poles on $|z| > r_1$, i.e., is holomorphic there. By Theorem 2.2, $u \in \text{LP}$. Note that $\mathcal{M}(z) = iz + \cdots$ for large |z|; therefore $\mathcal{M}(z)$ is holomorphic for Re $z^2 = \text{Re } \lambda < 0$. Hence $\mathcal{M}(z)$ is holomorphic on |z| > r.

Finally, let $u \in \Omega_{\mu}$. We can find u_n in Ω_{μ} such that $u_n \to u$ weakly and such that each u_n is in the support of some μ_{γ} . The *m*-functions $m_{\pm}(u_n, \lambda)$ are meromorphic on $\operatorname{Re} \lambda < 0$, and $m_{+}(u_n, \lambda) < m_{-}(u_n, \lambda)$ for negative real λ . Furthermore $m_{+}(u_n, \lambda)$ decreases and $m_{-}(u_n, \lambda)$ increases as $\lambda \downarrow -\infty$. Choosing a subsequence if necessary, we can assume that $m_{\pm}(u_n, -r^2)$ are convergent sequences in $\mathbf{R} \cup \{\infty\}$. Then for large $n, \{m_{+}(u_n, \lambda) | \operatorname{Re} \lambda < -r^2\}$ and $\{m_{-}(u_n, \lambda) | \operatorname{Re} \lambda < -r^2\}$ omit intervals I_{\pm} of real values. Using the Montel theorem once again, we see that $\{m_{+}(u_n, \cdot) | n \ge 1\}$ and $\{m_{-}(u_n, \cdot) | n \ge 1\}$ are normal families of meromorphic functions for $\operatorname{Re} \lambda < -r^2$. Using the weak continuity in u of $m_{\pm}(u, \lambda)$ for $\operatorname{Im} \lambda \neq 0$, we conclude easily that $\mathcal{M}(u_n, z) \to \mathcal{M}(u, z)$ for |z| > r, and that $\mathcal{M}(z) = iz + \cdots$. Thus $\mathcal{M}(z)$ is holomorphic on |z| > r, and so $u \in \operatorname{LP}$ by Theorem 2.2.

3.5. REMARKS (a). We have actually shown that $u \in LP$ for all u in the topological support Ω_u of Ω .

(b) One can replace the assumption $\operatorname{Re} w(\lambda) < 0$ for $\lambda \leq 0$ by $\operatorname{Re} w(\lambda) < 0$ for $\operatorname{Re} \lambda \leq c$, for any constant $c < r^2$.

(c) Let $(\Omega, \mathscr{B}, \mu)$ be a stationary ergodic process such that the topological support Ω_{μ} of μ is compact. Suppose further that there is a fixed constant r such that: (i) the operators L_u satisfy $\langle L_u \phi, \phi \rangle \geq -r^2 \langle \phi, \phi \rangle$ for all smooth ϕ with compact support; (ii) Re $w(\lambda) = 0$ for $\lambda \geq r^2$. Then from the proof of 3.4 one sees that $u \in LP$ for each $u \in \Omega_{\mu}$.

(d) The point of 3.2 is that the function $w(\lambda)$ is quite general. One can, for example, choose $w(\lambda)$ so that $\lim_{\epsilon \to 0^+} \operatorname{Re} w(\lambda) = \beta(\lambda) < 0$ for all $\lambda < r^2$. Then either Ω contains only the constant function $u(x) \equiv r^2$, or μ -a.a. $u \in \Omega$ have spectrum in $(-\infty, r^2)$ ([16]; also [10]). Only the latter possibility is of interest. It indicates (but does not prove) that there exist $u \in \operatorname{LP}$ with at least some point spectrum.

References

- [1] F. Calogero, and A. Degasperis, *Spectral Transform and Solitons* I, North-Holland, Amsterdam, 1982.
- [2] C. Caratheodory, *Funktionentheorie* II, zweite Auflage, Birkhäuser Verlag, Basel und Stuttgart, 1961.
- [3] E. Coddington, and N. Levinson, Theory of Ordinary Differential Equations, Mc-Graw-Hill, New York, 1955.
- [4] V. Chulaevsky, Inverse Spectral Problem for Limit-Periodic Schrödinger Operators, Functional Anal. Appl., 18 (1984), 230–233.
- [5] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, The τ-function of the Kadomtsev-Petviashvili equation, Proc. Japan Acad., 57A (1981), 342-347.
- [6] E. Date, et al., Vertex operators and τ -functions, Proc. Japan Acad., 57A (1981), 387-392.
- [7] ____, Operator approach to the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan, 50 (1981), 3806-3812.

- [8] _____, Transformation groups for Soliton equations, Publ. Res. Inst. Math. Sci., Kyoto, 18 (1982), 1077–1110.
- [9] _____, Transformation groups for Soliton equations, Proc. Res. Inst. Math. Sci., Symposium on Non-Linear Integrable Systems, May 1981, pp. 39–119.
- [10] C. De Concini, and R. Johnson, *The algebraic-geometric AKNS potentials*, J. Ergodic Theory and Dyn. Sys., 7 (1987), 1–24.
- [11] V. Dubrovin, S. Novikov, and V. Matveev, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russian Math. Surveys, 31 (1976), 59-146.
- [12] N. Dunford, and J. Schwarz, *Linear Operators*, Vol. II, Interscience, New York, London, 1963.
- [13] R. Giachetti, and R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math. Pures Appl., 65 (1986), 93-117.
- [14] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1969.
- [15] R. Johnson, and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403–438.
- [16] S. Kotani, Lyapounov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators, Taniguchi Symp. SA, Katata, (1982), 225-247.
- [17] _____, On an Inverse Problem for Random Schrödinger Operators, to appear in Springer Conference Proceedings, 1985.
- [18] H. McKean, and P. Van Moerbeke, The spectrum of Hills' equation, Invent. Math., 30 (1975), 217–274.
- [19] J. Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Pisa, 1981.
- [20] M. Naimark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960.
- [21] S. Novikov, The Periodic Korteweg-de Vries Problem, Functional Anal. Appl, 8 (1974), 54-66.
- [22] R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Studies, American Book Co., New York, 1966.
- [23] M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds, Publ. Res. Inst. Math. Sci., Kokyuroku, 439 (1981), 30.
- [24] M. Sato, and Y. Sato, On Hirota's Bilinear Equations I, II, Publ. Res. Inst. Math. Sci., Kokyuroku, 388 (1980), 183; 414 (1981), 181.
- [25] G. Segal, and G. Wilson, Loop groups and equations of KdV type, Publ. IHES, 61 (1985), 5-65.
- [26] H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Annalen, 68 (1910), 220-269.

Received January 26, 1987.

Sonderforschungsbereich 123 Universität Heidelberg D-6900 Heidelberg, BRD

AND

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA 90089-1113