ON THE SATO-SEGAL-WILSON SOLUTIONS OF THE K-dV EQUATION

Russell A. Johnson

Abstract

We discuss the class of solutions of the K-dV equation found by Sato, Segal, and Wilson. We relate this class of solutions to properties of the Weyl m-functions, and of the Floquet exponent for the random Schrödinger equation.

1. Introduction. In a series of recent papers, Date, Jimbo, Kashiwara, and Miwa $[\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}]$ have developed ideas of M. and Y. Sato [23,24] for finding solutions of the Kadomtsev-Petviashvili (K-P) hierarchy. The solutions of the K-P hierarchy discussed in these papers are expressed in terms of the so-called τ-function, which can be viewed as a generalization of the Riemann Θ-function.

Even more recently, Segal and Wilson [25] have given a careful formulation of the work of the Kyoto group. A consequence of their analysis is the following. Recall that one equation of the K-P hierarchy is the Korteweg-de Vries (K-dV) equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=6 u \frac{\partial u}{\partial x}-\frac{\partial^{3} u}{\partial x^{3}}, \quad u(0, x)=u_{0}(x), \tag{1}
\end{equation*}
$$

viewed as an evolution equation with initial data $u_{0}(x)$. Segal and Wilson produce a class $\mathscr{C}^{(2)}$ of initial conditions (or "potentials") $u_{0}(x)$ for which (1) admits a solution $u(t, x)$ which is meromorphic in t and x. The class $\mathscr{C}^{(2)}$ contains the solitons (see, e.g., [1]) and the algebro-geometric potentials [11, 18,21]. We will call the elements of $\mathscr{C}{ }^{(2)}$ Sato-Segal-Wilson potentials.

The purpose of the present note is to describe in some detail a subclass LP (for "limit-point"; see below) of the class $\mathscr{C}{ }^{(2)}$. Namely, consider the Schrödinger equation

$$
\begin{equation*}
L \phi=\left(\frac{-d^{2}}{d x^{2}}+u_{0}(x)\right) \phi=\lambda \phi \tag{2}
\end{equation*}
$$

with potential $u_{0}(x)$. Define LP $\subset \mathscr{C}^{(2)}$ to be the set of Sato-SegalWilson potentials which are real and finite for all real x, and for which L is in the limit-point case $x= \pm \infty$ ([26]; [3, Ch. 9]). Let $m_{+}(\lambda)$ be the
corresponding Weyl m-functions; they are defined and holomorphic for $\operatorname{Im} \lambda \neq 0$. Define

$$
\mathscr{M}(z)= \begin{cases}m_{+}\left(z^{2}\right), & \operatorname{Im} z>0, \operatorname{Re} z \neq 0 \\ m_{-}\left(z^{2}\right), & \operatorname{Im} z<0, \operatorname{Re} z \neq 0\end{cases}
$$

We show that, if u_{0} is in LP, then there exists $r>0$ such that \mathscr{M} extends to a holomorphic function on $|z|>r$ with a simple pole at $z=\infty$. Conversely, if $u_{0}(x)$ is a locally-integrable, real function of $x \in \mathbf{R}$ such that $L=-d^{2} / d x^{2}+u_{0}(x)$ is in the limit-point case at $x= \pm \infty$, and if $m_{ \pm}(\lambda)$ form branches of a function $\mathscr{M}(z)\left(z^{2}=\lambda\right)$ which is holomorphic for $|z|>r$, then $u_{0} \in$ LP.

We use this observation to find $u_{0} \in L P$ for which the spectrum Σ of L has a Cantor-like part, i.e. $\Sigma \cap\left(-\infty, r^{2}\right)$ is a Cantor set for some $r \in \mathbf{R}$. We then show how to "explicitly" construct a large subclass of LP. To do so, we use the Floquet exponent $w=w(\lambda)(\operatorname{Im} \lambda \geq 0)$ introduced by Johnson-Moser [15] and studied by Kotani [16, 17], De Concini-Johnson [10], Giachetti-Johnson [13], and others. The construction goes as follows. Let $h(\lambda)$ be a function holomorphic in the upper half-plane $U=\{\lambda \mid \operatorname{Im} \lambda>0\}$ with positive imaginary part and with certain additional properties; in particular it is supposed that the boundary value $\hat{h}(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}} \hat{h}(\lambda+i \varepsilon)(\lambda \in \mathbf{R})$ satisfies $\operatorname{Re} \hat{h}(\lambda)=0$ for large real λ. In [17], Kotani shows how to find a stationary stochastic process (Ω, \mathscr{B}, μ) which (with slight abuse of terminology; see §3) has Floquet exponent $w(\lambda)=h(\lambda)$. By Kotani's construction, Ω is a subset of a certain Hilbert space of potentials u_{0}. It turns out that μ-a.a. potentials are in LP.

Our results may be summarized as follows. On the one hand, potentials in the class $\mathrm{LP} \subset \mathscr{C}^{(2)}$ are quite special: the restriction on the behavior of the m-functions is very strong. On the other hand, it will be clear from §3 that LP contains much more than the solitons and the algebro-geometric potentials.
2. The m-functions. We begin with a brief outline of the Segal-Wilson construction of the class $\mathscr{C}^{(2)}$. The formulas below differ slightly from those of [25], because we use $L=-d^{2} / d x^{2}+u_{0}(x)$ instead of $L=$ $+d^{2} / d x^{2}+u_{0}(x)$.

Let \mathbf{K} be the unit circle, and let $H_{+} \subset L^{2}(\mathbf{K})$ be the set of boundary values in $L^{2}(\mathbf{K})$ of holomorphic functions on the unit disc $\{z||z|<1\}$. Thus $H_{+}=\mathrm{cls} \operatorname{span}\left\{1, z, z^{2}, \ldots\right\}$. One considers subspaces $W \subset L^{2}(\mathbf{K})$ which are comparable with H_{+}in the sense that: (i) the orthogonal projection $\operatorname{pr}=\operatorname{pr}(W): W \rightarrow H_{+}$is Fredholm of index zero; (ii) the
orthogonal projection from W onto $H_{-}=\left(H_{+}\right)^{\perp}=\operatorname{cls} \operatorname{span}\left\{z^{-1}, z^{-2}, \ldots\right\}$ is compact. The group Γ_{+}of exponential power series

$$
\exp \left(x z+t_{2} z^{2}+t_{3} z^{3}+\cdots\right) \quad\left(x, t_{i} \in \mathbf{C}\right)
$$

acts on the Grassmannian Gr of all such subspaces W by pointwise multiplication of functions. One constructs a determinant bundle Det over Gr, which in turn can be used to define the determinant of $\operatorname{pr}(W)$ when $W \in \mathrm{Gr}$. The τ-function τ_{W} of W is now defined as follows:

$$
\tau_{W}\left(x, t_{2}, t_{3}, \ldots\right)=\operatorname{det} \operatorname{pr}(W) / \operatorname{det} \operatorname{pr}\left[\exp \left(-x z-t_{2} z^{2}-\cdots\right) \cdot W\right]
$$

Then τ_{W} is meromorphic in all variables. Moreover if $\operatorname{det} \operatorname{pr}(W) \neq 0$, then $\tau_{W}\left(x, t_{2}, t_{3}, \ldots\right)=\infty$ exactly when $\operatorname{det} \operatorname{pr}\left[\exp \left(-x z-t_{2} z^{2}-\cdots\right) \cdot W\right]=$ 0 , and this occurs exactly when $\exp \left(-x z-t_{2} z^{2}-\cdots\right) \cdot W$ intersects H_{-} nontrivially.

One says that a subspace $W \in \mathrm{Gr}$ is transverse if $W \cap H_{-}=\{0\}$; thus W is transverse iff $\operatorname{det} \operatorname{pr}(W) \neq 0$. The poles of τ_{W} are in 1-1 correspondence with non-transverse subspaces $\exp \left(-x z-t_{2} z^{2}-\cdots\right) \cdot W$ if W itself is transverse.

Let us now restrict attention to the subset $\mathrm{Gr}^{(2)}$ of Gr consisting of subspaces $W \subset L^{2}(\mathbf{K})$ which are invariant under $z^{2}: z^{2} W \subset W$. The subset $\left\{\exp \sum_{i=1}^{\infty} t_{2,} z^{2 l}\right\}$ of Γ_{+}leaves such a W fixed. Let $\tau_{W}\left(x, t_{3}, t_{5}, \ldots\right)$ be the corresponding τ-function. Define

$$
u_{W}(x, t)=-2 \frac{d^{2}}{d x^{2}} \log \tau_{W}(i x,-i t, 0,0, \ldots)
$$

i.e., $t_{3}=i t$ and all other t_{i} s equal zero. Then $u_{W}(x, t)$ is the solution to the K-dV equation (2) with initial condition $u_{0}(x)=u_{W}(x, 0)$.

An important intermediate step in showing that $u_{W}(x, t)$ solves the $\mathrm{K}-\mathrm{dV}$ equation is the construction of the Baker function $\psi_{w}(x, z)$. For our purposes, the following description of ψ_{W} will suffice; a more general discussion is given in [25, §5].

Let $W \in \mathrm{Gr}^{(2)}$ be a transverse space, and suppose that (exp-ixz) $\cdot W$ is transverse for all real x. Then there is a unique function

$$
\psi_{W}(x, z)=e^{i x z}\left(1+\sum_{i=1}^{\infty} a_{i}(x) z^{-i}\right)
$$

in the space W; in fact $\exp (-i x z) \psi_{W}(x, z)$ is the inverse image of 1 under the orthogonal projection of $\exp (-i x z) \cdot W$ onto H_{+}. The series in parentheses converges for $|z|>1$. Moreover

$$
\left(\frac{-d^{2}}{d x^{2}}+u_{0}(x)\right) \psi_{W}(x, z)=z^{2} \psi_{W}(x, z) \quad(x \in \mathbf{R},|z|>1)
$$

where $u_{0}(x)=-2\left(d^{2} / d x^{2}\right) \log \tau_{W}(i x, 0,0, \ldots)$. One calls $\psi_{W}(x, z)$ the Baker function of W, or of $u_{0}(x)$.

Note that any differential operator $L=\left(-d^{2} / d x^{2}\right)+u_{0}(x)$ with C^{∞} potential $u_{0}(x)$ gives rise to a formal Baker function

$$
\begin{equation*}
\tilde{\psi}(x, z)=e^{i x z}\left(1+\sum_{i=1}^{\infty} \tilde{a}_{i}(x) z^{-l}\right) \tag{3}
\end{equation*}
$$

which formally satisfies (i) $L \tilde{\psi}=z^{2} \tilde{\psi}$, and (ii) $\tilde{\psi}(0, z)=1$. In fact, the coefficients $\tilde{a}_{i}(x)$ are C^{∞} functions which are determined recursively by $a_{0} \equiv 1, a_{i+1}^{\prime}=(-i / 2) L a_{i}, a_{i}(0)=0(i \geq 1)$. The quantity $e^{-l x z} \tilde{\psi}(x, z)$ is the only element of the ring \mathscr{L} of formal Laurent series $s(x, z)=$ $\sum_{i=1}^{\infty} b_{l}(x) z^{-i}$ with C^{∞} coefficients $b_{i}(x)$ such that $e^{i x z} s(x, z)$ satisfies (i) and (ii).

Define $\mathscr{C}^{(2)}$ to be the class of (real or complex) potentials $u_{0}(x)$ such that, for some complex $\lambda \neq 0$, there exists $W \in \mathrm{Gr}^{(2)}$ such that $\lambda^{2} u_{0}(\lambda x)$ $=-2\left(d^{2} / d x^{2}\right) \log \tau_{W}(x, 0,0, \ldots)$. Thus $\mathscr{C}^{(2)}$ contains those potentials obtained directly from $W \in \mathrm{Gr}^{(2)}$ by differentiating $\log \tau_{W}$, and also scalings of those potentials. Every $u_{0} \in \mathscr{C}^{(2)}$ is a meromorphic function of $x[25, \S 5]$.
2.1. Definition. Let $L P \subset \mathscr{C}^{(2)}$ be the set of Sato-Segal-Wilson potentials u_{0} which satisfy the following additional properties: (i) $u_{0}(x)$ is real and finite (i.e., no poles) for all real x; (ii) $L=-d^{2} / d x^{2}+u_{0}(x)$ is in the limit-point case at $x= \pm \infty$.

Fix $u_{0} \in L P$, and let $m_{ \pm}(\lambda)$ be the corresponding Weyl m-functions. Thus

$$
m_{ \pm}(\lambda)=\phi_{ \pm}^{\prime}(0) / \phi_{ \pm}(0) \quad(\operatorname{Im} \lambda \neq 0)
$$

where $\phi_{ \pm}$are non-zero solutions of $L \phi_{ \pm}=\lambda \phi_{ \pm}$which are in $L^{2}(0, \pm \infty)$. Since these solutions are unique up to constant multiple for $\operatorname{Im} \lambda \neq 0$, the m-functions are well-defined. They are holomorphic, and satisfy $\operatorname{sgn}\left[\operatorname{Im} m_{ \pm}(\lambda) \cdot \operatorname{Im} \lambda\right]= \pm 1$.

Note that, with $\phi_{ \pm}(x)$ as above, the quantities $m_{ \pm}(s, \lambda)=$ $\phi_{ \pm}^{\prime}(s) / \phi_{ \pm}(s)$ are the m-functions for the translated potential $x \rightarrow$ $u_{0}(x+s)(s \in \mathbf{R})$.

Define

$$
\hat{\psi}(x, z)= \begin{cases}\exp \int_{0}^{x} m_{+}\left(s, z^{2}\right) d s, & \operatorname{Im} z>0, \operatorname{Re} z \neq 0 \\ \exp \int_{0}^{x} m_{-}\left(s, z^{2}\right) d s, & \operatorname{Im} z<0, \operatorname{Re} z \neq 0\end{cases}
$$

Then $\hat{\psi}$ is defined for all real x and for all $z \in Q=\{z \in \mathbf{C} \mid \operatorname{Re} z \neq 0$, $\operatorname{Im} z \neq 0\}$. Clearly $L \hat{\psi}=z^{2} \hat{\psi}$ for all $z \in Q$, and $\hat{\psi}(0, z)=1, \hat{\psi}^{\prime}(0, z)=$ $m_{ \pm}\left(z^{2}\right)$ with the appropriate choices of sign.

It is well-known (e.g., [14, Ch. 10]) that $\left|m_{ \pm}(x, \lambda) \pm \sqrt{-\lambda}\right|=$ $O\left(|\lambda|^{-1 / 2}\right)$ as $|\lambda| \rightarrow \infty$ in closed subsectors of $\{\lambda \in \mathbf{C} \mid \operatorname{Im} \lambda \neq 0\}$. Moreover the estimate on the right is uniform (in closed subsectors) if x is restricted to a compact interval. It follows that $\hat{\psi}(x, z)=$ $e^{i x z}\left(1+O\left(|\lambda|^{-1 / 2}\right)\right)$ as $|z| \rightarrow \infty$ in each closed subsector of Q, if x is in a compact interval.

Now u_{0} is C^{∞}, so by, e.g. [20, pp. 37-48], $\hat{\psi}(x, z)$ has an asymptotic expansion

$$
\hat{\psi}(x, z) \sim e^{i x z}\left(1+\frac{\hat{a}_{1}(x)}{z}+\frac{\hat{a}_{2}(x)}{z^{2}}+\cdots\right)
$$

valid in Q. Moreover the $\hat{a}_{i}(x)$ are smooth functions which can be determined recursively by substituting $\hat{\psi}$ into $L \phi=z^{2} \phi$. Since $\hat{\psi}(0, z)=1$, we see that $\hat{a}_{i}(x)=\tilde{a}_{i}(x)$, where the \tilde{a}_{i} are the coefficients of the formal Baker function (see (3)).

Since $u_{0} \in \mathscr{C}^{(2)}$, there is a true Baker function

$$
\psi(x, z)=e^{i x z}\left(1+a_{1}(x) / z+\cdots\right)
$$

which converges for large $|z|$, and which satisfies $L \psi=z^{2} \psi$. Write

$$
\psi(x, z) / \psi(0, z)=e^{i x z}\left(1+b_{1}(x) z+\cdots\right)
$$

Using the uniqueness of $\tilde{\psi}$ in the ring \mathscr{L}, we see that $b_{i}(x)=\tilde{a}_{i}(x)=$ $\hat{a}_{i}(x)$ for all i and x. Thus in each sector of Q, the asymptotic series $1+\hat{a}_{1}(x) / z+\cdots$ coincides with a series which converges for, say, $|z|>r$. We conclude that $\hat{\psi}(x, z)=\psi(x, z) / \psi(0, z)$ for $|z|>r$.
2.2. Theorem. Let $u_{0}(x)$ be a real, locally-integrable function of $x \in \mathbf{R}$ such that $L=-d^{2} / d x^{2}+u_{0}(x)$ is in the limit-point case at $x= \pm \infty$. Then $u_{0} \in$ LP if and only if the Weyl m-functions $m_{ \pm}(\lambda)$ have the property that

$$
\mathscr{M}(z)= \begin{cases}m_{+}\left(z^{2}\right), & \operatorname{Im} z>0, \operatorname{Re} z \neq 0 \tag{4}\\ m_{-}\left(z^{2}\right), & \operatorname{Im} z<0, \operatorname{Re} z \neq 0\end{cases}
$$

extends holomorphically to the region $|z|>r$ for some $r>0$. If $\mathscr{M}(z)$ admits such an extension, then $\mathscr{M}(z)$ has a simple pole at $z=\infty$ with residue i.

Proof. We first complete the proof of the "only if" statement. If $z \in Q$, then $\mathscr{M}(z)=\hat{\psi}^{\prime}(0, z)$ by definition of $\hat{\psi}$. Since $\hat{\psi}(x, z)$ is holomorphic in $|z|>r$ and smooth in x (because $L \hat{\psi}=z^{2} \hat{\psi}$), we see that
$\mathscr{M}(z)$ is holomorphic for $|z|>r$. Simple division shows that $\mathscr{M}(z)=$ $i z+\cdots$ for large $|z|$.

Let us consider the "if" statement. Suppose that $\mathscr{M}(z)$ admits an extension as described. Let $m_{ \pm}(s, z)$ correspond to $u_{0}(s+x)$, and let $\mathscr{M}(s, z)$ be defined by (4) with $m_{ \pm}\left(s, z^{2}\right)$ in place of $m_{ \pm}\left(z^{2}\right)$. Then $\mathscr{M}(s, z)$ is holomorphic in $|z|>r_{1}$ for each $s \in \mathbf{R}$, and is jointly continuous in $s \in \mathbf{R}$ and $|z|>r_{1}$. Here $r_{1} \geq r$ is independent of s.

We prove the last statement. First recall that $\operatorname{sgn}\left[\operatorname{Im} m_{ \pm}(s, \lambda) \cdot \operatorname{Im} \lambda\right]$ $= \pm 1$ if $\operatorname{Im} \lambda \neq 0$. Note also that $\mathscr{M}(s, z)$ is meromorphic in $|z|>r$. These facts imply that $\mathscr{M}(s, z)$ takes values in $\mathbf{R} \cup\{\infty\}$ if and only if z is pure imaginary, i.e., if and only if $\lambda=z^{2} \leq-r^{2}$.

Next note that, for fixed $s, m_{-}(s, \lambda)$ increases and $m_{+}(s, \lambda)$ decreases as $\lambda \downarrow-\infty$ (unless λ is a pole, of course). Now, $\mathscr{M}(z)$ has no poles for $|z|>r$. Thus we can find $r_{1} \geq r$ such that, if $\lambda \leq-r_{1}^{2}$, then $m_{-}(0, \lambda)$ and $m_{+}(0, \lambda)$ are never equal. It follows that, if $s \in \mathbf{R}$ and $\lambda \leq-r_{1}^{2}$, then $m_{-}(s, \lambda)$ and $m_{+}(s, \lambda)$ are never equal. This implies that $\mathscr{M}(s, z)$ omits some interval of real values on $|z|>r_{1}$. By the Picard theorem [2], $\mathscr{M}(s, z)$ is meromorphic at $z=\infty$. By the preceding paragraph, $\mathscr{M}(s, z)$ has at most a simple pole at $z=\infty$, and by the relations $\mid m_{ \pm}(s, \lambda)$ $\pm \sqrt{-\lambda} \mid \rightarrow 0$ if $|\lambda| \rightarrow \infty$ with $\delta<|\arg \lambda|<\pi-\delta([14])$, we see that $\mathscr{M}(s, z)=i z+\cdots$. It follows from this and the first sentence of the present paragraph that $\mathscr{M}(s, z)$ is holomorphic for $|z|>r_{1}$. The continuity statement is clear.

Define

$$
\hat{\psi}(x, z)=\exp \int_{0}^{x} \mathscr{M}(s, z) d s \quad\left(|z|>r_{1}\right)
$$

We can write

$$
\hat{\psi}(x, z)=e^{i x z}\left(1+\frac{\hat{a}_{1}(x)}{z}+\frac{\hat{a}_{2}(x)}{z^{2}}+\cdots\right) \quad(x \in \mathbf{R})
$$

where the series converges for $|z|>r_{1}$ and the coefficients are continuously differentiable for x. In fact they are obtained by integrating the coefficients of $\mathscr{M}(s, z)$ and combining powers of $1 / z$ in the exponential; this can be proved using the Montel theorem [2].

We now follow Segal-Wilson [25, Prop. 5.22 and the preceding discussion]. First of all, we scale u_{0} (i.e., replace u_{0} by $\delta^{2} u_{0}(\delta x)$ for sufficiently small $\delta>0$) so as to make $\mathscr{M}(z)$ holomorphic in $|z|>1-\varepsilon$ for some $\varepsilon>0$. Consider the closed subspace $W \subset L^{2}(\mathbf{K})$ which contains $1=\hat{\psi}(0, z), \mathscr{M}(z)=\hat{\psi}^{\prime}(0, z)$, and is invariant under multiplication by z^{2}. Then $W \in \operatorname{Gr}^{(2)}$ [25], and W is transverse by its very definition, i.e.,
contains no function whose Laurent expansion about $z=0$ consists entirely of negative powers of z.

Next let $\phi_{i}\left(x, z^{2}\right)$ be the solutions of $L \phi=z^{2} \phi$ satisfying $D^{j} \phi_{i}\left(0, z^{2}\right)$ $=\delta_{i j}(i, j=1,2)$. Then the ϕ_{i} are entire in z^{2} for each $x \in \mathbf{R}$. Also, $\hat{\psi}(x, z)$ and $\phi_{1}(x, z) \hat{\psi}(0, z)+\phi_{2}(x, z) \hat{\psi}^{\prime}(0, z)$ are both solutions of $L \phi=$ $z^{2} \phi$ with the same initial conditions, hence are equal for all $x \in \mathbf{R}$. Since W is z^{2}-invariant, it follows that $\hat{\psi}(x, z) \in W$ for all $x \in \mathbf{R}$. Moreover $\hat{\psi}(x, z)=e^{i x z}(1+$ lower order terms in $z)$ for each x. However, these two properties characterize the Baker function $\psi_{W}(x, z)$, at least if $\exp (-i x z)$ W is transverse; see the beginning of this section and [25, Prop. 5.1]. Let $u_{W}(x)$ be the potential in $\mathscr{C}^{(2)}$ defined by W. Then u_{W} is meromorphic in x [25, §5]. Thus $\exp (-i x z) \cdot W$ is transverse except for isolated points (the poles of u_{W}), and we conclude that $\hat{\psi}(x, z)=\psi_{W}(x, z)$ except perhaps at these poles. But since u_{0} is locally integrable, there are no poles. Thus $u_{0}=u_{W} \in \mathrm{LP}$, which is what we wanted to prove. This completes the proof of Theorem 2.2.

We finish the section by using a simple limit procedure to construct potentials in LP. First consider a quasi-periodic potential u of algebro-geometric type [11, 18, 21]. Thus the spectrum Σ of $L=-d^{2} / d x^{2}+u(x)$ (viewed as a self-adjoint operator on $L^{2}(-\infty, \infty)$) is a finite union of intervals: $\Sigma=\left[\lambda_{0}, \lambda_{1}\right] \cup\left[\lambda_{2}, \lambda_{3}\right] \cup \cdots \cup\left[\lambda_{2 g}, \infty\right)$. Moreover one has

$$
\begin{equation*}
u(x)=\sum_{i=0}^{2 g} \lambda_{i}-2 \sum_{j=1}^{g} P_{j}(x) \tag{5}
\end{equation*}
$$

where $P_{j}(x) \in\left[\lambda_{2 j-1}, \lambda_{2 j}\right](1 \leq j \leq g)$ and the motion of P_{j} is determined by

$$
\begin{equation*}
P_{j}^{\prime}=\left.\frac{ \pm \sqrt{\left(\lambda-\lambda_{0}\right)\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{2 g}\right)}}{\prod_{s \neq j}\left(P_{j}-P_{s}\right)}\right|_{\lambda=P_{j}} \quad(1 \leq j \leq g) \tag{6}
\end{equation*}
$$

See [18, 21].
Let us now choose a sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ of such potentials in the following way. Let Σ_{n} be the spectrum of $L_{n}=-d^{2} / d x^{2}+u_{n}(x)$ as a self-adjoint operator on $L^{2}(-\infty, \infty)$. We suppose that $-r^{2}<\lambda_{0}^{(n)}<\lambda_{2 g}^{(n)}=$ r^{2} for some $r>0$ independent of n. Further we suppose that $\Sigma_{n+1} \subset \Sigma_{n}$, that $C=\left(-\infty, r^{2}\right) \cap \bigcap_{n=1}^{\infty} \Sigma_{n}$ is a Cantor set, and that $u_{n}(x)$ converges to a limit function $u_{0}(x)$, uniformly on compact subsets of \mathbf{R}. It is clear from (5) and (6) that such a sequence can be found. Note that $\left|u_{n}(x)\right| \leq$ $2 r^{2}(x \in \mathbf{R}, n=0,1,2, \ldots)$.

It is easy to check that the spectrum Σ_{0} of $L_{0}=-d^{2} / d x^{2}+u_{0}(x)$ equals $C \cup\left[r^{2}, \infty\right)$ (this uses the fact that Σ_{n} decreases with n). That is, Σ_{0} has a "Cantor-like part".

It must be shown that $u_{0} \in$ LP. Let $m_{ \pm}^{(n)}(\lambda)$ be the m-functions for L_{n}, and let $\mathscr{M}_{n}(z)$ be the function defined by (4) $(n=0,1,2, \ldots)$. It follows from [11] (see also [10]) that $\mathscr{M}_{n}(z)$ extends holomorphically to $|z|>r(n \geq 1)$. It can also be shown that there is a fixed interval $I \subset \mathbf{R}$ such that $\left\{m_{+}^{(n)}(\lambda) \mid \lambda \leq-4 r^{2}\right\} \cup\left\{m_{-}^{(n)}(\lambda) \mid \lambda \leq-4 r^{2}\right\}$ does not intersect I for larger n. This assertion follows from the convergence $u_{n} \rightarrow u_{0}$ and the bound $\left\|u_{n}\right\|_{\infty} \leq 2 r^{2}(n \geq 0)$; we omit the proof.

We conclude that each $\mathscr{M}_{n}(z)$ omits the set I of values for $|z|>2 r$ $(n=1,2, \ldots)$. By the Montel theorem [2], $\left\{\mathscr{M}_{n}\right\}_{n=1}^{\infty}$ is a normal family of holomorphic functions on $\left\{z||z|>2 r\}\right.$. One checks that $m_{ \pm}^{(n)}(\lambda) \rightarrow$ $m_{ \pm}^{(0)}(\lambda)$ if $\operatorname{Im} \lambda \neq 0$. Hence $\tilde{\mathscr{M}}_{0}(z)=\lim _{n \rightarrow \infty} \mathscr{M}_{n}(z)$ is well-defined and equals $\mathscr{M}_{0}(z)$ for $z \in Q,|z|>2 r$. By Theorem 2.2, $u_{0} \in$ LP.
2.3. Remarks (a). It seems unlikely that the above procedure will always produce an almost periodic u_{0}. However, using the more detailed construction of Chulaevsky [4] one can obtain limit-periodic potentials which are in LP.
(b) Neither the construction above nor that of [4] make it clear that the resulting potential is meromorphic in the complex x-plane. This is a remarkable consequence of the Segal-Wilson theory.
3. The Floquet exponent. In this section we will describe a method for finding potentials in the class LP which generalizes the one given at the end of $\S 2$. We will use the Floquet exponent $w=w(\lambda)$ of $-d^{2} / d x^{2}+$ $u_{0}(x)[10,15,16]$. This quantity is defined with respect to a "stationary ergodic process" of potentials, and not just with respect to a single u_{0}. For our purposes, it is convenient to adopt the following definitions [17].
3.1. Definitions. Let $\Omega=L_{\text {real }}^{2}\left(\mathbf{R},\left(1+|x|^{3}\right)^{-1} d x\right)$ with the Borel field \mathscr{B} defined by the weak topology. Let $\left\{\tau_{s} \mid s \in \mathbf{R}\right\}$ be the shift operators defined by $\left(\tau_{s} u\right)(x)=u(s+x) \quad(u \in \Omega, s \in \mathbf{R})$. Let μ be a probability measure on (Ω, \mathscr{B}) such that μ restricted to each ball $\left\{u \mid\|u\|_{\Omega}\right.$ $\leq R\}$ is Radon, and such that

$$
\begin{equation*}
\mu\left(\tau_{x}(A)\right)=\mu(A) \quad \text { for all } x \in \mathbf{R}, A \in \mathscr{B} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega}\left(\int_{0}^{1}|u(s)|^{2} d s\right) d \mu(u)<\infty \tag{ii}
\end{equation*}
$$

Then $(\Omega, \mathscr{B}, \mu)$ is a stationary stochastic process, and μ is invariant. If in addition:

$$
\begin{equation*}
\mu\left(\tau_{x}(A) \Delta A\right)=0 \quad \text { for all } x \in \mathbf{R} \rightarrow \mu(A)=0 \text { or } 1 \tag{iii}
\end{equation*}
$$

for each $A \in \mathscr{B}$, then $(\Omega, \mathscr{B}, \mu)$ is a stationary ergodic process, and μ is ergodic.

Kotani [17] shows that any $u \in \Omega$ is in the limit-point case at $x= \pm \infty$. Let $m_{ \pm}(\lambda) \equiv m_{ \pm}(u, \lambda)$ be the Weyl m-functions; they are holomorphic in λ for $\operatorname{Im} \lambda \neq 0$, and jointly continuous in (u, λ) when Ω has the weak topology.

Let $(\Omega, \mathscr{B}, \mu)$ be a stationary stochastic process. Define

$$
w(\lambda)=w_{\mu}(\lambda)=\int_{\Omega} m_{+}(u, \lambda) d \mu(u)
$$

Since $u \rightarrow m_{+}(u, \lambda)$ is μ-integrable [17], this definition makes sense. One can show that $w(\lambda)$ is holomorphic in the upper half-plane $U=\{\lambda \in$ $\mathbf{C} \mid \operatorname{Im} \lambda>0\}$. Moreover $\operatorname{Im} w>0, \operatorname{Re} w<0$, and $\operatorname{Im} d w / d \lambda>0$ for $\lambda \in$ U. If μ is ergodic, then w has additional properties which justify the name "Floquet exponent". Especially, the boundary value

$$
\hat{w}(\lambda)=\beta(\lambda)+i \alpha(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}} w(\lambda+i \varepsilon) \quad(\lambda \in \mathbf{R})
$$

satisfies the following conditions. (i) The rotation number $\lambda \rightarrow \alpha(\lambda)=$ $\lim _{x \rightarrow \infty} 1 / x \arg \left(\phi^{\prime}(x)+i \phi(x)\right)$ is continuous, monotone increasing, and increases exactly on the spectrum Σ_{u} of $L_{u}=-d^{2} / d x^{2}+u(x)$ for μ - a.a. u ([15]; see also [16]). (ii) The Lyapunov number $\beta(\lambda)=$ $\lim _{x \rightarrow \infty}(1 / 2 x) \ln \left[\phi^{2}(x)+\phi^{\prime 2}(x)\right]$ determines the absolutely continuous spectrum $\sum_{u}^{a c}$ of L_{u} for μ - a.e. u; in fact the essential support of $\sum_{u}^{a c}$ is $\{\lambda \in \mathbf{R} \mid \beta(\lambda)=0\}[16]$.

Kotani proves the following result [17].
3.2. Theorem. Suppose $w=w(\lambda)$ is a holomorphic function on U such that $\operatorname{Im} w>0, \operatorname{Re} w<0$, and $\operatorname{Im}(d w / d \lambda)>0$ for $\lambda \in U$. Suppose in addition that $\lim _{\lambda \rightarrow-\infty} w(\lambda) / \sqrt{-\lambda}=1$, and that there exists $r^{2}>0$ such that $\beta(\lambda)<0$ for $\lambda \leq 0$ and $\beta(\lambda)=0$ for $\lambda \geq r^{2}$. Then there is a stationary stochastic process $(\Omega, \mathscr{B}, \mu)$ such that: (i) $w=w_{\mu}$; (ii) $\mu\{u \in$ $\Omega \mid\left\langle L_{u} \phi, \psi\right\rangle$ is non-negative definite as a bilinear form on $\left.C_{\text {compact }}^{\infty}(\mathbf{R})\right\}=1$.

We will also use the following theorem of De Concini-Johnson [10]. Though their result is stated for a slightly different space Ω, the proof works in the case at hand.
3.3. Theorem. Let $(\Omega, \mathscr{B}, \mu)$ be a stationary ergodic process such that Ω is (weakly) compact, and such that the topological support of μ equals Ω. Let $w=w_{\mu}$ be the corresponding Floquet exponent.
(a) Suppose that $\beta(\lambda)=0$ for a.a. λ in an open interval $I \subset \mathbf{R}$. Then for each $u \in \Omega$: the function $\lambda \rightarrow m_{+}(u, \lambda)$ extends holomorphically from U through I, and the extended function equals $m_{-}(u, \lambda)$ for $\operatorname{Im} \lambda<0$. The same statement holds with + and - interchanged.
(b) Suppose the spectrum $\Sigma=\Sigma_{u}$ of L_{u} is a finite union of intervals for μ-a.a. $u \in \Omega$, and that $\beta(\lambda)=0$ for a.a. $\lambda \in \Sigma$. Then each $u \in \Omega$ is an algebro-geometric potential (see §2).

We now turn to the main result of this section.
3.4. Theorem. Let $w=w(\lambda)$ satisfy the conditions of Theorem 3.2. Then there is a stationary ergodic process $(\Omega, \mathscr{B}, \mu)$ which satisfies (i) and (ii) of 3.2 such that $u \in \operatorname{LP}$ for $\mu-a . a . u \in \Omega$.

Our proof of 3.4 repeats a good share of Kotani's proof of 3.2.
Proof. Following Kotani, we construct potentials $u_{k}(k \geq 1)$ with the following properties. (i) The function $u_{k}(x)$ is T_{k}-periodic and belongs to Ω (i.e., is in $L^{2}\left[0, T_{k}\right]$). (ii) The Floquet exponent w_{k} (defined by normalized Haar measure μ_{k} on the circle $\left.C_{k}=\left\{\tau_{s} u_{k} \mid 0 \leq s \leq T_{k}\right\} \subset \Omega\right)$ satisfies $\beta_{k}(\lambda)=\operatorname{Re} w_{k}(\lambda)=0$ for $\lambda \geq r_{k}^{2}$, where $r_{k} \rightarrow r$ as $k \rightarrow \infty$. (iii) $\beta_{k}(\lambda)>0$ for $\lambda \leq 0$. (iv) $w_{k}(\lambda) \rightarrow w(\lambda)$, uniformly on compact subsets of U.

Condition (ii) implies that the spectrum Σ_{k} of $L_{k}=-d^{2} / d x^{2}+u_{k}(x)$ contains $\left[r_{k}^{2}, \infty\right)$; also, (iii) implies that $\Sigma_{k} \subset(0, \infty)$, since u_{k} is periodic (see, e.g., Moser [19, Ch. 3]). Again by periodicity of u_{t}, Σ_{k} is a finite union of intervals, and $\beta_{k}(\lambda)=0$ for all $\lambda \in \Sigma_{k}$. By Theorem 3.3, $u_{k}(x)$ is an algebro-geometric potential. Thus from (5) in §2,

$$
u_{k}(x)=\sum_{i=0}^{2 g_{k}} \lambda_{t}^{(k)}-2 \sum_{j=1}^{g_{k}} P_{j}^{(k)}(x)
$$

where

$$
P_{J}^{(k)}(x) \in\left[\lambda_{2 j-1}^{(k)}, \lambda_{2 j}^{(k)}\right] \quad \text { and } \quad 0<\lambda_{0}^{(k)}<\cdots<\lambda_{2 g_{k}}^{(k)} \leq r_{k}^{2}
$$

We conclude that $\left|u_{k}(x)\right| \leq 2 r_{k}^{2}<2\left(r^{2}+1\right)$ for all large k.
The circles C_{k} are thus all contained in the weakly compact and translation-invariant subset $\Omega_{1}=\operatorname{cls}\left\{u \mid\|u\|_{\infty} \leq 2\left(r^{2}+1\right)\right\} \subset \Omega$. The measures μ_{k} define Radon measures on Ω_{1}, hence there is a weak limit point μ of $\left\{\mu_{k}\right\}_{k=1}^{\infty}$. The topological support Ω_{μ} of μ is contained in Ω_{1}. Since the translations $\left\{\tau_{x} \mid x \in \mathbf{R}\right\}$ are weakly continuous on Ω_{1}, μ is invariant. Also $w=w_{\mu}$ by weak continuity of $u \rightarrow m_{+}(u, \lambda)$.

Next introduce an ergodic decomposition [22] $\left\{\mu_{\gamma} \mid \gamma \in \Gamma\right\}$ of μ. Thus Γ is a measure space with probability measure σ, each μ_{γ} is an ergodic measure on $\Omega_{\mu} \subset \Omega$, and for all continuous functions $h: \Omega \rightarrow \mathbf{R}$ one has

$$
\int_{\Omega} h d \mu=\int_{\Gamma}\left(\int_{\Omega} h d \mu_{\gamma}\right) d \sigma(\gamma)
$$

In particular, letting $w_{\gamma}(\lambda)$ be the Floquet exponent with respect to μ_{γ}, one has

$$
\begin{equation*}
w_{\mu}(\lambda)=\int_{\Gamma} w_{\gamma}(\lambda) d \sigma(\gamma) \quad(\operatorname{Im} \lambda>0) \tag{7}
\end{equation*}
$$

Let $K \subset U$ be precompact in cls U (i.e., K is a bounded subset of U). Then there is a constant c_{K} depending only on K such that $\left|\operatorname{Re} w_{\gamma}(\lambda)\right| \leq c_{K}$ for all $\gamma \in \Gamma$ and $\lambda \in K$. This follows from the description of $\beta_{\gamma}(\lambda)$ as a Lyapunov number, together with the estimates of [17, Lemma 2.8]. Let $R=r^{2}$, and let $n \geq 2$. By bounded convergence we have

$$
\begin{aligned}
0 & =\int_{R}^{n R} \operatorname{Re} w_{\mu}(\lambda) d \lambda=\lim _{\varepsilon \rightarrow 0^{+}} \int_{R}^{n R} \operatorname{Re} w_{\mu}(\lambda+i \varepsilon) d \lambda \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{R}^{n R} \int_{\Gamma} \operatorname{Re} w_{\gamma}(\lambda+i \varepsilon) d \sigma(\gamma) d \lambda \\
& =\int_{\Gamma} \lim _{\varepsilon \rightarrow 0^{+}} \int_{R}^{n R} \operatorname{Re} w_{\gamma}(\lambda+i \varepsilon) d \lambda
\end{aligned}
$$

We conclude that, for σ-a.a. $\gamma, \beta_{\gamma}(\lambda)=\operatorname{Re} w_{\gamma}(\lambda)=0$ for a.a. $\lambda \geq R=r^{2}$.
Now use Theorem 3.3(a): for each u in the support of $\mu_{\gamma}, \lambda \rightarrow$ $m_{ \pm}(u, \lambda)$ extends holomorphically from the upper half-plane U through $\left(r^{\overline{2}}, \infty\right)$, and the extension equals $m_{\mp}(u, \lambda)$ in the lower half-plane.

Next consider $L_{u}=-d^{2} / d x^{2}+u(x)$ with domain $\mathscr{D}=C_{\text {compact }}^{\infty}(\mathbf{R}) \subset$ $L^{2}(\mathbf{R})$. Since L_{u} is in the limit-point case at $x= \pm \infty$, it has deficiency indices zero, hence has a unique self-adjoint extension (its closure), which moreover is associated to the non-negative bilinear form $\left\langle L_{u} \phi, \psi\right\rangle$ on \mathscr{D} [12]. Therefore this self-adjoint extension has no spectrum in $(-\infty, 0)$. One now proves in a standard way that $m_{ \pm}(u, \lambda)$ are meromorphic on $\operatorname{Re} \lambda<0$, and that $m_{-}(u, \lambda) \neq m_{+}(u, \lambda)$ there. Since $m_{+}(u, \lambda)$ decreases and $m_{-}(u, \lambda)$ increases as $\lambda \downarrow-\infty$, we can find $r_{1} \geq r$ such that $\mathscr{M}(z)=$ $\mathscr{M}(u, z)$ has no poles on $|z|>r_{1}$, i.e., is holomorphic there. By Theorem $2.2, u \in \operatorname{LP}$. Note that $\mathscr{M}(z)=i z+\cdots$ for large $|z|$; therefore $\mathscr{M}(z)$ is holomorphic for $\operatorname{Re} z^{2}=\operatorname{Re} \lambda<0$. Hence $\mathscr{M}(z)$ is holomorphic on $|z|>$ r.

Finally, let $u \in \Omega_{\mu}$. We can find u_{n} in Ω_{μ} such that $u_{n} \rightarrow u$ weakly and such that each u_{n} is in the support of some $\mu_{\gamma_{n}}$. The m-functions
$m_{ \pm}\left(u_{n}, \lambda\right)$ are meromorphic on $\operatorname{Re} \lambda<0$, and $m_{+}\left(u_{n}, \lambda\right)<m_{-}\left(u_{n}, \lambda\right)$ for negative real λ. Furthermore $m_{+}\left(u_{n}, \lambda\right)$ decreases and $m_{-}\left(u_{n}, \lambda\right)$ increases as $\lambda \downarrow-\infty$. Choosing a subsequence if necessary, we can assume that $m_{ \pm}\left(u_{n},-r^{2}\right)$ are convergent sequences in $\mathbf{R} \cup\{\infty\}$. Then for large $n,\left\{m_{+}\left(u_{n}, \lambda\right) \mid \operatorname{Re} \lambda<-r^{2}\right\}$ and $\left\{m_{-}\left(u_{n}, \lambda\right) \mid \operatorname{Re} \lambda<-r^{2}\right\}$ omit intervals $I_{ \pm}$of real values. Using the Montel theorem once again, we see that $\left\{m_{+}\left(u_{n}, \cdot\right) \mid n \geq 1\right\}$ and $\left\{m_{-}\left(u_{n}, \cdot\right) \mid n \geq 1\right\}$ are normal families of meromorphic functions for $\operatorname{Re} \lambda<-r^{2}$. Using the weak continuity in u of $m_{ \pm}(u, \lambda)$ for $\operatorname{Im} \lambda \neq 0$, we conclude easily that $\mathscr{M}\left(u_{n}, z\right) \rightarrow \mathscr{M}(u, z)$ for $|z|>r$, and that $\mathscr{M}(z)=i z+\cdots$. Thus $\mathscr{M}(z)$ is holomorphic on $|z|>r$, and so $u \in$ LP by Theorem 2.2.
3.5. Remarks (a). We have actually shown that $u \in \operatorname{LP}$ for all u in the topological support Ω_{μ} of Ω.
(b) One can replace the assumption $\operatorname{Re} w(\lambda)<0$ for $\lambda \leq 0$ by $\operatorname{Re} w(\lambda)<0$ for $\operatorname{Re} \lambda \leq c$, for any constant $c<r^{2}$.
(c) Let $(\Omega, \mathscr{B}, \mu)$ be a stationary ergodic process such that the topological support Ω_{μ} of μ is compact. Suppose further that there is a fixed constant r such that: (i) the operators L_{u} satisfy $\left\langle L_{u} \phi, \phi\right\rangle \geq-r^{2}\langle\phi, \phi\rangle$ for all smooth ϕ with compact support; (ii) $\operatorname{Re} w(\lambda)=0$ for $\lambda \geq r^{2}$. Then from the proof of 3.4 one sees that $u \in \operatorname{LP}$ for each $u \in \Omega_{\mu}$.
(d) The point of 3.2 is that the function $w(\lambda)$ is quite general. One can, for example, choose $w(\lambda)$ so that $\lim _{\varepsilon \rightarrow 0^{+}} \operatorname{Re} w(\lambda)=\beta(\lambda)<0$ for all $\lambda<r^{2}$. Then either Ω contains only the constant function $u(x) \equiv r^{2}$, or μ-a.a. $u \in \Omega$ have spectrum in $\left(-\infty, r^{2}\right)([16]$; also [10]). Only the latter possibility is of interest. It indicates (but does not prove) that there exist $u \in \mathrm{LP}$ with at least some point spectrum.

References

[1] F. Calogero, and A. Degasperis, Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982.
[2] C. Caratheodory, Funktionentheorie II, zweite Auflage, Birkhäuser Verlag, Basel und Stuttgart, 1961.
[3] E. Coddington, and N. Levinson, Theory of Ordinary Differential Equations, Mc-Graw-Hill, New York, 1955.
[4] V. Chulaevsky, Inverse Spectral Problem for Limit-Periodic Schrödinger Operators, Functional Anal. Appl., 18 (1984), 230-233.
[5] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, The τ-function of the KadomtsevPetviashvili equation, Proc. Japan Acad., 57A (1981), 342-347.
[6] E. Date, et al., Vertex operators and τ-functions, Proc. Japan Acad., 57A (1981), 387-392.
[7] _, Operator approach to the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan, 50 (1981), 3806-3812.
[8] ,Transformation groups for Soliton equations, Publ. Res. Inst. Math. Sci., Kyoto, 18 (1982), 1077-1110.
[9] _Transformation groups for Soliton equations, Proc. Res. Inst. Math. Sci., Symposium on Non-Linear Integrable Systems, May 1981, pp. 39-119.
[10] C. De Concini, and R. Johnson, The algebraic-geometric AKNS potentials, J. Ergodic Theory and Dyn. Sys., 7 (1987), 1-24.
[11] V. Dubrovin, S. Novikov, and V. Matveev, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russian Math. Surveys, 31 (1976), 59-146.
[12] N. Dunford, and J. Schwarz, Linear Operators, Vol. II, Interscience, New York, London, 1963.
[13] R. Giachetti, and R. Johnson, The Floquet exponent for two-dimensional linear systems with bounded coefficients, J. Math. Pures Appl., 65 (1986), 93-117.
[14] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1969.
[15] R. Johnson, and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.
[16] S. Kotani, Lyapounov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators, Taniguchi Symp. SA, Katata, (1982), 225-247.
[17] __ On an Inverse Problem for Random Schrödinger Operators, to appear in Springer Conference Proceedings, 1985.
[18] H. McKean, and P. Van Moerbeke, The spectrum of Hills' equation, Invent. Math., 30 (1975), 217-274.
[19] J. Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Pisa, 1981.
[20] M. Naimark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960.
[21] S. Novikov, The Periodic Korteweg-de Vries Problem, Functional Anal. Appl, 8 (1974), 54-66.
[22] R. Phelps, Lectures on Choquet's Theorem, Van Nostrand Math. Studies, American Book Co., New York, 1966.
[23] M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds, Publ. Res. Inst. Math. Sci., Kokyuroku, 439 (1981), 30.
[24] M. Sato, and Y. Sato, On Hirota's Bilinear Equations I, II, Publ. Res. Inst. Math. Sci., Kokyuroku, 388 (1980), 183; 414 (1981), 181.
[25] G. Segal, and G. Wilson, Loop groups and equations of KdV type, Publ. IHES, 61 (1985), 5-65.
[26] H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Annalen, 68 (1910), 220-269.

Received January 26, 1987.
SONDERFORSCHUNGSBEREICH 123
Universität Heidelberg
D-6900 Heidelberg, BRD
AND
University of Southern California
Los Angeles, CA 90089-1113

