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ON MATRICIALLY NORMED SPACES

EDWARD G. EFFROS AND ZHONG-JIN RUAN

Arveson and Wittstock have proved a "non-commutative Hahn-
Banach Theorem" for completely hounded operator-valued maps on
spaces of operators. In this paper it is shown that if T is a lin-
ear map from the dual of an operator space into a C*-algebra, then
the usual operator norm of T coincides with the completely bounded
norm. This is used to prove that the Arveson-Wittstock theorem does
not generalize to "matricially normed spaces". An elementary proof
of the Arveson-Wittstock result is presented. Finally a simple bimod-
ule interpretation is given for the "Haagerup" and "matricial" tensor
products of matricially normed spaces.

1. Introduction. A. function space V on a set X is a linear subspace
of the bounded complex functions on X. With the uniform norm, this
is a normed vector space. Conversely, any (complex) normed vector
space V may be realized as a function space on the closed unit ball X
of the dual space V*. Thus one may regard a normed vector space as
simply an abstract function space.

An operator space V on a Hubert space H is a linear subspace of the
bounded operators on H. For each « G N , the operator norm associ-
ated with Hn determines a distinguished norm on the n x n matrices
over V. The second author recently gave an abstract characterization
for the operator spaces by taking into consideration these systems of
matrix norms. The operator spaces V are characterized among the
"matricially normed spaces" (see §2), by the "L°°-property": given
matrices v = [v/7], w = [wkl] with vzy, wkι e V,

| |vθH>||=max{| |v | | , |M|}.

On the other hand, the dual of an operator space is canonically an "L 1-
matricially normed space", in the sense that its matrix norms satisfy

In this paper we shall begin a systematic study of the matricially
normed spaces. Our main results are:

(a) We show in §2 that if φ: V -» W is a linear map from an L1-
matricially normed space to an operator space, then the completely
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bounded norm of φ coincides with the usual norm. As a corollary,
we conclude that the Arveson-Wittstock Hahn-Banach Theorem for
operator spaces cannot be extended to L1-matricially normed spaces.

(b) In §3 we give a direct proof of the Arveson-Wittstock Hahn-
Banach Theorem for operator spaces that uses only the L°°-matricial
norm structure, rather than appealing to Wittstock's theory of sublin-
ear set valued functions, or to Paulsen's reduction to the completely
positive case (see [1], [14], [9]). Our approach was first considered by
Haagerup (unpublished [6]). Using a result of Smith [12], we have
been able to substantially simplify his argument.

(c) In §4 we consider the Haagerup tensor product for matricially
normed spaces. In particular, following a suggestion of B. E. John-
son, we consider the corresponding construction in the isomorphic
category of normed ^-bimodules, SF being the algebra of all finitely
non-zero infinite matrices. We show that the Haagerup tensor product
corresponds to the projective bimodule tensor product ®& (see (4.1)).

(d) Letting Jί(V^{H)) be the completely bounded maps from a
matricially normed space V into 3§{H), we have that

where ®jg is the "completely bounded tensor product" (see §3 and
[4]). In §5 we show that for arbitrary matricially normed spaces, this
tensor product is isometric to the projective & ® ̂ -bimodule tensor
product &?(§& in Johnson's category (see (5.2)).

We are indebted to Uffe Haagerup for providing us with a copy of
[6], and to Barry Johnson for his suggestions regarding ^-bimodules.

2. Matricially normed spaces and a Hahn-Banach counter-example.
Given normed vector spaces V and W9 we let &{\ζW) denote the
bounded functions from V to W with the usual norm, and &(V) =
£&{VV). We say that a bounded linear surjection φ\ V —• W of
normed vector spaces is a quotient map, if it induces an isometry
V/k.zrφ —> W. Equivalently, it maps the open unit ball of V onto that
of W. If φ: V —• W is an isometric injection, then the adjoint map
φ*: W* -* F* is a quotient map.

We let V ® W denote the tensor product of arbitrary vector spaces
V and W. If V and W are normed, we write || | |Λ and || \λ for the
projective and injective cross norms on V® W (see [13], §IV.2). These
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are defined by

\\u\\λ = sup{|p ® q{u)\: peV.qe W\ \\v\\ = \\q\\ = 1}.

We \t\V®W and V ®λW denote the corresponding normed spaces
(we do not use the completions in this paper). It is easily verified that
if F«-» V\ is an isometry, the corresponding map V ®χ W^-* V\ ®χ W
is again isometric, whereas if V —• V\ is a quotient map, the same is
true for the map V® W' -~*V\®W\

An operator space V on a Hubert space H is a linear subspace of
3§{H). The latter is a von Neumann algebra, and we denote its predual
by <3B{H)*. Given ξ,η eH, we define ωξ>η e 3B{H)+ by

= bξη.

We let Mmfn (resp., M π if m = n ) denote the complex m x n
matrices with the usual vector space operations and the operator norm.
We let εtj G Mm>n be the matrix units

j

ϊ
Ό 01

1
o .

Given a (complex) vector space V, we identify the vector space
Mmtn(V) ofmxn matrices [v/y] (vzy e V) with the algebraic ten-
sor product V ® M w , n , letting [v/7] ^ Σ vij ® ε o We regard F ® Mw

as an Mn bimodule by using the operations

a(v ® //) = v ® α//, (v ® //)j? = v ® //jS.

The corresponding operations in M Λ (F) are determined by matrix
multiplication. Given n — Π\Λ V nr, we identify v e MA7(F) with
the r x r matrix of rectangular matrices [vpg]9 where

vn = [Vij]ij=u.9nι eMnι(V)

and so on. We also use the notation

"v 0
0 w
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A matricially normed space is a normed vector space V together
with an assignment of a norm to each of the matrix spaces Mn(V)9

such that
Mj. \\v(Bθr\\ = \\v\\(veMn(V),reN).
M2. ||αv|| < ||α|| | |v|| and ||vα|| < ||v|| | |α|| for v G MΠ(K), a G Mn.

Given 1 < p < oo, we say that V is an Lp-matricially normed space if
in addition we have that

V \\v®w\\ = {\Mp + \M\p)xlP,
and that it is an L°°-matricially normed space if

Loo. | | vθw| | = max{||v||,|M|}.
Given a matricially normed space V and a unitary α € MΛ, we

have from M2 that ||αv|| = ||v|| = ||vα||. In particular, row and column
operations on matrices in Mn(V) are isometric. It follows that if
p, q < n, then any of the embeddings of MPιQ(V) in Mn(V) obtained
by letting v κ+ v', where v' vanishes on n - p and n - q specified
rows and columns, determines the same norm on M M ( K ) . In this
sense we have norms provided on rectangular matrices over V. The
relations Mi and M 2 continue to hold for suitable rectangular matrices
of elements of V and of C.

In any matricially normed space F, we have that if v = [v, 7 ] G

(2.1) ||vo | | < | | v | |

(see [11]). It readily follows that if V is complete, then the same is
true for each of the spaces Mn(V). Given a 2 x 2 matrix of matrices
v = [v/y], it is also shown in [11] that

(2.2) | |viiΘv 22| |<| |[v l 7] | | .

Given a linear map φ: V —• W of matricially normed spaces, we
define a map φm,n = φ ® id: Mm>n(V) -> Mm,n{W) by φm.n{[^ij\) =

[φ{Vjj)]9 and we let φn = φn>n. We define

and we say that φ is completely bounded if \\φ\\cb < oo, a complete
contraction if \\φ\\cb < 1> and a complete isometry or complete quotient
map if each #>„ is isometric, or a quotient map, respectively. It is
immediate that if p > max{m, n}, | |^W f Λ | | < \\φp\\. We let J?(VW)
denote the normed vector space of all completely bounded linear maps
φ : V —• W together with the corresponding norm || | |^ . It should be
noted that we do not attempt to place a matricial norm structure on
Jί{VW) in this paper.
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As we remarked in §1, any operator space V is provided with ma-
trix norms, namely, we may let Mn(V) have the relative norm in
MnάS{H) = 38(Hn). It is trivial that with these norms V is an L°°-
matricially normed space.

If W is a vector subspace of a matricially normed space V, then
identifying Mn(W) with a subspace of MΛ(K), the relative norms de-
termine a matricial norm structure on W, and we say that W is a
matricially normed subspace of V.

If V is matricially normed, then regarding Mn(V*) as the dual of
Mn(V) under the pairing

V* is matricially normed by the dual norms on Mn(V*) (see [11]). We
call V* the dual matricially normed space of V. If V c 3S{H) is an
operator space, and we are given ξ,η e Hn, then for any v e Mn(V)9

hence with the above convention,

(2.3) ω ^ =

It will be convenient to regard the dual of MΛ as also being the predual,
and we denote it by MΛ .

Finally if W is a closed subspace of a matricially normed space V,
then it follows from (2.1) that Mn(W) is closed in Mn(V). Identi-
fying Mn(V/W) with Mn(V)/Mn{W), we may let Mn{V/W) have the
quotient norm for each n. It is readily verified that V/ W is thereby ma-
tricially normed. This is called the quotient matricially normed space.
If V is an Lp -matricially normed space then subspaces and quotients
again have that property (for the latter, see (2.2)). In general we have
that a map φ: V -> W is a complete quotient map if and only if it
induces a complete isometry of V/ ker φ onto W.

THEOREM 2.1. Given a normed vector space V, the norms on the
matrix spaces V ®λ Mn determine an L°°-matricial structure on V,
whereas the norms on the matrix spaces F® Mw* determine an Lι-
matricial structure on V.

Proof. To prove the first assertion, we embed V into l°°(X) for
some set X, and then find a faithful representation of l°°(X)



248 EDWARD G. EFFROS AND ZHONG-JIN RUAN

on a Hubert space H. This provides l°°(X) with an L°°-matricial
structure, and we let V have the relative structure. The matrix norms
for l°°(X) are determined by the isometries:

(see [13], Th. IV. 4.14). Since the maps V®λMn^-> l°°(X) ®λMn are
isometric, the relative L°°-matricial structure is given by the isome-
tries:

For the second, we let X be the open unit ball of V, and we define
l(X) C lι(X) to be the functions on X vanishing off finitely many
points, together with the I1 norm. Letting δ(x) denote the character-
istic function of the singleton {x}, the map

θ:

is a quotient map of normed vector spaces. Representing l°°(X) as a
von Neumann algebra on a Hubert space 77, it follows that lι(X) is
then isometric to the predual of this von Neumann algebra, and thus
l(X) inherits a corresponding Z^-matricial norm structure. We let
V = l(X)/kerθ have the quotient ZΛmatricial structure. The matrix
norms on l(X) are determined by the isometries

(see [13] Th. IV.7.17, and p. 261). Since

is a quotient map, the matricial norm on V are given by the isometries

Mn(V) = K<§>MΛ.. D

The following results were proved in [11]:

THEOREM 2.2. Suppose that V is matricially normed. Then
(1) V is completely isometric to an operator space if and only if it is

an L°°-matricially normed space.
(2) V is an L{-matricially normed space if and only if V* is an

L°°-matricially normed space. u
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In light of (1), we shall also refer to L°°-matricially normed spaces
as abstract operator spaces, or more simply, operator spaces.

COROLLARY 2.3. Suppose that V is a dual Lx-matricially normed
space. Then it is a quotient of£B(H)* for some Hubert space H.

Proof. We may assume that V = (F*)* for some matricially normed
space F*. Since the canonical map j : F* —• V* is completely isometric,
the dual j * : F** —• V is a complete quotient map. From Theorem 2.2,
F* is an L°°-matricially normed space, and there is a complete isome-
try φ: F* -+ 3B[K) for some Hubert space K. Thus φ*: ̂ {K)* -* F**
is a quotient map. We have that 3&{K)* = &*, where & = &(K)** is
a von Neumann algebra on some Hubert space H. Since & is weak*
closed in &&{H\ 31* = &(H)*/&±, where <9?± is the annihilator of
31. The composition of these quotient maps gives us a quotient map
3B[H\ -> F. D

It was shown in [11] that if Λ and B are C*-algebras, then there are
no completely bounded maps from A into B*. This is even the case if
A = B = C. In the reverse direction we have:

THEOREM 2.4. Suppose V is an Lι -matricially normed space and W
is an operator space. Then for any linear map φ: V —> W we have that

\\φ\\cb = \\9\\

Proof. It suffices to show that if \\φ\\ < oc, then for each n e N,
\\<Pn\\ < \\φ\\. Let us first assume that F = 3S{H\ for some Hubert
space H, and that W c 3&{K). Each function / e ^(/ ί )* with
11/11 < 1 is a norm limit of convex combinations of functions of the
form a)ξtη (see [3] §1.3.3, proof of Lemma 3). We may apply this to
Mn(&(H)*) = [Mn{β{H))]+. G i v e n v e c t o r s θ,ζe Kn, t h e f u n c t i o n
/ |-)> \ψn{f)θ ζ\ is convex on the unit ball of Mn(&(H)*)9 and thus
assumes its maximum on functions of the form ωξ η, ξ, η e Hn:

ζ,ηeHn,θ9ζeKn}.
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Using (2.3), we have

<Q\\9\\Σ,Kj\\\\m\\\\θj\\\\ζi\\
U

[ Σ fci1] "2 [Σ m2} "2 [Σ i * ! 1 ] m [Σ ion 2]m

= \\φ\\\\ξ\\\\θ\\\\η\\Kl

and thus | |p Λ | |
Now let us suppose that V is a dual L1 -matricially normed space.

From Corollary 2.3 there is a quotient map π: &(H)* —> V in the
category of matricially normed spaces, i.e., each of the maps πn:
Mn(&(H)*) —• Mn(V) is a quotient map. Since πn maps the open
unit ball onto the open unit ball of the image, it follows that

\\ψn\\ = \\φn o πn\\ = \\{φ o π)n\\ = \\φ o π\\ =

Finally suppose that V is a general Lι-matricially normed space.
Since V** is a dual L1 -matricially normed space, the map φ**: V** —•
W** satisfies \\φ**\\cb = ||^**||. For any π we have that (9?**)w = {φn)**,
hence | | ( ^ * ) Λ | | = \\φn\\, and

COROLLARY 2.5. G/ven L1-matricially normed spaces V c W, a
completely bounded map φ: V —• M2 «̂ ed/ «<9ί Λαv̂  α« extension
ψ: W -H, M 2 satisfying \\ψ\ch =

Proof. M2 is not injective as a normed vector space since it is not
isometric to /40 (this is a consequence of [7], Th. 7), which is the only 4-
dimensional injective normed vector space (see [8] §3.11, Th. 6). Thus
we may find normed vector spaces V c W and a map φ: V -> M 2

which does not have an extension ψ: W -* M 2 with | |v| | = IM|. From
above we may extend the norm structure on W to an ZΛmatricial
norm structure. Letting V have the relative matricial norm struc-
ture, V and W are Lι -matricial norm spaces. Since ||^||c^ = | |^| |
and \\ψ\\cb = \\ψ\\> w ^ cannot find an extension ψ: W —> M 2 with
\\ψ\\cb = \\<P\\cb α
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It should be noted that in the Proof of Corollary 2.5, although
Mn(W) = W®Mm we cannot conclude that Mn{V) = V®Mm.

3. The Hahn-Banach Theorem for operator spaces. Consider the
action of M P (M Λ ) on (Cn)p. Under the identification of Mn ® Mp =

we have that

— V
i

δ β/ι =
α

Lo
0

Thus given ξ e (Cn)p,

( /^ Γ (£\\ P ί T <* R(£\\ \~"^ /? P
\(x Q9 * r)\Q 11i — ™Qit I in 09 P \Q 11i — / Pi iQ i

j

The following result is due to R. Smith [12]. We have included a
proof that may be more familiar to operator algebraists, and that has
an obvious extension to finite von Neumann algebras.

LEMMA 3.1. Suppose that p > n, and the ξo is a vector in (Cn)p.
Then there exists a unitary matrix U e Mp and a vector ξ e (Cn)n

such that (In ® U)ξ0 = ξ®op-n.

Proof. The representation of a H-> a <g> In of Mn on (Cn)n has a
separating vector, and thus any state on MΛ is a vector state in this
representation, i.e., it has the form a>ξ for some vector ξ e (Cn)n. it
follows that given an arbitrary vector ξ0 e (Cn)p = (Cn)n Θ {Cn)p~n,
we choose ξ e (Cn)n with cθξQίξ0 = ωξΘ0tξΘ0 on Mn. From elementary
operator algebra theory, the map (a<g>Ip)(ζo) \-+ {a®Ip)(ξ®0) extends
to a partial isometry UQ of Mn ®Ip(ζo) onto Mn ®/p(ίθO), which lies
in (MΛ ® Ipy. Letting E' and F' be the domain and range projections
of £/Q, E1 and Ff are equivalent in (MΛ ® Ip)'9 and thus the same is
true for I - Ef and I - Ff. Adding a corresponding partial isometry
to C/Q, we obtain a unitary UQ in (Mπ ® Ip)' with t/oio = ζ Φ 0. Since
(Mπ ® 7P) ; = 7rt ® M p , ί/o must have the form 7W ® C/, with t/ a unitary
in Mp. D

Generalizing [12], we have:

LEMMA 3.2. Suppose that V is a matricially normed space. Then
given a linear map φ: V —> MΛ, we have that \\φ\\cb = \\Vn\\>
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Proof. Given p > n and unit vectors ξ, η G {Cn)p, we may choose
unitary matrices U,V e Mp and unit vectors ζ', η' e (Cn)n such that
ξ = {In ® £/)(£' θ θp-n) and 1/ = (/„ ® K)(ι/' θ 0P-Λ). Letting £ =
[/„ (9] and U' = In ® t/E*, V = In® VE* (these are /? x w matrices
over MΛ), it follows that for v e M P (F) with ||v|| < 1,

COROLLARY 3.3. If V is matncially normed and f e V*, then \\f\\cb

Given a matricially normed space V an operator space W and ele-
ments / G V* and w G FT, we define a linear map 0y 0 w : V -+ W by

COROLLARY 3.4. Given a matricially normed space V, and operator
space W and elements f e V*, w G W we have that | |0/®JU <

Proof. We have that if v e MΛ(K), ||v|| < 1,

= ||[/(vz7)w]|| = \\fn(v)(w θ . e w)||

|. D

Let us suppose that V is a matricially normed space. We have a
natural pairing between ^(KMn) and the algebraic tensor product
V (g> Mfl* defined by (φ, v ® g) = g(^(g)). In fact Jt(J{Mn) is in this
manner isometric to the dual of F ® Mn* when the latter is provided
with a suitable norm || \\^ described below.

Given v G Mn(V) and g G Mπ(M r t*), we define v x g e K®MW* by

A simple calculation shows that for any a G Mm A 2, j? G MΛ > m, v G

MΛ(K) and g e M m ( M r ) , we have

(3.1) (avβ) x g = v x ( α t r ^ t r ) ,

where tr indicates the transposed matrix. For any φ e Jf(KMn)9

{(Pn{v), g) = Σ ( p ( v l 7 ) , ft y) = {φ, v x <?),
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and thus

(3.2) \\φ\\cb = \\<Pn\\

< 1, v G Mn{V),g e MΛ(MΠO}

vxg)\: \\v\\, \\g\\ < 1, v e M Λ (F), * € MΛ(Mn.)}.

We define the completely bounded norm \\ \\j? on V <g> M Λ by

/ x ft, vf- G M

It is evident that this is a seminorm. To see that || | | ^ is a norm, let us
suppose that F = Σ wi ® k Φ 0> w/ ^ ^ 5 /̂ ^ Mw*. We may assume
that the Af form a basis for Mw*, and that W\®h\ φ 0. Letting βt G Mr t

be a dual basis for the /*/, and choosing f e V* with / ( H Ί ) ^ 0, we
have that {θf®βx,F) = / ( H Ί ) Φ 0. Since we have

it follows that | | F | U φ 0.
We let F ®^ Mn* denote F ® Mn* with the completely bounded

norm, and we call it the completely bounded tensor product. It follows
from (3.2) that if ψ e Jt(KMn) and F eV ®j? Mn* we have

(3.3) \\φ\\cb = sup{\(φ,F)\: \\F\U < l , F e

and thus

We say that a function g = [gij] G M Π ( M Π * ) is non-singular if the
3ϊ7 are linearly independent functions in MΛ*.

LEMMA 3.5. Given g G M Λ (M W *) w/ίA ^ = ωξfη where ξ, η e (Cn)n,
g is non-singular if and only ifξ and η are cyclic vectors for Mn ® In.

Proof, g will be non-singular if and only if the entries gij = cύξjηι

spanM r t *, or equivalently, gij (a) — 0 for all i,j implies that a = 0.
Thus g is non-singular if and only if

aξj ηi = 0 for all /, j => a = 0.

It is clear that a necessary and sufficient condition for this is that the ξj
and the ηt span Cn. The ζj are linearly independent if and only if given
any n vectors ζj9 there is a matrix β e Mn with βζj — ζj, or letting
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ζ = (Ci, ...,ζn) be the corresponding vector in {Cn)n, ζ - (β ® In)ξ.
Thus the £ ; span Cn if and only if ζ is cyclic for Mn ® /„. Since the
same applies to 77, we are done. D

From the definition of the norm, if F e V<g>j?Mn* satisfies | |F | | < 1,
then there is a finite sum representation

(3.4) F = Σ tiVi x ft, (v, € MΛ(K), ft G MΛ(MΛ.))

where ||v/|| < 1, ||ft|| = 1, // > 0, and ^ ί / = 1. The following may be
regarded as the major distinguishing feature of the operator spaces. It
was first proved by Haagerup [6] using a rather different argument.

LEMMA 3.6. Suppose that V is an operator space and that F e V ®
Mn* satisfies \\F\\ < 1. Then F = v x g where v e Mn(V) and g G
MW(MW*) satisfy ||v|| < 1, | |^| | = 1. Furthermore, g may be chosen
non-singular.

Proof. We may assume that F has the representation (3.4). Since
any function gz G Mn(Mw*) with ||ft|| = 1 is a convex combination of
functionals of the form cθξJ>ηj, where ξj, r\j are unit vectors in (Cn)n,
F has the representation

k=\

with ζk,ηk u n i t vectors in {Cn)n, vk e Mn(V) satisfying ||v^|| < 1,
tk > 0, and X) ίfc = 1. Since V is an operator space, v = Viθ θ v p G
Mnp(V) satisfies ||v|| < 1. We have that

where

<̂o = (t\/2ξι) θ θ (tι

p

/2ξP), ηo = (t\/2m) θ • θ

are unit vectors in (Cn)np. From Lemma 3.1, we may choose unitary
matrices U, V € Mn p and unit vectors ξ, η € ( C ) " such that

m = (/„ ® F )^ ( i/' = 17 φ 0 € (C1)" φ (Cn)np~n

It follows that
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since (ζo)j = ΣZi UJi?i> a n d fao)/ = Σ.n

kίx Vikr\'k imply that

np

k,l=\

But as elements of Mrt*, we have that a)ξ>tηι = cθξJ>ηi for /, j < n, and

otherwise they are zero. Thus

ωξl>η, = E*ωξηE

where E = [In Op-n], and we have from (3.1),

F = vx VE*ωξηEUlΐ = EV*vUE* x ωξ>η = v x ω ^ ,

where v = EV*vUE* e Mn{V) satisfies ||v|| < ||v|| < 1.
Our next task is to perturb ζ, η e (Cn)n so that the resulting linear

function Wξη = [o)ξj>η] is non-singular, i.e., so that both ζ and η are
cyclic for Mn ® /. Letting ez be the canonical basis for Cπ, we have
that ^ = (^i,..., en) is cyclic for MΛ ® /. Given / with 0 < t < 1, we
let v, = (1 -t)~2v and

& = (1 - t)ξ ®te, ηt = (1 - /)>/ Θ fft

which are vectors in (Cn)2n. We then have that

F = (1 - /)2(v, x ω ^ ) + ί2(0 x % ) = (v/ Θ 0) x ω ί ί f l//.

Fixing ί, we have from Lemma 3.1 that there exist unitaries U, V G
M2n such that (/ (8) U)ζt = ί' θ 0 and (/ ® K)?// = ?/' e 0, and thus as
above

,F = w x ω /̂̂ /

where ||w|| < ||v/||. For small /, we will have that | |^ | | , | | ^ | | are close to
1 and ||Vf || is close to ||v||. It thus suffices to show that we can choose
arbitrarily small t > 0 with ζr, ηf cyclic for Mn ® In, since even after
we normalize ξf and η' to be unit vectors, absorbing the constants into
w, we will still have that ||H>|| < 1. ξ' will be cyclic for Mn ® In if and
only if the n2 vectors ε//®/^ (£'θ 0) span an n2 dimensional space, or
since In®U commutes with the action of Mn (8) />«, if and only if the
vectors β/y ® Iιnζt are linearly independent in (C")2". Using exterior
products, this is equivalent to

R(t) = (βΠ ® I2nξt) Λ Λ (enn®l2nξt) Φ 0.

Given a basis dk for (Cn)2n, the exterior products
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for «2-tuples K = (k\,...kni) with k\ < < kni, form a basis for

l\n\Cn)ln. Thus we have unique coefficients Pκ(t) with

K

Letting t vary in R, the Pχ(t) are polynomials in t. Since the vectors
(eij ® /Λ)e (1 < /, 7 < n2) are linearly independent, the same is true
for the vectors 0 Θ (ε/ ; ® /Λ)e (1 < /, j < n1), and

= (0 Θ (βi i ® In)e) Λ Λ (0 Θ (εnn Θ In)e) φ 0.

Thus there is a coefficient AT with Pκ Φ 0. It must have only finitely
many zeros, and thus we have the desired situation. The same argu-
ment applies to η. D

THEOREM 3.7 [14] [9]. Suppose that V c W are operator spaces,
and that A is an injective C*-algebra. Then any complete contraction
φ: V —• A has a completely contractive extension ψ: W -+ A.

Proof. First let us suppose that A = Mn. We wish to show that the
restriction map

sends the closed unit ball of J?(fyMn) onto that of Jt{V Mn). It
suffices to show that the inclusion map of the preduals

(3.5) VQjrMn-^WtojrMn.

is isometric. It is clear that this map is norm decreasing. Given
F G V®jeΉln+, we denote its norms in the latter and in W®j^M.n* by
| |F| |κ and | | F | | ^ , respectively, let us suppose that \\F\\W < 1. From
Lemma 3.6 we may choose elements w e Mn(W) and g e Mn(Mn*)
such that ||w|| < 1, \\g\\ — 1, and g is non-singular with F = w x g.
Since g is non-singular, the map

θg: Mn(W) -> W ® Mn*: w = Σ wu ®etj^wx g = Σ WU Θ &J

is an isomorphism. Thus since θg(w) = F e V ® Mn* = θg(Mn(V))9

we must have that w e Mn{V). Noting that Mn(V) ^ Mn[W) is
assumed isometric, we conclude that I I ^ I I K ^ I I ^ I I I I ^ I ^ I

Given an arbitrary injective C*-algebra A c £&{H)9 there is a com-
plete contraction Φ: 3S[H) —> A. Since we may compose this with a
map of W into £B{H), it suffices to consider the case A = £B{H). If e
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is a projection with dimeH = n, then e^{H)e = Mn. Thus letting 3*
be the family of finite dimensional spaces Lc H, and letting e^ be the
projection onto L, we may choose for each L G ^ a completely con-
tractive extension ψ^: W —> eL&(H)eL of eLφeL: V —> e^3S{H)eL.
3* is a directed set under inclusion, hence {ψL: L e ^} may be re-
garded as a net in the unit ball of Jt(ty&\H)). Since the latter is
compact in the topology of point-weak* convergence, this net has a
cluster point ψ. It is quickly seen that this is the desired extension of
φ. D

4. The Haagerup tensor product and bimodules. Given matricially
normed spaces V and JV9 the Haagerup tensor product V ®h W is a
matricially normed space, which is defined as follows (see [4]). Given
v e Mn>p(V) and w e Mp>n(W), we define

V0 w G M Λ ( K ® W)

by "matrix multiplication":

The Haagerup norm || ||^ on M Λ ( F ® ϊΓ) is given by

where the sums are finite, and we choose vv e Mn>Pι/(V), wu e MPvtn.

LEMMA 4.1. Given matricially normed spaces V and W, the
Haagerup norms determine a matricial norm structure onV ®W.

Proof. Subadditivity is trivial. Let us suppose that u e MΛ(K® W).
If

K Θ 0, = £ V Θ w", {y" e Mn+qιPv(V), w» e MPu,n+q(W),
V

then letting [In O],
u =

where Ĥ v̂ H < JIv̂ H, and \\w"E*\\ < \\wv\\. It follows that ||«||Λ <
|| M Θ 0||/,. The reverse inequality is trivial. Given a e M n , and u =

Σvvl/ © wl/> w e h a v e t n a t a u = Σv(avl/) Θ wl/> a n d t n u s \\au\\h <
ll«IIΣi/ IIVΊIIIWΊI It follows that \\au\\h < ||α||| |M||A. Similarly, | |uα|| <
llMllllαll.
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Finally we have to show that the Haagerup norms indeed have no
null space. Given 0 Φ u e V ® W, let us suppose that / e V* and
g e W* satisfy | |/ | | = ||g|| = 1. Then given any decomposition u =
Σv v" Θ w", vv e M l f P μ(K), wy e MPvΛ{W)9 we have that

\f®g{u)\ < £ tfUK) Θ

since we have that \\f\\cb = \\f\\ and \\g\\cb = \\g\\. Thus 0 φ \\u\\λ <
||M||Λ In general given Oφ ue Mn(V® W), let us assume that «, 7 7̂  0.
Then letting

I
£/ = [0 l 0]

we have that

In many respects the Haagerup tensor product is analogous to the
projective tensor product for normed vector spaces (see §2). In par-
ticular, it is natural to define a bilinear map ψ: V x W —• X to be
completely bounded if the corresponding linear map ψ: V ®h W —• X
is completely bounded (see [2]). A convincing argument for this point
of view was suggested to us by B. E. Johnson. He remarked that the
theory of matricially normed spaces might be simplified if one instead
considered normed modules over the infinite matrix algebra. We ver-
ify below that the corresponding functor transforms the Haagerup ten-
sor product of two matricially normed spaces into the corresponding
projective normed bimodule tensor product.

We define & to be the *-algebra of complex matrices with countably
many rows and columns, having only finitely many non-zero entries.
We may regard & as the inductive limit of the system of matrix alge-
bras:

where the connecting maps are given by a —• αφOi. We let e"j denote
the matrix units in MΛ, and ln the identity for M π . Since the usual
operator norms are compatible, we may regard F as a normed *-
algebra.

Given a normed algebra J / , a normed sz?-bimodule V is an $f-
bimodule with a norm satisfying ||αv|| < ||α||| |v|| and ||vα|| < ||v|| | |α||
for v 6 V and a £ J / . Given any matricially normed space V, we may
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identify Ψ' = V ® SF with the direct limit of the system of normed
spaces

F ® M i C F ® M 2 C . . . .

By condition M\, the matricial norms are compatible, and thus de-
termine a norm on *V — V ® SF. Regarding "V as an ^-bimodule, it
follows from Mi that "V is a normed ^-bimodule.

We say that an ^-bimodule Ψ* is non-degenerate if for each v e f ,
there is an n e N such that lrtv = vlrt = v. Given a non-degenerate
^-bimodule Ψ*, we let V = eX\Ven. We have that V φ {0}. To see
this suppose that 0 / v G f. Letting n be such that v = lwvlw, it
follows that there exist /, j with v' = ^//v^ / 0. Letting v" = ei/v'e/i,
we have that v' = ei\v"e\j, and thus v" is a non-zero element of F. It
is a simple matter to verify that the map

determines a bimodule isomorphism "V =V ®3Γ. If we assume that
Ψ is a non-degenerate normed ^-module, then we may let l w ^l« =
F ® MΛ have the relative norm. V is thereby a matricially normed
space, and we see that the construction of the previous paragraph
essentially gives all of the non-degenerate normed ^-bimodules.

If φ: V —• W is a linear map, then the corresponding map $0 ®
id: V ® SF —• W ® ^ is an ^-bimodule map, and the ^-bimodule
maps Φ : F ® ̂  —> PF® SF are precisely those of the form ^ ® 1.
This is a consequence of the fact that Φ{eijvekι) = βijΦ(v)e^. Under
this construction, the complete contractions φ correspond exactly to the
contractive ^-bimodule maps Φ: F ®^ —• PF®^.

Given non-degenerate normed ^-bimodules "V and W we shall no-
tationally identify the algebraic tensor product Ψ®W = F ® ^ ®
FF ® & with F ® W ® ^ ® ^ . The projective tensor product ^<8>^
(see §2—we do not complete) is then a normed ̂ -bimodule under the
external operations a(v ® w) = av ® w, and (v ® w)α = v ® wα. Letting

J
we define the projective ^-tensor product by

where the bar indicates the norm closure. Since / is a closed (external)
^-bimodule, the quotient is a normed non-degenerate ^-bimodule.
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Letting Ψ' = V ® & and W = W ® & be two non-degenerate SΓ-
bimodules, we define an external bimodule map

by letting

Λ: V'®3r'

Λ(v

V®W'

In general, given v G T, w e 3Γ, we let v © w = Λ(v ® w).

THEOREM 4.2. J(T ®W) = kerΛ.

Proof. Since we have that

Λ(v ® ay ® w ® j?) = Λ(v ® ĉ  ® w c

it is evident that / = J{Ύ° ® 3Γ) c kerΛ.

Conversely if we are given Λ(M) = 0, where u = Σf= 1

 wi ® α i ® î i
(Ui G F® WΓ), it suffices to show that u = 0 (mod 7). We may choose
A2 G N with α/, )ff/ G Mw and we define Etj e & (1 < k, I < p) by

Letting / =

U\

0
U2®

0

0

0

7 w e have that

i»i 0

^2 0

It follows that if /? is the range projection of β, i.e., the minimal
projection with β = pβ, then £/? = 0. To see this, let /(of0o) ^e the
characteristic function of the set (0,00). Then p = p(ββ*) where

is a real polynomial such that p\spββ* = X(ol0o)\spββm- We conclude that

u =

(mod / ) .
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We define a linear map θ: K ® fF ® e n -• 2^ ® 3Γ by

θ(v ® w® en) = v® w<s>e\\ ®β\\.

This extends uniquely to an ^-bimodule map θ: V^W®^ -*<Zr®W
via the formula

Θ(V ® W ® β/y) = V ® W ® £/! ® ^ y

(recall that we let Ψ ® ̂ * have the external module operations). It
follows that for all u e V^W®^, Λ(0(w)) = w. Letting π\T®W ->

3Γ be the quotient map we have that

π{θ{V ®W ®en)) =

since if we are given v eV, w eW,

e\ i (v ® w (8) a ® )?)^i i = v ® w ® ̂ i i a

= v<g) > v ® ^ π ^ ^ n ® ̂ ii (mod / ) ,

where β\\aβe\\ G C^u. Since π is a bimodule map, it follows that π
maps θiV^W®^) surjectively onto 'V^pW. Letting u e
we find that

= inf {Σ INIIK H : θ{u) ~Σ

= inf { Σ llv/Hllw/ll : 1/ = ] Γ V/ Θ wf , v, G ̂ , W/ G

Given operator spaces V and PF, this coincides with the Haagerup
matricial tensor product norms. Thus in that case we have

(4.1) {V®h W)®&- = ^®?W.

We conclude this section with a problem. Paulsen and Smith have
recently proved that if V c V\ and W are operator spaces, then the
inclusion V ®^ W<-^ V\ ®h W is completely isometric [10]. This came
as quite a surprise since the projective product for normed vector
spaces does not have this property. In fact a Banach space W has the
property that V&W^ V\®W is an isometry for all pairs V c V\ if
and only if W is isometric to Lι (X, μ) for some measure space (X, μ)
(see [5]). The inclusion property for ®h seems analogous to that given
for ®^ in §3. In fact it follows from [4] that if V and W are operator
spaces, and u e Mnn(V ®Λ W) satisfies ||w|| < 1, then there exist a
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p e N, v G Mnp{V), w e Mpn{W) with ||v||, ||w|| < 1 and u = v © w.
In this case, however, we do not know if we may take the components
of w to be linearly independent. That fact would give an elementary
proof of the Paulsen and Smith result. Since it seems unlikely one
could maintain equality with the components of w independent, we
conjecture that it is rather some perturbation version of this argument
that will apply.

5. The completely bounded tensor product and bimodules. Let us

suppose that V and W are matricially normed spaces. Extending the
discussion of §3, we define the completely bounded seminorm on V®W
by

where the sums are finite, and we choose vv e M ^ ( F ) , wv e Mn»(W).
If W* is an operator space, one may use a generalization of Corollary
3.4 to show that this is a norm, but in general this is not the case. We
define the completely bounded tensor product V®je W to be (V®JV)/N,
where N is the null space of || \\j?.

As in §4, we let 3T = V®^ and W = W®^. We regard T (resp. W)
as a right (resp. left) normed module over the algebraic tensor product
^ ®^ by letting

v(a ®β) = aiτvβ, (a ® β)w = awβir.

We define the corresponding projective SF ® & tensor product by

where

and we denote the quotient map by π. It should be noted that this
tensor product is a normed vector space, but that it does not have a
natural bimodule structure.

We have a natural bilinear form (, ) : & x & —• C defined by

We define a linear map Θ:T'®W-+V®Wby letting

θ(v ® a ® w ® β) = {a, β)v ® w.
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Since for all a,β,γ,δe^

{δaε, β) = (a, δtτβεtτ),

we have that for all γ e & ® & and v e ^ w e f

(5.1) Θ(vγ ® w) = θ(v ® γw).

Defining v x w = Σ Vij®wij for v e ^ and w e W, we have θ(v<g>w) =
v x w.

THEOREM 5.1. K{T ®W) = kerθ.

Proof. From (5.1), the inclusion Λ (̂2^ ® 2Γ) c k e r θ is immediate.
Conversely, let us suppose that u = Σk Vk ® ak ® wk ® βk e kerθ,
where vk e V, wk € W. Then

k

Since e, 7 = Si\ε\\ε\j, we have modulo K,
kjVk <8> ε,7 ®wk® βk

{,βk)vk®εn ®wk®εn = 0 ,
k

since the map V ®W —*T~ ®W :v ®w \-^v ®ε\\®w®εχ\ is linear.
Ό

We define ^ : V® W —»• "V&W by ^(v®w) = v®en®tv®£n. It is
evident from the above calculation that π o ̂ : F <g> MK —
is surjective. The quotient norm is given by

(w)|| = inf { ^ ||v/HHw/H: ψ{u) - ^ v, ® w, e f , v, €

NIIKH : ψ(u) -J2V'® wi e κ>v' G

= inf { 2 INHKII : Θψ(u) = θ ( £ vf ® w, ) , v,

= inf { ^ IIVJIIII^ II : u = ̂  v( x W /, v, € ^ , wt e

= \\u\U
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We conclude that we have a natural isometry:

(5.2) V ®j? W =

Added in proof. It follows from [15, Theorem 3.3], that any com-
plete Z^-matricially normed space is a quotient of £&(H)* for some
Hubert space H. This generalization of Corollary 2.3 may be used to
simplify the proof of Theorem 2.4.
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