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ON AN ANALOGUE OF THE WIENER TAUBERIAN
THEOREM FOR SYMMETRIC SPACES OF THE

NON-COMPACT TYPE

A L L A D I SITARAM

Let X be a symmetric space and G the connected component of the
group of isometries of X. If / G Lι (X), we consider conditions under
which Sp{*/: g e G} is dense in Lι(X) in terms of the "Fourier
transform" of /. This continues earlier work on this kind of problem
by L. Ehrenpreis and F. I. Mautner, R. Krier and the author.

1. Introduction. Let / b e an integrable function on R. Then we have
the famous Wiener-Tauberian theorem: If the Fourier transform / is
a nowhere vanishing function on i?, then the ideal generated by / is
dense in Lι(R). In [EMI] Ehrenpreis and Mautner observed that the
exact analogue of the above theorem is no longer true if one considers
the commutative Banach algebra of ^-bi-invariant Lι-functions on a
non-compact semi-simple Lie group G, where K is a maximal compact
subgroup of G—i.e. Let I\ (G) denote the commutative Banach algebra
of Λ^-bi-invariant Lι-functions on G. For / e I\(G) let / denote
its spherical Fourier transform (see §2). Then there exist functions
/ G I\(G) such that / is nowhere vanishing on the maximal ideal
space M of I\ (G) and yet the algebra generated by / is not dense in
h{G). However when G = SL(2, i?) they were able to show that a
modified version of Wiener's theorem is true i.e. / nowhere vanishing
on M together with the condition that "it does not go to zero too fast
at oo" would indeed imply that the ideal generated by / is dense in
I\(G). (Theorems 6 and 7 of [EMI].) This kind of result has been
generalized by R. Krier [Kl] when G is a non-compact connected semi-
simple Lie group of real rank 1 and by the author for G of arbitrary
rank [Si].

However the problem becomes considerably more difficult if one
asks the following question: Let f\,fi,...,fn be functions in I\{G)
such that their spherical Fourier transforms have no common zeros in
M. If \fxI + I/2I H \-\fn\ "does not go to zero too fast at 00", then
is the ideal generated by f\,...,/« dense in I\(G)Ί In this paper we
try to give an answer to this question when the rank of G is 1—The
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main tool used in a non-trivial extension of the Corona theorem due
to T. Wolff ([Gar]).

At this point it may be appropriate to point out one of the reasons
why the problem becomes much harder for n functions. If /j, fa,..., fn

are functions in Lι (R) such that the Fourier transforms /i, A > Λ
have no common zeros, then one can consider the function g = f* *
f\ + Λ* * fi H 1" fn * fn- Then it is easy to see that g has no zero
in R and hence we can apply Wiener's theorem to the single function
g. However this trick is not available to us in the case of I\(G). This
is because in this case the maximal ideal space M is a certain "strip"
in the complex plane (see §2) and so while g will not have any real
zeros, it may still have complex zeros in M.

Finally we look at the following problem: Suppose X (= G/K) is
a Symmetric Space of the non-compact type. Let / e Lι(X). Can
one get an analogue of Wiener's theorem in this set up? i.e. Can one
give conditions on the "Fourier transform of / " which will ensure that
the (/-translates of / will span a dense subspace of Lι(X)Ί We take
up this question in §4 and observe that in the special case / is K-
bi-invariant, we already have some answers to this question. Further
we use the results of §3 to give an answer to this question in the case
G = SL(2,Λ) and / a general left ^-finite function in L\X).

2. Notation and preliminaries. Unless otherwise stated, G will de-
note a connected, non-compact, semi-simple Lie group with finite cen-
tre, of real rank 1 and K a fixed maximal compact subgroup of G. Fix
an Iwasawa decomposition G = KAN and let a be the Lie algebra of
A. Let a* be the real dual of a and a* its complexification. Let p be
the half-sum of the positive roots for the adjoint action of a on the Lie
algebra g of G. Since dim a* = 1, every element in a* is of the form
λp with λeC. Thus we can identify a* with C (via this identification).

For each λ € a* (= C) let φχ be the elementary spherical function
associated with λ (see [H2] for details). Then it is known that φχ = φχ*9

iff λ = λ1 or λ = -λ'. Let F = {λ: φχ is a bounded function on G}.
Then by a well known theorem of Helgason and Johnson [H2], F =
Λ + ι [ - l , l ] (where i = Λ/=T).

Let I(G) be the set of all complex valued spherical functions on G,
i.e., I{G) = {/: f(kλxk2) = f(x), khk2 e K, x e G}. Fix a Haar
measure dx on G and let Iχ(G) = I{G) n Lι{G,dx). Then it is well
known that I\{G) is a commutative Banach algebra under convolu-
tion and that the maximal ideal space of I\ (G) can be identified with
F/W where W is the two-element group acting on F in the obvious
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way. We shall denote by I°°(G) the space of C°°-spherical functions
and by I™{G) the space of compactly supported functions in 7°°(G).
Let S\(G) denote the ZΛHarish-Chandra-Schwartz space of spherical
functions (i.e. the subspace of I\{G) which are rapidly decreasing—
for a description of the topology on this space see [W]). Then Sχ(G)
is a Frechet space and S\(G) -»I\(G) is a dense inclusion. Let Z(F)
be the space of even functions f on F satisfying:

(i) / is holomorphic in F° (the interior of F) and continuous on
F.

(ii) For all non-negative integers /, k,

dkf(
sup dλk \λ) < oo.

Then (ii) can be used in the obvious way to define a family of semi-
norms on Z(F) under which Z(F) becomes a Frechet space. Now
the well known theorem of Trombi-Varadarajan [TV] says that h -> h
is a topological isomorphism from S\(G) onto Z(F). Here, for any
h G I\{G), the spherical Fourier transform h is defined on F by:

h ( λ ) = / h { x ) φ - λ { x ) d x , λ e F
JG

Then it is well known that h is an even, bounded, continuous function
on F, holomorphic in F°. Also ( / * # ) Λ = / g for f,g e I\{G) where *
denotes convolution in the group G with respect to dx. If / G I%°{G)
then / is well defined on all of C (and in fact will be an entire even
function on C satisfying the Paley-Wiener growth condition).

For ε > 0, let us denote by Fε the subset R + i[-(l + ε), (1 + ε)] of
C. The following theorem has been proved by Ehrenpreis-Mautner for
SL(2, R) in [EMI] and by R. Krier in [Kl]. (For groups of arbitrary
rank such a theorem has been proved by the author in [Si].):

THEOREM A. Let f e I\{G), f(Z) φ0forZeFff twice continu-
ously differentiable in the closed band F with bounded second derivative
in F and

sup
zeF

dZk < oo for k = 0,1,2, and some p e Z + .

Then the ideal generated by f is dense in I\ (G).

Note. The parametrization adopted by Ehrenpreis-Mautner is dif-
ferent from ours—this accounts for the factor e~s4n rather than e~z2n
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in their work. For them, in the variable s = x + iy, it is y that goes to
±00. So it is clear that they require, for rapid decay at 00, the factor
-(x + iy)4n (rather than - (x + iy)2n).

The following non-trivial extension of the Corona theorem due to
T. Wolff ([Gar]) plays a crucial role in this paper.

THEOREM B. Let Fε° denote the interior of Fε, i.e., Fε° is the open
bandR + ί (-(1+ε), (1+ε)) and let H°°(Fε°) denote the set of bounded
holomorphic functions on Fε°. Let g,f\,f2,---,fn belong to H°°(Fε

0)
such that \g{Z)\ < ΣUi \fk{Z)\ for all Z e Fε°. Then there are
gu g2> - >gn in H°°{Fε°) such that g3 = gxfx + g2f2 + + gnfn [i.e.,
g3 is in the ideal generated by f\,...,fn in H°°).

(Remark: This problem is usually stated for the open unit disc but
notice that Fε° is conformally equivalent to the open unit disc.)

For any unexplained notation and terminology in this section, please
see [HI].

3. An application of Theorems A and B. Using Theorems A and B
of §2, we can now prove the result mentioned in the introduction. We
continue to assume that rank ofG is 1.

THEOREM 3.1. Let f\,f2>--"fn € I\(G). Suppose for some ε >
0, /i> A •••>/« extend to bounded holomorphic functions on Fe° and
there exists a positive constant K and a positive integer I such that
ΣU \fj(Z)\ > K\e-Z2l\, Z e Fe°, then the ideal generated by fhf2,
fn in I\{G) is dense in I\{G).

Proof. (Notice that in any case /j, f2,...,/« are in H°°(F°), contin-
uous on F and the condition Σy=i \fj{Z)\ > K\e~z2'\ in Fε° implies
that the //s have no common zeros in F.) By Wolffs theorem (Theo-
rem B in §2) there exist bounded holomorphic functions g\,g2,...,gn

on Fε° such that

g\f\ +g2/2 + '" + gnfn = {Kβ Z ) 3 = K3e 3 Z .

Since the fj and e~z21 are even functions on Fβ°, we can assume that
the gj are also even (otherwise replace gj(Z) by (g/(Z) + gj(-Z))/2).
Thus: e-z2gj{ + + e~zlgnfn = K3e~3Z21 e~zl. Since the gj are
bounded holomorphic functions on Fε° it is easy to see that e~z2 gj
are rapidly decreasing in the smaller strip F i.e. is in Z(F) (see §2 for
definition). Thus it follows from the Trombi-Varadarajan theorem
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that 3hj E S\(G) such that hj = e~z2gj. Also for the same reason
jζ3e-3z2l

e-z2

 = fa for s o m e fr e S\(G). Also note that h satisfies the
condition of Theorem A (take p> /). Hence the ideal generated by h
is dense in I\(G). Thus we have:

i.e.
h * f\ + + hn * fn = A

and since A generates an ideal dense in Iχ (G), from the above equation
it follows that the ideal generated by f \ , . . . , fn is dense in I\(G). (As
M. Cowling pointed out to us, it is possible to use the Corona theorem
directly but the proof becomes simpler if one uses Wolffs extension
of the Corona theorem.)

4. Symmetric spaces. Let G and K be as before, except that for
the moment we do not make any assumptions on the rank of G. Let
X = G/K be the corresponding Symmetric Space of the non-compact
type and denote by Lι(X) = Lι(G/K) the subspace of Lι(G) of right
^-invariant functions. Now G acts on X by left action and hence on
Lι (X) by left regular action. Notice we have I{ (G) c Lι (X) c L1 (G),
a chain of closed subspaces. The problem considered in the previ-
ous section can be viewed now in a slightly wider context. Given
/ € /j ((/), we have shown that under certain conditions on the spher-
ical Fourier transform /j the ideal generated by / is dense in I\ (G)—
this is equivalent to saying that the left G-translates of / span a dense
subspace of Lι(X). (This follows from the well known equivalence
between closed left (/-invariant subspaces and closed subspaces in-
variant under left convolution and the fact that the smallest closed
left G-invariant subspace of Lι(G) containing I\(G) is LX(X).) So a
natural question to ask is: Given / e Lι(X), give conditions on the
"Fourier transform" of / to ensure that the left (/-translates of / span
a dense subspace of Lι(X). Motivated by results for I\(G) we make
a conjecture regarding this and observe that the conjecture holds in
certain special cases. Before formulating the conjecture we need to
introduce some more notation—for this we have found the exposi-
tion in the introduction of [BeS] very useful and we follow this very
closely.

Consider as before the Iwasawa decomposition G = KAN and let
M be the centralizer of A in K. For / lea*, let πχ be the spherical
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principal series representation of G on L2(K/M) given by:

(πλ(x)V){b) = e^iλ-P^x~{b^V{k{χ-χb)), b e K/M,

where we use the Iwasawa decomposition

y = k(y) expH(y) n(y) G KAN, y e G,

and p denotes as usual half of the sum of the positive restricted roots.
Then one knows that for the Harmonic Analysis on G/K, these are the
only relevant representations of G. Further for λ G a*, πχ is unitary
and irreducible. One can show that for / G Lι(X) and λ G a*, the
"Fourier transform":

λ-**λ{f)= ί f(x)πλ(x)dx
JG

is the bounded linear operator on L2(K/M) given by

(πλ(f)V)(b) =([ V(u)du) ί eW-<>W*~ι»f(g)dg.
\JK/M J JG

(Thus we can identify, if we choose, πλ(f) with the function / on a* x
K/M given by: f{λ,b) = fGe^iλ-^H^~lb^f{g)dg—this is essentially
Helgason's Fourier transform on a symmetric space, but we will not
be using this identification.) Fix an orthonormal basis VQ,V\,V2,... of
L2(K/M) such that each Vt transforms according to some irreducible
finite dimensional representation of K and Vo is the constant function
1 on K/M. Then one knows that for / G Lι{G/K), πλ(f)Vi = 0
if / ψ 0 and thus πχ(f) is completely determined by its action on
VQ. NOW let us further assume that f is left K-finite, (i.e. all the left
translates of / under K lie in a finite dimensional subspace). Then if
/ is a non-trivial function, for some non-trivial bounded continuous
functions ai,a2,...,an and i\, ίι,...,/„ G Z + U {0}, we have:

Now

ak(λ) = (πλ(f)V0, Vik) = / (πλ(x)V0, Vik)f{x)dx.
JG

Now one can show (by comparing with elementary spherical func-
tions) that x —> (πλ(x)V0, Vik) is a bounded function on G if λ is in
the "Helgason-Johnson" strip F = a* + iCp, where Cp=convex hull
of {sp: s G W) and W is the Weyl-group of the pair (G,A). Thus
from this one can show that, as for the spherical Fourier transform,
each fl|(A) extends to a continuous function on F, holomorphic on
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F°. (Note: We are not claiming that πλ is a uniformly bounded
representation for λ e F, but merely that each spherical function
x —• (πλ(x)V0, Vik) is bounded—the question of which representations
are uniformly bounded is much deeper. For recent work on this see
[C], [St].) Thus if / is left ΛΓ-finite as above, we can extend the notion
of nχ(f) for λ not only in a* but in F by using (*). Thus for each
λ G F9 πλ(f) is a finite dimensional operator (of dimension < n) and
further λ —• πχ(f) is holomorphic in F° and continuous on F. We are
thus in a position to formulate our general conjecture:

(C): Retaining the above notation, if πλ(f) is nowhere vanishing (as
an operator) for λ e F and if " | | π A ( / ) | | does not go to zero too fast at
oo", then the left (/-translates of F span a dense subspace of Lι (G/K).

REMARKS, (i) nλ(f) is nowhere vanishing as an operator for λ e F
is equivalent to saying that the «-functions a\9...,an do not have a
common zero in F.

(ii) We are keeping the phrase "does not go to zero too fast at oo"
imprecise for the moment.

(iii) If Vik Φ VQ, then a^λ) necessarily vanishes at -ip. (This is
because the function {π-ip(x)V0, Vik) is identically zero on G if Vik Φ
Ĵ Q.) Therefore under the condition nλ(f) is nowhere vanishing on
a* + iCp, one of the functions V^,..., Vik must be Vo. Thus after
reordering if necessary, we may assume Viχ = Vo. In this case a\(λ) is
just the spherical Fourier transform of / .

If / is a ΛT-bi-invariant function, then πχ(f) is essentially the spher-
ical Fourier transform (see the last line of (iii) above) and Theorem
B (due to Ehrenpreis-Mautner and R. Krier) and its generalization to
groups of arbitrary rank (Theorem 3.3 in [Si]) together tell us that the
conjecture is verified in this case.

In the next part of this section we verify (a slightly weaker form of)
the above conjecture for G = SL(2, R). For the rest of this section let
G = SL(2,i?) andK = SO(2). In this case M = {±1}, {F/}£0 are just
those characters of K that agree on ±1 and Vo is the trivial character
of K. In this case a* can be identified with R via Z —• Zp and with
this identification a* = R and F = R + /[-1,1]. Thus if / e LX{X) is
such that it is left ^-finite and πλ(f) is nowhere vanishing on F, write

πλ(f)V0 = aι(λ)V0 + a2(λ)Vi2 + • • • + an(λ)Vin
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(see remark (iii) following (C)), where a\,a2,...,an are non-trivial
bounded holomorphic functions in F° and continuous on F. Then we
have the following theorem:

THEOREM 4.1. Let f,a\, a2, ..., an be as above. Assume that for some
fixed (and small) ε > 0, a\, a2,..., an extend to bounded holomorphic
functions in F®. Further assume that for λ G F£9

for some positive constant K and positive integer I. Then the left G-
translates off span a dense subspace ofLι(X).

Proof. (We will use some facts about Harmonic Analysis on SL(2, R)
from [EM19293]. (However the reader is warned that the parametriza-
tion used by Ehrenpreis-Mautner is different from ours.) For a fixed
character V on K let LX{V\G/K) denote the subspace of functions /
in Lι(G) such that f(k{xk2) = V{kx)f{x), \/khk2 e K. Similarly let
Lι(K\G/V) be the collection of integrable functions / such that

f(kxxk2) = V(k2)f(x), Vfci, k2 e K

Now consider the orthonormal basis {Vo, V\, V2,...} of L2(K/M) and
as explained before write

nλ(f)V0 = a{(λ)V0 + a2(λ)Vi2 + + an(λ)Vin.

(See statement of Theorem 4.1 and the discussion immediately pre-
ceding the theorem.))

If / G Lι(K\G/V), then its "Fourier transform" a{λ) defined by
πχ{f)V — a(λ) Vo will satisfy a certain transformation rule

a(-λ) = (p(λ)/p(-λ))a(λ)

for a certain explicitly computable polynomial p(λ) (which will of
course depend on V)—see [EM1,2,3] for details. Then using the
work in [EM1,293] characterizing the Fourier transforms of rapidly
decreasing functions, one can find functions g^ in the Harish-Chandra-
Schwartz subspace of rapidly decreasing function of L1 (K\G/Vik) such
that the Fourier transform of g^ is given by p^λje"^1. Here Pk(λ)
is a certain polynomial and (provided we choose e sufficiently small)
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Pic(λ) has no zero in Fε except possibly at +/. Also p\(λ) = 1 (where
Viχ = VQ). Further gk * / is a AΓ-bi-invariant function whose spherical
Fourier transform is precisely pk{λ)e~λ21 ak{λ). Now consider the n
j^-bi-invariant Lι-functions (i.e. functions in I\(G)):

gl*f -->gn*f

whose spherical Fourier transforms are given by:

Px{λ)e-λ21 aλ{λ) (=e-λ2laι(λ))f

P2(λ)e-λ2!a2(λ),...,pn(λ)e-λ2lan(λ).

Also, as observed earlier a2(-i) = a$(-i) = = an(-i) = 0. Hence
aι(-i) Φ 0. But since a\ is an even function (being the spherical
Fourier transform of / ) , a\(i) = a\(—i) φ 0. Also p\(λ) = 1 and so
Pι(—i) = p\{ϊ) Φ 0. The only possible zeros of pk in Fe are at +/
and also we have the estimate X)jJ=1 |Λ^(A)| > K\e~χ2l\. Putting all the
above together we obtain that the new set of functions:

pι(λ)e-λ2laι(λ),...iPn(λ)e-λ2lan(λ)

also satisfy a similar estimate in Fε° i.e.

k=\

and so by Theorem 3.1, it follows that the ideal generated by #i *
/• - >gn * / in h (G) is dense in I\ (G). However all the above func-
tions are left convolutions against the single function / and so it will
follow easily that the left G-translates of / span a dense subspace of
Lι(G/K)—see the discussion in the beginning of this section. This
completes the proof of Theorem 4.1.

The above proof relies on reducing the problem to the ΛΓ-bi-invariant
case and then using Theorem 3.1. This was achieved easily in this case
because for SL(2,i?), the ΛT-types are all one dimensional. However
we feel that with some (perhaps non-trivial) modification this method
will also work for general rank-1 groups.

5. Concluding remarks. The problem dealt with in this paper is a
kind of spectral synthesis problem for Lι(G/K). As is evident from
this paper, this kind of problem seems quite difficult—this is not al-
together surprising considering the difficulty even in Lι(R). For a
detailed treatment of spectral synthesis for I\(G) see [K2].
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However the space C°°(G/K) seems much more tractable (at least
in the case of rank-1). See [BaS], [BeS], [BeZ], [Waw] etc. The papers
of Berenstein-Zalcman [BeZ] and Berenstein-Shahshahani [BeS] are
particularly noteworthy and give interesting connections between the
Pompeiu Problem and spectral synthesis in C°°{G/K).

If one considers compact symmetric spaces, then the analogue of
Wiener's theorem does hold. More precisely, let G/K be a compact
symmetric space (for a suitable compact connected group G and closed
subgroup K c G). Then we claim the following theorem is implicit
in the work of Berenstein-Zalcman [BeZ] (though not quite stated in
this fashion):

PROPOSITION 5.1. Let f e Lι{G/K). If for each classΛ irreducible
representation π of G, π(f) Φ 0 {as an operator), then the left G-
translates of f span a dense subspace ofLι(G/K).

(Of course a direct proof of the above can be given using properties
of Lι{K\G/K) and the Peter-Weyl theorem. A representation {π,H)
of G is said to be class-1 if 3V φ 0 in H such that π{k)V = V,
Vk e K.)

Now a few words about non-compact symmetric spaces of the Eu-
clidean type i.e. Rn with the usual Euclidean structure. For simplicity
let us take n = 2 i.e. R2. Then R2 can be viewed as Af(2)/SO(2)
where M{2) is the group of (proper) rigid motions of the plane and
SO(2) the group of rotations. Let {πχ}χeR+ be the principal series of
representations of M{2)—see [Su] for details. Then:

PROPOSITION 5.2. If f e Lι{M{2)/SO{2)) and πλ{f) φ 0 {as an
operator) for each λ e i?+ and \{f) φ 0 {where 1 denotes the trivial
one dimensional representation ofM{2)), then the left G-translates off
span a dense subspace ofL1 {M{2)/ SO(2)) {i.e. the rigid motion trans-
lates of f span a dense subspace of Lι{R2)—if we view M{2)/SO{2)
as R2 and f as an Lx-function on R2).

This follows from the fact that if one views / as a function on
i?2, then the given condition is equivalent to: /(0) Φ 0 and for each
λ e i?+, 3xλ in R2 with \\xλ\\ = λ and f{xλ) φ 0. (Here Λ denotes the
usual Euclidean Fourier transform.) Our claim then follows from a
slight variation of the usual Wiener-Tauberian theorem—for instance



WIENER'S THEOREM FOR SYMMETRIC SPACES 207

one can use Theorem 9.3 in [R]. Alternately, this will follow from a
more general fact proved in Proposition 6.1 in [BST].

A (two sided) analogue of Wiener's theorem (due to R. Gangolli
([Gan]) is known for the full motion group. (See also [We].) So it
would be interesting to have a modified version of Wiener's theorem
for the full semi-simple Lie group G.

Finally a few words about the corresponding problem for L2 -func-
tions on symmetric spaces of the non-compact type. As observed
in [EMI] and [Si], if / G L2(K\G/K) and the spherical Fourier
transform / of / is non-zero a.e. (μ) on a* (where μ is the Harish-
Chandra Plancherel measure on a*), then {g * / : g e C°°(K\G/K)}
is dense in L2(K\G/K). This easily leads to the following: If / e
Lι(G/K) n L2{G/K) and πλ(f) φ 0 except possibly for λ in a set of
zero //-measure on a*, then Sp{^/: g e G} is dense in L2(G/K). How-
ever because of the holomoφhy of the spherical Fourier transform of
L1-functions in a certain tube in a* around a*, one can easily prove
that if / is a non-trivial function in Lι(G/K), the set {λ: πλ(f) = 0}
has zero //-measure. This combined with the observations made above
leads to:

PROPOSITION 5.3. Let X (= G/K) be a symmetric space of the non-
compact type and f a non trivial function in Lι (G/K) Γ)L2(G/K). Then
Sp{fΛ geG} is dense in L2(G/K).

In view of this a natural question to ask is: Suppose G is a lo-
cally compact unimodular group, G the unitary dual of G and μ the
Plancherel measure on G. If / e Lι(G) nL2(G) has the property
that for almost all π (with respect to μ) in G, π(f) Φ 0, then is the
smallest closed linear subspace containing all the two-sided translates
of / equal to L2(G)Ί This question (in fact a more general version of
this) has been settled in the affirmative by C. E. Sutherland [Sut]. Also
in his paper the Inversion of Wiener's theorem for general Gelfand
pairs (G, K) is discussed.
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thanks Ramesh Gangolli for useful conversations and Somesh Bagchi
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