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FINITELY GENERATED ALGEBRAS AND
ALGEBRAS OF SOLUTIONS

TO PARTIAL DIFFERENTIAL EQUATIONS

JOHN T. ANDERSON

We consider two types of uniform algebras A on the closure Ω of
a domain Ω c R " : those generated by finitely many smooth functions
and those consisting of solutions to Lu = 0 where L is a smooth
complex vector field on Ω. Under certain conditions we prove the
existence of one of two types of analytic structure in the maximal
ideal space MA of such an algebra: local foliations of Ω by complex
manifolds on which the functions in the algebra are holomorphic, or
foliations of a subset ofMA\Ω by analytic disks. Some open questions
suggested by this line of inquiry are discussed.

1. Introduction. It is a central problem in the theory of uniform
algebras to uncover general hypotheses on a proper subalgebra A of
C(X) which imply the existence of analytic structure in the maximal
ideal space MA of A (see [Br] or [G]). The purpose of this paper is to
exhibit under certain conditions such analytic structure in the maximal
ideal spaces of the following two classes of algebras:

1. Finitely generated algebras. Suppose fχ9..., fk are C°° functions
in a neighborhood of the closure of a bounded, smoothly bounded
domain Ω c R " , and suppose that f\,...,fk separate points on Ω.
Let C[/i,..., fk] be the algebra of polynomials in / i , . . . , fk, and let A
be the closure of C[/i,..., fk] in C(Ω). Then A is a uniform algebra
on Ω. Assuming that A is nowhere locally dense in the continuous
functions, and that F = (f\, ...,&) is an imbedding of Ω into Ck,
then we obtain analytic structure in MA (Theorem 3.2).

To study the algebra of polynomials in f\,...,fk, we consider the
map F = (/i,..., fk) of Ω into Ck

9 which induces an isomorphism of A
with P(K), the algebra of uniform limits of polynomials in (z\, -..,zk)
on K = F(Ω). If F is a diffeomorphism, then we can use well-known
results concerning real submanifolds of C^ to study the algebra P(K).
These include a theorem of Hόrmander and Wermer [H-W] on poly-
nomial approximation on totally real submanifolds of Cn, a theorem
of Freeman on complex foliations of real submanifolds of Cπ, and a
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theorem of Hill and Taiani [H-T] on the existence of analytic disks
with boundaries on prescribed submanifolds of Cn.

2. Algebras of solutions to partial differential equations. Let L be a
first-order linear partial differential operator

7=1

with complex-valued coefficients α7 defined and smooth in a neigh-
borhood of Ω, Ω as in (1). Let AQ = {u e Cι{Ω): Lu = 0 in Ω}.
The closure A of Ao in C(Ω) will be a uniform algebra on A provided
the functions in A separate points on Ω. This is by no means guar-
anteed. (See [N], for example.) A connection between the class of
finitely generated algebras and the algebra of functions annihilated by
a vector field L is provided by the Baouendi-Treves theorem, which
gives conditions under which all solutions to Lu = 0 can be locally
uniformly approximated by polynomials in a fixed set of solutions
fι,...,fk. Thus it is natural to assume that there exist smooth func-
tions f\,...,fk in AQ such that F = (fγ, ...,fk) is an imbedding of Ω
into Ck. We can then employ the same techniques used in the finitely
generated case. However, we have been able to carry this out only
for n = 3 (Theorem 4.1). In dimension 4, we are led to a solvability
question which can be stated as follows: Let L be a vector field on C2

of the form

+ a2d/dz2

with smooth coefficients a\9a2 Does the equation Lu = 0 always have
non-holomorphic solutions?

Two examples will illustrate types of analytic structure possible in
MA:

1. Let Ω be the unit ball in R3, with coordinates {x\,x2,X3)> and
consider the algebra generated by the functions f\(x) = X\ + 1x2,
f2(x) = X3. Then A consists of continuous functions holomorphic
in the variable X\ + ix2- Thus Ω is foliated by sets {̂ 3 = constant}
on which functions in the algebra are holomorphic. This algebra can
also be defined as the closure in C(Ω) of {u e C 1 (Ω): Lu = 0}, where
L = d/dxι + id/dx2.

2. Let Ω be as in example 1 and let A be the algebra generated by

/1 {x) = x\ + i*2> fi{x) = *3 + i{x\
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The map F = {f\,f2) imbeds Ω onto a compact neighborhood K of the

origin in the hypersurface Im(z 2 ) = \z\\2. The domain Im(z 2 ) > \zχ\2

is foliated by disks

A s > t : z 2 = s + it, \zι\ < t 1 ' 2 , ί > 0

whose boundaries lie on M. By the maximum principle, each ele-
ment of P(K) extends to the union of all those disks whose bound-
aries lie in K, and is holomorphic on each disk. Thus MΛ contains
a four-dimensional set foliated by analytic disks to which elements
in A extend holomorphically. Locally this algebra can be defined as
the closure of the solutions to Lu = 0 where L is the Lewy operator:
L = d/dxι + id/dx2 - 2i{xx + X2)d/dx3.

In §2, we give definitions, preliminary lemmas and statements of the
theorems needed in §§3 and 4. In §3, we give the theorem on analytic
structure in the maximal ideal space of finitely generated algebras. In
§4, we give a similar theorem for algebras of solutions to Lu = 0
in three dimensions, and discuss the solvability question posed above.
We also discuss some questions related to the characterization of these
algebras.

The results of this paper formed part of the author's doctoral dis-
sertation written under the direction of John Wermer at Brown Uni-
versity. The author wishes to express his thanks to Professor Wermer
for his direction and encouragement.

2. Notations and preliminaries. For any compact Hausdorff space
X, C(X) denotes the space of continuous complex-valued functions
on X provided with the topology arising from the uniform norm

xex
A closed point-separating subalgebra A of C(X) containing the con-
stants is called a uniform algebra on X. The maximal ideal space
MA of A can be identified with the set of non-zero homomorphisms
φ: A —• C, and is compact in the weak-* topology. X is imbedded as
a compact subset of MA by the map x —• φx, where ψχ(f) — f(x) for
/ e A. Each / e A extends to / e C(MA) by setting f(φ) = φ(f) for
φeMΛ.

If K is any compact subset of Ck

9 P{K) will denote the closure in
C(K) of the algebra C[zj,. . ., zk] of polynomials on Ck. P{K) is a
uniform algebra on K. The polynomial hull K of K is defined as

K = {zeCk:\P(z)\<\\P\\κforaΆPeC[zu...9zk]}.
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K is said to be polynomially convex if K = K. MP^ can be identified
w i t h K v i a the m a p φ —• {φ{z\),. . . , φ ( z k ) ) .

We will be concerned with the case when K is a compact subset
of a regularly imbedded C°° real submanifold M of an open subset
U of Ck. A good reference for what follows is the survey article of
Wells [W]. For each p eM, HPM denotes the space of vectors in the
complexified tangent space CTPM to M at p of the form

7=1

Let APM = HPM, and let hpM be the dimension over C of HPM.
We will assume that M is given as follows: There exists a domain

Ω c R n , and complex-valued functions /i, . . . ,Λ s u c ^ that the map
F{χ) = (/i(JC), . . . , fk{x)) is a diffeomorphism of Ω with its image in
Ck. The following facts are well-known; for the sake of completeness
we include the proofs.

LEMMA 2.1. (1) hpM = n - r, where r is the rank over C of

(2) {z G M: hpM < m} is open {possibly empty) for each integer m.
(3) n/2 > hpM >n-k.

Proof. Since F is a diffeomorphism, and F*(dzi)(p) = df(q), 1 <
i < k, r is also the rank over C of {dzι(p)f..., dzk(p)}. Since APM
is orthogonal to the dz/'s, hpM = dim c HPM = n-r. (2) and (3) are
immediate consequences.

If HPM = {0}, M is said to be totally real at p\ if this holds for
all p e M, M is said to be totally real If hpM is constant on M,
M is said to be a Ci? submanifold of £/, and we write hM for /^M.
We will normally omit mention of U and refer to M simply as a CR
submanifold. HM will denote the bundle whose fiber at p is HPM.
Sections ofHM are known as holomorphic vector fields. If hM = n-k,
M is said to be generic.

\i M cCk and M1 c Ck> are Ci? submanifolds and φ: M -> Λf
is a diffeomorphism, then ^ is said to be a Ci? equivalence of Λf and
Λ/7 if φ*(HpM) = Hφ^M! for all p e M. If φ is a CR equivalence,
then / G CΛ(Af) if and only if f o φ~ι e CR(Mf). Any holomorphic
map φ: Ck —> C*' restricting to a diffeomorphism of M with M' is a
Ci? equivalence of Λf and Λf'. The following lemma will allow us to
replace a given CR submanifold locally by an equivalent generic one.
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LEMMA 2.2. Let M = F(Ω), F = (fχ,...,fk) as above be a CR
submanifold with hM = j. Then in a neighborhood V of a given point
q e M, we can find a linear map Ψ: C* -+ Cn~j so that Ψ is a CR
equivalence ofV with a generic CR submanifold N c C"~~Λ

Proof. Let p = F~ι(q). By Lemma 2.1, {dfχ{p),...,dfk{p)} has
rank r = n - j , so we can choose g\,...,gn-j linear combinations of
the f so that

dg\ (p) = dx\ + idx2,

dgn-j(p) = </*„_,• + idxn-j+ι

if n - j is odd, or if n - j is even,

dg\{p) = dxχ + idx2,

dgn-j-i(p) = </&,-;-1

dgn-j(p) = dxn-j+ι.

In either case, the rank of

is at least 2{n-j) > n by Lemma 2.1. So locally G = (g\,..., gn-j) is a
diffeomorphism. We define Ψ so that G = Ψoi% i.e., if & = E?=i /̂///
then Ψ = (ψι,..., ^ _ 7 ) where ψt(z) = X)f-i α//z/ i s the desired map.

A function u e C(Af) is said to be a GR function on the open
subset V of M if Zu = 0 (in the sense of distributions) whenever Z is
a holomorphic vector field on M, and we write w e C!?(K). If w is a
uniform limit of smooth functions un such that Lun = 0, then Lu = 0
in the sense of distributions. Thus, if K is a compact subset of M, and
w G ̂ (A^), then w is a Ci? function on the interior of K. The following
theorem of Baouendi and Treves provides a local converse (Corollary
2.4 below) to this statement and is fundamental in the study of CR
functions.

THEOREM 2.3 [B-T]. Let Lι,...,Lm be smooth complex vector fields
on a domain Ω c Rn, satisfying the following conditions:

(1) {L\(p),...,Lm(p)} has rank m overC at each p e Ω.
(2) For each i, j , [Li, Lj] is a linear combination ofL\,..., Lm.
(3) For some po € Ω there exist functions f\,...,fn-m e C°°(Ω)

such that dfι(po),...,dfn-m(po) are linearly independent over C and
Ljfj = 0 in Ω, 1 < / < m; 1 < j < n - m.



6 JOHN T. ANDERSON

Then there exists a neighborhood V of PQ such that ifu is a con-
tinuous function satisfying Ltu = 0 in the sense of distributions in
Ω, 1 < i < m, then u is a uniform limit on V of polynomials in

f\> - - -> fn-m

COROLLARY 2.4. Let M be a CR submanifold, M = F(Ω) c Ck

f

and suppose u G CR(M). For each p G M, there exists a compact
neighborhood K of p in M such that u e P(K).

Proof. Let Z\,...,Zm be a basis for the sections of HM near p.
Then dzι(p),...,dzk(p) has rank n - m by Lemma 2.1, so we can
apply Theorem 1.3 to F~ι(Zi) = Lt (note that [ZifZj] e HPM, so
condition (2) is satisfied) and n — m of the f to obtain the result.

We will be interested in local properties of C[z\,..., zk] on M\ i.e.,
P{K) when K is a neighborhood of a given point p G M. In the totally
real case we have the following result of Hόrmander and Wermer:

THEOREM 2.5. If M is totally real and K is a polynomially convex
subset ofM, then P(K) = C(K).

Combining Theorem 2.5 with the following lemma gives us the de-
sired local information.

LEMMA 2.6. If M is totally real then M has a neighborhood basis
of polynomially convex sets.

Proof. The proof of this lemma is essentially contained in [H-W].
It can also be derived from a reading of the proof of Theorem 2.3 in
the case where there are no vector fields (m = 0). For this observation
we are indebted to J. Polking. See [A] for details.

If M is not totally real, then the question of whether or not the
sections of HM are tangent to complex submanifolds of M becomes
important. A collection Σ of submanifolds of an open subset U of M
is called a foliation ofU by leaves of dimension m (m < ή) if we can
choose local coordinates {x\,...,xn)v&U such that Σ is the collection
of submanifolds Σc = {xλ = c\,...,xn-m = cn-m}, {c\,...,cn-m) G
Rn~m. Let V be a neighborhood of p G Ck. A complex foliation Σ of
V Π M is a foliation of V Π M such that each leaf of Σ is a complex
submanifold of V.
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Given p e M, there exists a neighborhood V of p in Ck and 2k-n
real valued functions p\,...,Pin-k £ C°°(K) such that

and dpi,...,dp2n-k a r e linearly independent on MΠ F. A Ci? sub-
manifold M which is not totally real is said to be Levi-flat at p e M
if whenever

7=1

then

] Γ aiajd
2ρs{p)/dzidzj = Q, s = l,...,2k-n.

This condition is independent of the choice of defining functions
Pi> ->Pin-ki a n d is invariant under CR equivalences. A theorem of
Freeman states that Levi-flatness implies the existence of local com-
plex foliations.

THEOREM 2.7 [F]. If the CR submanifold M is Levi-flatfor all p in
a neighborhood of po in M, then there exists a neighborhood V of po
in Ck and a complex foliation ΣofVπMby leaves of dimension hM,
such that for any leafΣc, and any point q € Σc, HqM = HqΣc.

Clearly, if K is a compact neighborhood of /?o> a nY / £ P{K) is
holomorphic on each leaf of Σ.

Finally, suppose M is not Levi-flat at PQ. One can show the exis-
tence of analytic structure in K\K for compact neighborhoods K of po
by a method due to Bishop [B], and developed by Hill and Taiani. An
analytic disk D is the image of a continuous map G from the closed
unit disk {\z\ < 1} c C into Ck which is holomorphic on \z\ < 1. By
the maximum principle, if 3D c K, then D c K.

THEOREM 2.8 [H-T]. Assume M is generic and M is not Levi-flat
at PQ. Then there exists a neighborhood V ofpo in M and an (n + 1)-
dimensional submanifold Mf foliated by analytic disks such that V is
the union of the boundaries of the disks.

3. Finitely generated algebras. Throughout this section Ω will be
a domain in R" with compact closure Ω and C°° boundary. We will
consider algebras of the form C[f\,..., f^\ where f \ , . . . , fk are smooth
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complex-valued functions on Ω. In particular we assume:
1. The map F(x) = (f\(x),. ..,fk(x)) is a diίfeomorphism of a

neighborhood U of Ω with its image in Ck.
2. C[/i,..., fk] is nowhere locally dense: for each open subset V of

Ω, C[/i,..., fk] is not dense in C(V).
We note that under these assumptions F induces an isomorphism

of the closure of C[/i,..., fk] in C(V) with P ( J F ( K ) ) for any compact
V c Ω. We let ^ be the closure of C[fh ...,fk]in C(Ω).

LEMMA 3.1. Under assumptions (1) and (2), ybr #2c/z p e Ω,
/ of {df\(/?), ...,dfk(p)} is less than n.

Proof. If the rank of {df{(p), ...,dfk(p)} = Λ, and M -
then M is totally real in a neighborhood (7 of /^(p), by Lemma 2.1.
By Lemma 2.6 there exists a compact neighborhood K of JF(/?) with
K = K and K c U. By Theorem 2.5, P ( # ) - C{K). But then

..,Λ] *s dense in F~ι(K), contradicting the assumption that
i,..., fk] is nowhere locally dense.

THEOREM 3.2. Under assumptions (1) and (2) one of the following
alternatives holds:

(a) For each point p in an open dense subset o/Ω, there is a neigh-
borhood V of p and a complex foliation ΣofV such that each f e A
is holomorphic on the leaves of Σ, or

(b) There exists an (n + \)-dimensional submanifold N of some CN

foliated by analytic disks and a I-I continuous map φ: N —• MA such
that for each f E A, f o φ is holomorphic on each disk.

Proof. Let M = F(U). For j = 0, 1,2,..., let Ω7 = {x e Ω:

hF(X)M = j}. By Lemma 3.1, Ωo is empty. Note that U"= 1 Ω7 is open

and dense in Ω, and that F(Ωj) is a Ci? submanifold.

Let Xj = {x e Ω ; : Mj is not Levi-flat at F(x)}. We have two al-
ternatives:

1. Xj is empty for all j .
2. For some y, X7 is not empty.

If (1) holds, then for each p e Ω7, by Theorem 2.7, there exists com-
plex foliation Σ of a neighborhood V of F(p) by complex manifolds
of dimension j . By the remark following Theorem 2.7, alternative (a)
then holds.

If (2) holds, fix Xo in Ω7 such that M is not Levi-flat at F(XQ). By
Lemma 2.2, we can find a neighborhood U of ZQ = ^(^o) i n -Λ/
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a linear CR equivalence Ψ: U —• M1 c C n " j so that Mf is generic at
Ψ(ZQ) = w>o and not Levi-flat at w0. Now for each f € A, / o f " 1 e
P{U) c CR(U). Since Ψ is a Ci? equivalence, foF'ιoψ'1 e CR{Mf).
By the Baouendi-Treves theorem there exists a compact neighborhood
K of wo in M1 so that foF~ιo ψ " 1 e P(K). Let JV be the (n + 1)-
dimensional submanifold given by the Hill-Taiani Theorem, which is
foliated by analytic disks whose boundaries fill out K. By the remarks
preceding Theorem 2.8, for each f e A, / o f " 1 o ψ " 1 extends to an
element / of P(N). Consider the map φ: N -» MA given by φ(w) =
φw, where φw(f) = f(w). If G = Ψ o F9 G = (g b . . . ,^ Λ _ 7 ), then
/̂ G ̂ ί and £, (H>) = ιv/, where (w\,..., ww_7) are coordinates on Cn~K

Thus 0(w) = W/, which implies that ^ is one-to-one. If h € A and
w G iV are fixed then the continuity of h implies that for each ε > 0,

{w'eN:\φ(w)(h)-φ(w')(h)\<ε}

is open in JV, so φ is continuous.

4. Algebras of solutions to partial differential equations. Let Ω be a
domain in R" as in §3. L will be a vector field on Ω,

7=1

where the coefficients cij are complex valued functions of class C°°
in a neighborhood of Ω. Set Ao = {u e Cι(Ω): Lu = 0 in Ω}. We
note that Ao is closed under addition and multiplication. Let A de-
note the closure of Ao in C(Ω). If u e A, then Lu = 0 in Ω in the
sense of distributions, so A c ^ , where Ad = {w € C(Ω): Lw =
0 in the sense of distributions on Ω}. Ad is a closed linear subspace
of C(Ω). This presents some interesting questions on the characteri-
zation of A:

1. Is Ad closed under multiplication?
2. Is A = 4/?
Note that the first question is local, for if a distribution vanishes

on a neighborhood of each point in Ω, it vanishes everywhere on Ω.
A positive answer to the second question would of course imply a
positive answer to the first.

Suppose that L satisfies the Baouendi-Treves conditions, which in
the case of a single operator reduce to:

1. L is non-vanishing on Ω.
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2. For each p0 e Ω, there exist functions /!,...,Λ_i £ C°°(Ω)
such that dfι(po),...,dfn-ι(po) are linearly independent over C and
Lft = 0 on Ω, 1 <i<n- 1.

Then, by the Baouendi-Treves theorem, any element of Ad is locally
a uniform limit of polynomials in f\,...,fn-\- The same holds for
products of elements in Ad, which implies that Ad is closed under
multiplication. We do not know whether under these conditions A =
Ad.

If L is hypoelliptic, for instance if L is the Cauchy-Riemann op-
erator on Ω c C, then A = Ad. Moreover, it is not hard to show
that if Ω is foliated by two-dimensional manifolds carrying a complex
structure with respect to which L is the Cauchy-Riemann operator,
then A = Ad. Also if L is equivalent to the tangential CR operator
on an open subset of the boundary of the unit sphere in C2, then an
argument of H. Lewy shows that A = Ad. Both these cases are treated
in detail in [A].

Next we turn to the question of analytic structure in MΛ. We will
assume the following:

1. There exist functions / i , . . . , / f c € C°°(Ω) n Ao such that the map
F = (/i,..., fa) is a diffeomorphism of Ω with a submanifold M of
an open subset of Ck.

THEOREM 4.1. Under condition 1, ifn = 3, then either
(a) For each p e Ω, there exists a neighborhood U ofp and a complex

foliation ofU such that each f eA is holomorphic on the leaves of the
foliation, or

(b) There exists an open subset V ofC2 foliated by analytic disks and
a one-to-one continuous map φ: V —> MA such that whenever f e A,
foφ is holomorphic on each disk

Proof. Let M = F(Ω) c Ck. Then Z = F*(L) is a non-vanishing
holomorphic vector field on M. Since M is three-dimensional, M is
a CR submanifold with hM = 1. We have two cases:

1. Suppose M is Levi-flat everywhere. By Theorem 2.7, for each
q e My there exists a neighborhood W of q in M and a complex
foliation of W such that F*(L) is the Cauchy-Riemann operator on
the leaves of the foliation; hence foF~ι is holomorphic on the leaves
of the foliation for each / eA. Thus alternative (a) holds.

2. Suppose there exists p e Ω such that M is not Levi-flat at q =
F(p). By Lemma 2.2, there exists a linear map Ψ: C^ —• C 2 so that
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Mr = Ψ(Af) is a generic CR submanifold in C2, not Levi-flat at w =
Ψ(q); Moreover, if G = Ψ o F, G = {gu &), then ^ (p) and dg2(p)
arc linearly independent over C, so the requirements of the Baouendi-
Treves theorem are met. Thus in a neighborhood of p in Ω, each
/ e A is a uniform limit of polynomials in g\ and # 2 It follows
that f o G~ι G PCK") for some compact neighborhood K of w in Λf'
whenever f e A. By the Hill-Taiani theorem there exists a four-
dimensional submanifold V (thus an open subset) of C2 foliated by
analytic disks with boundaries on Mr filling out a neighborhood K' c
K of w in M'. We obtain a map φ: V —• Λf̂  given by

where / is the extension of / o G~ι to F. We conclude exactly as in
the proof of Theorem 3.2 that φ is 1 — 1 and continuous.

The proof of Theorem 4.1 shows that the existence of an imbedding
F with components in A implies that the algebra is locally finitely gen-
erated, by the Baouendi-Treves theorem, and so we expect the situa-
tion to be similar to that in Theorem 3.2. However, when we consider
the case n = 4, the existence of such an imbedding does not guar-
antee enough solutions (three with linearly independent differentials
are required) to apply the Baouendi-Treves theorem. For example, if
L = αd/dzι + bd/dz2 where α and b are smooth functions on a do-
main Ω in C2, then Z = (z\, z2) is an imbedding of Ω into C2 whose
components are annihilated by L. For such an L, there need not ex-
ist three linearly independent solutions to Lu = 0. This leads to the
following question:

If L = αd/dz\ + bd/dz2 must there be non-holomorphic solutions
to Lu = 0?

If α and b are real-analytic, then the answer is yes, by a simple
application of the Cauchy-Kowalewski Theorem. Other conditions
under which the answer is yes are given in [A], but the general question
remains open.
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